MAT 601 HW 1.3-4 SOLUTION: FIELD OF REAL
NUMBERS

Problem 1. Let A be a nonempty set of real numbers which is bounded
above. Let B = {—3z: z € A}. Prove that inf B = —3 sup A.

Proof. Let = sup A. For every z € A we have z < a, hence —3z >
—3a. This shows that ~3a is a lower bound for B.

It remains to show that a number b > —3a cannot be a lower bound
for B. Indeed, b > —3a implies —b/3 < a. Hence, there exists z € A
such that z > —b/3. This implies —3z < b, and since —3z € B, we

conclude that b is not a lower bound for B. O

Problem 2. Let A be a nonempty bounded set of real numbers. Let
B = {z —y: z,y € A}. Prove that sup B = sup A — inf A.

Proof. Let s = sup A and ¢ = inf A; both exist because A is bounded.
For every z,y € Awe have z < s and y > t, hence z —y < s —t. This
shows that s — ¢ is an upper bound for B.

It remains to show that a number ¢ < s — ¢t cannot be an upper
bound for B. Let € = (s —t —¢)/2; this is a positive number chosen so
that

s—e—(t+e)=s5—-t—2=c
Since s — € < sup A, there exists z € A such that z > s — ¢. Since
t + € > inf A, there exists y € A such that y <t +e¢. Sincex -y € B
and
T—y>s—e—(t+e)=c

it follows that c is not an upper bound for B. O



MAT 601 HW 1.7 SOLUTION: EUCLIDEAN SPACES

Problem 1. Let a = (1,0) and b = (0, 1) be the standard basis vectors
in R2, Prove that for any x € R?

pef?+ e —al + e - b2 3
and find all vectors x for which equality is attained.

Solution. Expand in terms of coordinates x = (z, z3):
x[* + [x - al* + [x ~ b* = af + 25 + (31 = 1)’ + 25 + 2] + (32— 1)?

then rearrange by combining terms and completing squares:

3(zy — 1/3)* + 3(z2 — 1/3)% + g > g
Equality is attained if and only if both squares are zero, ie., x =

(1/3,1/3).

Generalization (optional, not for grade): find the best lower bound
for the sum 377", |x —a;|*> where a,,...,a, € R are fixed and x € R"
can vary.

Solution. The example above suggests that the minimum may be

attained at the mean z = # ;":1 a;. To show this, expand the sum as
m m
dolx—af =) |(x—2)+(z—a)
=1 =1
m m
=mix-z’+) |z—a?+2) (x—2)-(z—a;)
i=1 i=1

Here the last sum is zero, because it can be written as

(x—2):) (z—a;) = (x—z)(mz —mz) =0

=1
1



2 MAT 601 HW 1.7 SOLUTION: EUCLIDEAN SPACES

The minimum of

m
mix —z?+ ) |z - a;?
=1
is attained when the first term vanishes, i.e., x = z. The minimal value

is the second term.

Problem 2. Prove that for n € N and for every vector x € R"

n

Xn: loel < 4| D 242}
k=1

k=1
Also find all vectors x for which equality is attaineji)% ey e il 1y

aad Zﬂxkl = ﬂx}‘{

Solution. Use the Cauchy-Schwarz inequality:

1) ilxk|=i2"‘/2(2k/2lmkl)s zn:2"‘ zn:2"x§
k=1

k=1 k=1 k=1

By the geometric sum formula, the first factor on the right is

i2—k=\/1—2-n <1

k=1

Thus, the expression (1) does not exceed the second factor, /3 _p_, 2%z,

and equality is possible only when this factor is zero, i.e., when x = 0.



i
MAT 601 HW 2.2A: METRIC SPACES, PART 1

Due Wednesday 09/14

Problem 1. For z,y € R define

z| + yl, if z

Prove that d is a metric on R.

