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What is “Lights Out”?

The original Tiger Electronics game:
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What is “Lights Out”?

Each light is a vertex
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What is “Lights Out”?

Connections are edges
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What is “Lights Out”?

In the Z2 case, 1 is “on” and 0 is “o↵”

Blank
vertices
are in
state 0.
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What is “Lights Out”?

The finished product:

1 1

1 1 1

1 1

1
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What is “Lights Out”?

Another graph:

1

1 1
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What is “Lights Out”?

Definition

A press on a vertex v increases the state of v and all adjacent
vertices by 1.

In Z2,
1 + 1 = 0.

1

1 1
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What is “Lights Out”?

Remember, the objective is to turn all of the lights out.

1

1 1
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What is “Lights Out”?

Lights out!!
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It gets better!

But we don’t just work in Z2...

In Zk , possible states are between 0 and k � 1.
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In Z4:

But we don’t just work in Z2...
In Zk , possible states are between 0 and k � 1.

3

2

3 1
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In Z4:

3

2

3 1

In Z4,
3 + 1 = 0.
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3
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3 1
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In Z4:

1

3

3 1

In Z4,
3 + 1 = 0.
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For multiple presses:

A pattern is a vector that represents multiple presses on a
graph G .

For example, pattern ~y would press A twice and every
other vertex once:

A

B C D

E

~y =

0

BBBB@

2
1
1
1
1

1

CCCCA

A
B
C
D
E
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Definition

If a state can be turned all o↵ by applying a pattern, that state
is a winnable state.

B C

A

1

D

1

E F

1

0

BBBBBB@

1
0
0
1
0
1

1

CCCCCCA

A
B
C
D
E
F
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Linear Algebra

A

B C D

E

G

Neighborhood Matrix of G
(denoted N(G ))

A B C D E
A 1 1 1 1 0
B 1 1 1 0 1
C 1 1 1 1 1
D 1 0 1 1 1
E 0 1 1 1 1
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1 1 1
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C 1 1
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1 1
D 1
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The “initial state” of a graph can also be represented as a
vector ~x .

2

A

0

B

1

C

2

D

2

E

In Z3:
~x =

0

BBBB@

2
0
1
2
2

1

CCCCA

A
B
C
D
E
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Applying Patterns

N~y gives the e↵ect of applying pattern ~y to graph G .

N~y =

0

BBBB@

1 1 1 1 0
1 1 1 0 1
1 1 1 1 1
1 0 1 1 1
0 1 1 1 1

1

CCCCA

0

BBBB@

2
1
1
1
1

1

CCCCA
=

2

0

BBBB@

1
1
1
1
0

1

CCCCA
+ 1

0

BBBB@

1
1
1
0
1

1

CCCCA
+ 1

0

BBBB@

1
1
1
1
1

1

CCCCA
+ 1

0

BBBB@

1
0
1
1
1

1

CCCCA
+ 1

0

BBBB@

0
1
1
1
1

1

CCCCA

=

0

BBBB@

2
1
2
1
1

1

CCCCA

}
Pressing A

Pressing vertices in a pattern is commutative.

For every pattern ~y , N~y 2 CSk(G )
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Pressing A

Pressing vertices in a pattern is commutative.

For every pattern ~y , N~y 2 CSk(G )
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When we apply patterns, the goal is to change each vertex to
state 0:

N~y + ~x = ~0

N~y = �~x

~y = N�1 ⇤ (�~x)

If N is invertible mod k , every initial state ~x is winnable, and
N�1 ⇤ (�~x) is the winning pattern.

Graphs for which N is invertible mod k are called always

winnable mod k .
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Remember that N~y 2 CSk(G ).

N~y = �~x is solvable if ~x is winnable.

Thus, ~x is winnable if and only if ~x 2 CSk(G ).

(Null Space of G - NSk(G ))

Since N is a symmetric matrix, NSk(G ) is the orthogonal
complement of CSk(G ).

A graph is always winnable mod k if and only if
dimNSk(G ) = 0.
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Our Research Focus

~x is winnable if and only if ~x 2 CSk(G ).

A graph is always winnable mod k if and only if
dimNSk(G ) = 0.

NSk(G ) is the orthogonal complement of CSk(G ).

Characterize the way the null space changes when certain
subgraphs are removed, or when two graphs are joined
together.