The properties d(z,z) = 0, d(z,y) > 0, and d(z,y) = d(y,z) are
evident from the definition. Also, if z # y, then either = or y is
different from 0, resulting in d(z,y) = |z|+|y| > 0. It remains to prove
the triangle inequality

(1) d(z,2) < d(z,y) + d(y, 2), z,,2 €ER

Observe (and this applies to any metric) that if some of the points
z, Yy, z coincide, (1) follows from the properties already established: for
example, if £ = y, then it becomes d(z,z) < d(z,z), and if z = z, it
becomes 0 < d(z,y) + d(y,z). So we only need to consider the case of

distinct ,y, z. In this case, (1) can be written as
2| + |2] <[] + [y] + |y| + |2

which is true because |y| > 0.

Problem 2. For the metric in #1, describe the following sets: (a)
neighborhoods N, (p); (b) open sets; (c) closed sets; (d) sets that are

dense in R.



2 MAT 601 HW 2.2A: METRIC SPACES, PART 1

(a) We have z € N,(p) if either z = p or [z| + |p| < r. The latter
can only happen if |p| < r. Thus,

N(p) = {{”} F0<r<|p
{p}ullpl =rr—Ipl)  if > |p|

(b) By (a), every nonzero point has a neighborhood that is only that
point. Hence, any subset not containing 0 is open. A set containing
0 must also contain an interval of the form (-r,r) because such are
neighborhoods of 0. In conclusion, a set is open iff it either contains
an interval of the form (—r,r), or does not contain 0.

(c) A nonzero point cannot be a limit point of any set, since it has
a neighborhood that contains no other points. Since the only possible
limit point is 0, any set containing 0 is closed. A set not containing 0
must avoid having it as a limit point, which means being disjoint from
some interval (—r,r). Conclusion: a set is closed iff it either contains
0 or is disjoint from some interval of the form (—r,7).

(d) A dense set must contain every nonzero point, since those points
are their own neighborhoods. This leaves us with just two candidates
for dense sets: R and R\ {0}. And since they intersect every neigh-
borhood of 0, they are indeed dense.



MAT 601 HW 2.2B: METRIC SPACES, PART 2

Problem 1. Let F,,..., E, be subsets of a metric space X. Prove
that

allawed o OB o
rol > UE=UE
' i=1 j=1

Remark: Definition 2.26 in the book (E = E U E') is not the best
way to work with the closures, because it leads to considering multiple
cases (either z € F or z € E’). Theorem 2.27 offers abetter way-to
think about theclosure of "E:"it's the smallest"closed sets containing
4. This leads to a short proof, as follows:

Proof. [D part.] Let A= U,-1 E;. This is a closed set, and it contains

E; for every j. Therefore, it also contains E< for every j (since Ej is

the smallest closed set containing E;). This proves that A D U,-1

[C part.] Being a finite union of closed sets, | J7.

im1 E : is closed. Since

it’s a closed set that contains Jj_, Ej, it must also contain {Ji_, E;,
again by the minimality of the closure. O

Remark: The preceding proof is slick and does not deal directly
with neighborhoods. But sometimes we have to work with closures in
terms of neighborhoods. In this case it’s convenient to use the following

fact:
1) T€EE < Vr>0N,(z)NE#0

Indeed, if z € E, then it satisfies both sides of (1). And if z ¢ E, then
the right hand side of (1) says precisely that z € E'.

Here is another proof of #1, using (1).
1



2 MAT 601 HW 2.2B: METRIC SPACES, PART 2

Alternative proof. [D part.] Suppose z € U}_, E;. Then there is j such
that N;(x) N E; # 0 for every r > 0. This implies that N,(z) intersects
iz1 E; for all r > 0, hence z € U,-1
[C part, by contrapositive.] Suppose z ¢ Uj_, Ej. Then for each
j there exists r; such that N, (z) N E; = 0. Let r = min(rl, -3 Tn)-

Then N, (z) is disjoint from (J}_ a

;=1 Ej, proving that z ¢

J—l
Remark: The D part of either proof works for arbitrary unions.

The C part requires a finite union. For a counterexample, consider Q

as the countable union of one-point sets.

Problem 2. Prove that every open set G C R can be written as a

countable union of closed subsets of R. That is, there exist closed sets
o0
E, C R such that G = | E;.

Hint: By definition gFlan open set, every point of G has a neigh-
borhood contained in G. Define the sets E, using the size of such a
neighborhood.

Remark: My hint gaes along the lines of E, = {z: Ny.(z) C G};
it’s clear that |J

closed. The hint has some merit in that it also helps in R™ and many

e E’,,, but one needs some work to prove each E, is
other spaces. But for R, there is an easier proof without using the hint.
It also does not use the fact that I proved in class, about G being a

disjoint union of open intervals.

Proof. For each z € G there is r > 0 such that’{‘((ﬁ:f:— r,z+71)CG. By
the density of rationals, there exist p,g € Qsuchthatz-r<p<z <
g < z+7. Let I; = [p,q]; by construction, z € [p,q] C G. Thus, the
union of the collection of intervals {I,: z € G} is precisely G. And this
collection is at most countable, since there are countably many rational

numbers. g



MAT 601 HW 2.3A: COMPACT SETS IN GENERAL
METRIC SPACES

Due Monday 09/19

Problem 1. Let A and B be compact subsets of a metric space X.
Prove that the closure of the set A\ B is compact.

Proof. Being compact, A is closed. Since A\ B C A, it follows that
A\BCcA=A

The closure of any set is closed. Being a closed subset of a compact set
(A), the set A\ B is compact. O

Remark: the assumption that B is compact is extraneous.

Problem 2. Let X be a compact metric space. Suppose that f: X —
R is a function with the following property: for any z € X there exists
r > 0 such that the image set f(N,(z)) has an upper bound. Prove
that there exists a real number M such that f(z) < M for all z € X.

Proof. Consider the following open cover {G;: z € X}: foreachz € X,
let G; be a neighborhood of x whose image under f has an upper
bound. Since z € G, this is indeed a cover of X. By compactness of
X, it has a finite subcover, say G;,,...,G;,. Let
M= IIlla.X sup f(Gxz,)
i=l,..n
then f < M holds in every set G,,, and therefore in all of X. d



MAT 601 HW 2.3B: COMPACT SETS IN R AND R*

Problem 1. Give an example of an open cover of the set [0, 1]\ {3/4}
which has no finite subcover. (The set is a closed interval minus a
point; it’s considered a subset of R with the standard metric.)

Example: G, =R\ (3/4~1/n,3/4+1/n),n=1,2,.... Thisis an
open cover because |J7>, = R\ {3/4}, but any finite union of these
sets is just the largest of them, R\ (3/4—1/N,3/4+1/N), which omits
points such shint 3/4 - 1/(2N).

Problem 2. Define another metric on R by d,(z,y) = min(|z — g}, 1).
(You don't need to prove that d; is a metric). The standard metric is
d(z,y) = |z - y|.

(i) Prove that a set A C R is open with respect to d, if and only if

it is open with respect to d.

(ii) Prove that a set A C R is compact with respect to d; if and only
if it is compact with respect to d.

(iii) Conclude that the metric space (R, d;) has subsets that are closed
and bounded, but not compact.

(i) Let N}(z) denote the neighborhoods with respect to dj, to distin-
guish them from neighborhoods with respect to d. Note that N,(z) =
N}(z) for 7 < 1 because d = d; when either metric is less than 1.
Also note that any neighborhood contains a neighborhood of radius

less than 1, with the same center. Thus,
(1) Uopenwrtd <= Vze U 3r € (0,1) such that N,(m)% U
Similarly,

(2) U openwrtd, < Vz €U 3r € (0,1) such that N}(z) i U
1



2 MAT 601 HW 2.3B: COMPACT SETS IN R AND R¥
The right hand sides of (1) and (2) are equivalent, hence
U open wrt d <=> U open wrt d;

(ii) Compactness is defined in terms of open sets. An open cover
with respect to d is also an open cover with respect to d;, and vice
versa. So, compactness (being the existence of finite subcovers of open
covers) is the same for either metric.

(iii) The set R itself gives such an example. It is closed and bounded
wrt d; (since R C N}(0)). If it was compact wrt d;, it would also be
compact wrt d. But it is not bounded with respect to d, so cannot be
compact.

Remark 1: The same logic applies to [0, 00), {1.00), or N or Z.

Remark 2: the fact that [J]2, [n, 00) = # shows that the intersection

of closed bounded nested sets can be empty in a general metric space.