Look for ways to connect graphs or remove subgraphs that
do not change the null space.
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The Null Space

By definition, if ~z 2 NSk(G ), N~z = ~0

Then ~z is a null pattern that will not change the state of
graph G , since N~z + ~x = ~x .

B
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D

~z =

0

BB@

1
1
0
0

1

CCA

A
B
C
D

In Z2
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The Null Space

This null pattern can be generalized to Zk .
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A Sampling of Our Results

Definition

The label of a vertex v in a graph G will be defined by

lG (v) = dimNSk(G � v)� dimNSk(G ).

In other words, dimNSk(G � v) = dimNSk(G ) + lG (v)
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A Sampling of Our Results

Proposition

Let G be a graph. For all v 2 V (G ), we have
lG (v) 2 {�1, 0, 1}. If G is always winnable over Zk , then for
all v 2 V (G ), we have lG (v) 2 {0, 1}.

Proof. The neighborhood matrix of G � v is formed by deleting
exactly one row and one column from the neighborhood matrix
of G . Thus lG (v) 2 {�1, 0, 1}. For an always winnable graph
G , dimNSk(G ) = 0, and therefore for all v 2 V (G ), we have
dimNSk(G � v) � dimNSk(G ), so lG (v) 2 {0, 1}.
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A Sampling of Our Results

Proposition

If there exists ~p 2 NSk(G ) with ~p(v) 6= 0, then lG (v) = �1.

Suppose ~p 2 NSk(G ) such that ~p(v) 6= 0. Then ev is not
winnable on G , since ev is not in the orthogonal complement
of NSk(G ). It follows that a pattern on G that is null on G � v
is also null at v ; otherwise that pattern would win �ev for some
� 2 Z⇤

k . In particular, a null pattern on G � v extended by 0 at
v is null on G , so dimNSk(G ) � dimNSk(G � v)

.

The fact
that there exists a null pattern ~p 2 NSk(G ) not of this type
gives us a strict inequality, or in other words gives us
lG (v) = �1.
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Corollary

Let G be a graph, and let v 2 V (G ). Then if lG (v) = 0,
~p(v) = 0 for every ~p 2 NSk(G ).

Proof. If lG (v) = 0, then lG (v) 6= �1, so by the contrapositive
of the previous proposition, ~p(v) = 0 for every ~p 2 NSk(G ).
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Proposition

Let G be a graph and let v 2 V (G ). If lG (v) = 0, then for all
� 2 Z⇤

k , the state �ev is winnable on G , and any winning
pattern ~p for �ev satisfies p(v) 6= 0.

Proof. Suppose that lG (v) = 0. Then by the previous
corollary, ~q(v) = 0 for every ~q 2 NSk(G ). The space of
winnable states is the orthogonal complement of the space of
null patterns, and therefore, for all � 2 Z⇤

k , �ev is winnable
because �ev ? ~q for all ~q 2 NSk(G ).
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Proposition

Let G be a graph and let v 2 V (G ). Then if lG (v) = 0, then
for all � 2 Z⇤

k , the state �ev is winnable on G , and any winning
pattern ~p for �ev satisfies p(v) 6= 0.

Assume for the sake of contradiction that ~p is a winning
pattern for �ev such that ~p(v) = 0. It follows that ~p|G�v is
null, but ~p is not null on G . We also know that for all
~q 2 NSk(G ), ~q(v) = 0 and thus ~q|G�v is always a null pattern
on G � v . We note that ~p|G�v must be distinct from ~q|G�v for
all ~q 2 NSk(G ), since the e↵ect of extending these patterns by
0 at v is di↵erent. This implies that
dimNSk(G � v) > dimNSk(G ), contradicting the fact that
lG (v) = 0. Thus ~p(v) 6= 0.
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Definition (The Secondary Label of v in G )

1. Let G be a graph and suppose v 2 V (G ) with lG (v) = 0.
By the previous proposition, the state ev has a winning
pattern ~q, and ~q(v) 2 Z⇤

k . Let

�G (v) = �~q(v)�1 2 Z⇤
k .

In this situation, all null patterns ~p on G have ~p(v) = 0,
and therefore �G (v) is independent of the winning pattern
~q chosen.
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Definition

2. Let G be a graph and suppose v 2 V (G ) with
lG (v) = �1. We define �G (v) = 0. (This secondary label
on the lG (v) = �1 vertices carries no information, but is
convenient for summation notation later.)