MAT 601 REMARKS ON 2.4-5: PERFECT SETS AND
CONNECTED SETS

Bonus Theorem 1 from 9/26. I overstated the result, claiming it’s
true for an arbitrary set £ C R (it can’t be for many reasons). The
correct statement is:“every closed set E C R is the'union of a perfect

set and an at most countable set;

Proof. Let J be the set of all intervals I with rational endpoints such
that EN [ is at most countable. Let C = | J;c ,(E N I); this is an at
most countable set. It is also open in E.

If z € E\C, then EN N,(z) is uncountable for every r > 0, for
otherwise z would be contained in some interval I € J. Therefore,
(E\ C)N N,(z) is also uncountable. This shows that z is a limit point
of E\ C. Finally, E\ C is closed in E and since E is closed in R, it
follows that E \ C is closed in R.

Summary: E \ C is perfect and C is at most countable. O

(Note that the assumption that E is closed is used only to show that
E\ C is closed.)

Bonus Theorem 2 from 9/26. Suppose that K; D K; O --- are
nonempty compact connected sets in a metric space X. Then the set

K =\, K, is also connected.

Proof. Suppose to the contrary that K = AU l?gq zhere A and B are
nonempty, disjoint and open in K. We have AL = UnN K where U
is open in X. Let V = X \ U, this set is also open in X. We have
V N K = B because on one hand, V is disjoint from A, and on the

other, U is disjoint from B.




2 MAT 601 REMARKS ON 2.4-5: PERFECT SETS AND CONNECTED SETS

The sets E, = K,,\(UUV) are compact and nested. Since K C UUV,
the intersection of E, is empty. Hence, there exists n such that E, = @,
meaning that K, C UUV. But the sets U N K,, and V N K,, are
nonempty, disjoint, and open in K,, so K, being covered by them

contradicts the assumption that K, is connected. O

Hint for homework problem 2. The key step is to prove that after
Ki,..., K, have been constructed, the set I,y \ (K3 U---UK,) is
nonempty. Here’s a hint for this step.

Pick any z € I,,4,. If it’s none in K), ..., K, done. Otherwise it’s in
exactly one of them, say K. Then there is a neighborhood N,(z) that
is contained in I,4; and is disjoint from K; for i € {1,2,...,n} \ {j}.
(Why?) Once you have this N,.(z), the conclusion follows since K; does

not contan any interval.



MAT 601 HW 2.4-5 SOLUTION: PERFECT SETS AND
CONNECTED SETS

Problem 1. Let E, (a € I) be some collection of connected subsets
of a metric space X. Suppose that (),.; E, is nonempty. Prove that

Uaez Ea is a connected set.

Proof. Suppose J,.; E« = AU B where A, B are nonempty and sep-
arated. Pick p € [),¢; Ba- Then p € A or p € B; without loss of
generality, p € A. This implies that the set E, N A is nonempty for
every o € I. If E, N B was also nonempty, we'd have nonempty sep-
arated sets £, N A and o € I covering the connected set E,, which
is impossible. (Note: if two sets are separated, then their subsets are
also separated, since neither contains the limit points of the other one.)
Hence, E, N B = @ for every a. But then B = |J,.; E, N B is empty,

a contradiction. a

Problem 2. Let’s say that K is a Cantor-type set if it is the image

of the standard Cantor set (example 2.44) under some transformation
(—‘_——’//y = az + b, a # 0. Suppose I,, n € N, are nonempty open intervals
in R. Prove that there exist disjoint Cantor-type sets K,, n € N, such
that K, C I, for every n.

Proof. For any open interval J we can pick two numbers ¢ < d in it

and map the interval [0,1] onto [c,d] by a linear map. This will map

the standard Cantor set into a Cantor-type set contained in J.
Do this to produce K} C I;. Then proceed inductively: after
Ki,..., K, are constructed, consider the set G = I, \ (KU -UK],).

It is open, being a finite intersection of open sets.
1

v
En ® dhe wien oF X tevals
coch oL \%8% rad

S
Contor  sen = f\ E A
=\



2 MAT 601 HW 2.4-5 SOLUTION: PERFECT SETS AND CONNECTED SETS

Claim: G is nonempty. To prove this, pick € I,.,. If it is in
G, the claim is proved. Otherwise, there is ¢ € {1,...,n} such that
z € G. The set E = |J;; K; is closed and does not contain z. Thus,
z € I41\E, which is an open set. This implies that some neighborhood
N,(z) is contained in I, \ E. Since K; cannot contain N,(z), there
is a point y € N,(z) \ K;. This point is in G, proving the claim.

Being nonempty and open, G contains an open interval J. We con-
struct K41 C J as described above, and the process continues indefi-
nitely. O

Application (not for grade): use #2 to prove that there exists a
function f: R — R such that for every nonempty open interval I we
have f(I) =R.

Proof. Consider the set of all open intervals with rational endpoints.
Since it’s countable, the intervals can be put in bijection with N, i.e.,
enumerated as I, I, ... Construct Cantor-type sets K,, n € N, as in
#2. For each n, pick a surjective map f,: K, — R. (For example,
recall that an element of the standard Cantor set is 2 Y5> di/3* with
dx € {0,1}, so we can send this element to 3 5o, di/2*, thus obtaining
a map of K, onto [0,1]. Then compose with any map of [0, 1] onto R.)
Finally, define f: R — R by
z), z € K,
fz) = {g?( ) otherwise

Since every nonempty interval I contains some I,, we have f(I) D
f(I,) D f(K,) =R as desired. ([



MAT 601 HW 3.1 SOLUTION: CONVERGENCE OF
SEQUENCES

Problem 1. Let {p,} be a convergent sequence in a metric space X.
Prove that the set

o0

(1) T=n{pn:n_>_m}

m=1

consists of one point.

Proof. Let p = im0 Pn.

Step 1: p € T. Recall that a point is in the closure of a set if and
only if the set intersects every neighborhood of that point. So, we
must show that for every r > 0 the intersection N,(p) N {p,: n > m}
is nonempty. But this follows from the definition of the limit: there
exists N such that d(p,,p) < r for all n > N; this means p, € N.(p)
foralln > N.

Step 2: if ¢ # p, then ¢ ¢ T. Let ¢ = d(p, ¢)/2. Since p, — p, there
exists N such that d(p,,p) < € for all n > N. The triangle inequality
d(p,q) < d(pn,p) + d(pn,q) implies d(p,,q) > ¢ for all n > N. This
says precisely that N.(g) N {pn: n = N} = 0, which in turn implies
q¢ {pn: n > N}. Thus g ¢ T as claimed. O

Problem 2. Give an example of a sequence in R (with the standard
metric) for which the set T in (1) consists of one point, but the sequence
does not converge.

Let z, = (1 + (=1)")n, so that z, = 2n when n is even, and z, = 0
when n is odd. The sequence does not converge, since it’s unbounded.
On the other hand,

{pa: n2m} ={0}U{2n: n > m, n even}
1



2 MAT 601 HW 3.1 SOLUTION: CONVERGENCE OF SEQUENCES

The set {0} U {2n: n > m, n even} is closed, since any two of its
elements are at distance at least 2 from each other, making it impossible
for any point to be its limit point. Hence,

T= ﬁ ({0} U {2n: n > m, n even}) = {0}

m=1



MAT 601 HW 3.2-3 SOLUTION: SUBSEQUENCES,
CAUCHY SEQUENCES

Problem 1. Suppose that {p,} is a sequence in a metric space X,
and there is a point p € X such that every subsequence of {p,} has a

subsubsequence converging to p. Prove that {p,} converges to p.

Proof. Suppose to the contrary that {p,} does not converge to p.
Negating the definition of the limit yields the following: there exists
€ > 0 such that for every N there is n > N such that d(p,,p) > e
Construct an increasing sequence of integers {n;} as follows: use the
above with N =1 to get n;, then use N = n; 4 1 to get n,, then use
N = ny + 1 to get ng, etc. This results in a subsequence {p,,} such
that d(pn,,,p) 2 € for all k. By the hypothesis, some subsubsequence
{pn,‘j} converges to p; but this implies d(pnkj, p) < e for all sufficiently

large j, a contradiction. O

Problem 2. Give an example of a sequence {z,} in R such that for
every k € N we have li’m (Zntk — Tn) = 0 but {z,} is not a Cauchy

sequence.