In either case, �G (v) 2 Z⇤
k will be called the secondary label

of v . The label of a vertex v with lG (v) = 0 and secondary
label � will typically be written as 0(�).
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Definition (Edge Join of G1 and G2 at v and w , respectively)

Let G1 and G2 be graphs with v 2 V (G1) and w 2 V (G2). Let
H = EJ({G1, v}{G2,w}) be the graph with
V (H) = V (G1) [ V (G2) and E (H) = E (G1) [ E (G2) [ (v ,w).

G2G1

v w

H

L. Ballard (Syracuse University) Lights Out on Related Graphs October 16, 2015 47 / 53



Lights Out on
Related
Graphs

L. Ballard

Lights Out
Introduction
Linear Algebra

Research
Null Space
Theorems

Conclusion
Acknowledg-
ments
References

A Sampling of Our Results

Definition (Edge Join of G1 and G2 at v and w , respectively)

Let G1 and G2 be graphs with v 2 V (G1) and w 2 V (G2). Let
H = EJ({G1, v}{G2,w}) be the graph with
V (H) = V (G1) [ V (G2) and E (H) = E (G1) [ E (G2) [ (v ,w).

G2G1

v w

H

L. Ballard (Syracuse University) Lights Out on Related Graphs October 16, 2015 47 / 53



Lights Out on
Related
Graphs

L. Ballard

Lights Out
Introduction
Linear Algebra

Research
Null Space
Theorems

Conclusion
Acknowledg-
ments
References

A Sampling of Our Results

Definition (Edge Join of G1 and G2 at v and w , respectively)

Let G1 and G2 be graphs with v 2 V (G1) and w 2 V (G2). Let
H = EJ({G1, v}{G2,w}) be the graph with
V (H) = V (G1) [ V (G2) and E (H) = E (G1) [ E (G2) [ (v ,w).

G2G1

v w

H

L. Ballard (Syracuse University) Lights Out on Related Graphs October 16, 2015 47 / 53



Lights Out on
Related
Graphs

L. Ballard

Lights Out
Introduction
Linear Algebra

Research
Null Space
Theorems

Conclusion
Acknowledg-
ments
References

A Sampling of Our Results

Theorem

Let G1 and G2 be graphs with v 2 V (G1) and w 2 V (G2). Let
di = dimNSk(Gi ), and let H = EJ({G1, v}{G2,w}). Then
dimNSk(H) is given by the following table.

lG1(v) lG2(w) dimNSk(H)

1 any d1 + d2
�1 any d1 + d2 + lG2(w)� 1
0(�) 0(µ) d1 + d2 (µ 6= ��1)
0(�) 0(µ) d1 + d2 + 1 (µ = ��1)

In particular, if lG1(v) = �1, then
dimNSk(H) = dimNSk(G1 � v) + dimNSk(G2 � w).
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Vertex joining:

G1 G2

H

v1 v2

v

The following theorem will show how NSk(H) depends on
lGi

(vi ) for i 2 {1, 2}.
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Theorem

For 1  i  m, let Gi be a finite graph with vi 2 V (Gi ). The
graph H = VJ({Gi , vi : 1  i  m}) is defined by

V (H) =
m[

i=1

V (Gi � vi ) [ {v} and

E (H) =
m[

i=1

E (Gi � vi ) [
(
(wv) : (wvi ) 2

m[

i=1

E (Gi )

)
.

1 If lGi
(vi ) = 1 for at least one i , then lH(v) = 1.

2 lH(v) 2 {0,�1} if and only if lGi
(vi ) 2 {0,�1} for all i .

Moreover, lH(v) = �1 if and only if
mX

i=1

�Gi
(vi ) = m � 1( mod k).
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Theorem

Let G be a finite graph with v 2 V (G ), and let fv be the

function which extends a pattern on G � v to a pattern on

G that is zero at v . The following are equivalent:

1 lG (v) = �1,

2
The state ev is not winnable on G .

3
There exists p 2 Null(N(G )) with p(v) 6= 0.

4
The function fv induces an injective linear

transformation from Null(N(G � v)) to Null(N(G )), and
dim coker(fv ) = 1.
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