Proof. Let z, = /n. This is not a Cauchy sequence since it’s un-

bounded. On the other hand, for every k& we have
k
itk — =vn+k-— [ —— » 0
Tk T Tk " i Vn¥k+n

since the numerator stays fixed while the denominator grows indefi-

nitely. [



MAT 601 HW 3.3B SOLUTION: COMPLETENESS

Problem 1. Let X be R with the metric d;(z,y) = min(|z — ¥, 1).
Prove that X is a complete metric space, using the fact that R is

complete.

Proof. Let {z,} be a Cauchy sequence with respect to dy. The goal is
that to prove that it converges with respect to d;.

Claim 1: {z,} is a Cauchy sequence with respect to the standard
metric d(z,y) = |z — y|. Indeed, given € > 0, we can let ¢ = min(e, 1)
and pick N such that di(z,,z,) < € for all n,m;m > N. Since both
metrics agree when the value of one of them is less than 1, we have
d(zn,zm) = d1(Zn, Tm) < € < € for all n,m > N, proving the claim.

Since R is complete, Claim 1 implies that z, converges to some point
z € R with respect to d.

Claim 2: z, — z with respect to d;. Indeed, given ¢ > 0, we can
pick N such that d(z,,z) < € for all n > N. Since d; < d, it follows
that d;(z,,z) < € for all n > N, proving the claim.

We’ve proved that every Cauchy sequence with respect to d; con-

verges with respect to d;, meaning X is complete. O

Problem 2. Suppose that {p,} is a Cauchy sequence in a metric space
(X, d), which does not converge. Consider the set Y = X U {p} where
p is an abstract point we add to the set X. Define a metric dy on Y
as follows:

e dy(a,b) = dx(a,b) if a,b € X;

® dy(a,p) = dy(p,a) = lim d(pn,a) if a € X;

e d(p,p) =0.
1
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Prove that dy is indeed a metric (this includes showing that the limit

in the definition of dy exists). Also prove that p, — p in the space Y.

Proof. General remark: if all terms of sequences {z,}, {yn} C R satisfy
Zp, < Yn, and the limits limz, = z, limy, = y exist, then z < 3.
Indeed, if x > y, then taking ¢ = (z —y)/2 we'd find that z, >z —¢ =
y + € > y, for sufficiently large n, contradicting the assumption.

One can summarize the above by saying that we can pass to the limit
in a non-strict inequality.

Before showing that d is a metric, it must be shown that it is well-
defined, that is the limit lim,_, d(p,, a) exists. By the triangle in-
equality,

(1) |d(pn, @) — d(pm, a)| < d(Pn, Pm)
Since {p,} is a Cauchy sequence, (1) implies that {d(p,, a)} is a Cauchy
sequence in R. Thus it converges.

The metric properties only need to be proved when one of the points
involved is p — otherwise, they follow from d being a metric on X.
Also, the triangle inequality (property 3) only needs to be proved for
three distinct points, because when some of them coincide, it reduces
to the properties 1-2.

Property 1: dy(z,y) 2 O0forall z,y € Y, with equality iff z = y. The
only case of interest is when one of two points is p, so let’ssay z = p
and y # p. Then dy(p,y) > 0 because it’s the limit of nonnegative
numbers d(p,,y). Also, this limit cannot be zero, for otherwise p,
would converge to y, contradicting the assumption that {p,} does not
converge.

Property 2: dy(z,y) = dy(y,z). This is by the definition, bullet
item 2.

Property 3: dy(z,y) £ dy(z,2) + dy(y, 2). First consider the case
z = p. Since d(pn,y) < d(ps,z) + d(y, z) for every n, passing to the
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limit n — oo yields dy(p,y) < dy(p, 2) +dy(y, z), as desired. The case
y = p is the same up to swapping = and y. Consider the case z = p.
Since d(z,y) < d(z,pn) + d(y, pn), passing to the limit n — co we get
d(z,y) < d(z,p) + d(y, p) as desired.

Finally, to prove that p,, = pin Y, we must show that for every ¢ > 0
there exists V such that dy(p,,p) < € for all n > N. Using the Cauchy
property of {p,}, pick N such that d(pp,pm) < €/2 for all n,m > N.
Keeping n fixed, pass to the limit m — oo, getting dy(pn,p) < €/2

(only non-strict inequalities are preserved under taking limits). Thus,
dy(pn,p) < € for all n > N, as required. O



MAT 601 HW 3.4 SOLUTION: UPPER/LOWER AND
INFINITE LIMITS

Problem 1. Define a sequence by z; = 1/3 and z,4; = z,(1 - z,,) for

n=1,2,.... Prove that lim, o =, exists.

Proof. The sequence is decreasing because zn41 = z, — 22 < T, (the

square of any number is nonnegative). Hence z,, < z; < 1 for all n.

-—

Claim: z,, > 0 for all n. The base case is z; = 1/3 > 0. The step of
induction is z, 2 0 = z,(1-12,) 20 => z,4; > 0 which works
because 1 — z,, > 0. The claim is proved.

Since {z,} is decreasing and bounded below, it converges. [

Problem 2. Define a sequence by z; = 1/3 and z,41 = 4z,(1 — z,)

forn=1,2,.... Prove that

(a) 0 <z, <1forall n;
(b) liminf, e zn < 3/4.

Proof. (a) will be proved by induction. Base: 0 < 1/3 < 1. Step of
induction: if 0 < z, < 1, then on one hand zp41 = 4z,(1 — z,) = 0,

and on another
(1) Tppy =4zl =2p) =1 - (22, - 1)< 1

(b) If z, > 3/4 then 2z, — 1 > 1/2, which in view of (1) yields
Tni1 < 1—(1/2)% = 3/4. So,

(2) min(z,, Tn+1) < % for every n
This implies inf{z, : n > m} < min(zn, Zm+1) < 3/4. Hence

liminf z,, = supinf{z, : n > m} <3/4
n—oo -~
1



2  MAT 601 HW 3.4 SOLUTION: UPPER/LOWER AND INFINITE LIMITS

Alternative end of proof, using the definition of liminf via the set
S of subsequential limits: Select a subsequence z, by picking the
smaller of the elements zg_y, o for every k. By (a) and (2) we have
0 < z,, < 3/4 for all k. Hence, there is a convergent subsubsequence

Tpn,, With limit contained in [0,3/4]. Hence inf S < 3/4. O



MAT 601 HW 3.4 SOLUTION: UPPER/LOWER AND
INFINITE LIMITS

Problem 1. Define a sequence by z; = 1/3 and z,4; = z,(1 - z,) for

n=172,.... Prove that lim, ., z, exists.

Proof. The sequence is decreasing because z,41 = z, — 22 < z, (the

square of any number is nonnegative). Hence z, < z; < 1 for all n.
Claim: z, > 0 for all n. The base case is z; = 1/3 > 0. The step of

induction is z, > 0 => z,(1 —z,) >0 = z,4; > 0 which works

because 1 — z, > 0. The claim is proved.

Since {z,} is decreasing and bounded below, it converges. O

Problem 2. Define a sequence by z; = 1/3 and 2,4+, = 4z,(1 — z,)
forn=1,2,.... Prove that

(a) 0 <z, <1 forall n;

(b) liminf, oz, < 3/4.

Proof. (a) will be proved by induction. Base: 0 < 1/3 < 1. Step of
induction: if 0 < z, < 1, then on one hand z,4; = 4z,(1 — z,) > 0,

and on another
(1) Tnp1 =47,(1—2,) =1~ (22, - 1)* < 1

(b) If z, > 3/4 then 2z, — 1 > 1/2, which in view of (1) yields
Tpp1 <1 - (1/2)% =3/4. So,

NI

(2) min(z,, Zp41) < = for every n
This implies inf{z, : n > m} < min(zu, Tm41) < 3/4. Hence

liminf z,, = supinf{z, : n > m} < 3/4
n—o0 m
1



2  MAT 601 HW 3.4 SOLUTION: UPPER/LOWER AND INFINITE LIMITS

Alternative end of proof, using the definition of iminf via the set
S of subsequential limits: Select a subsequence z,, by picking the
smaller of the elements zgx—;, Zox for every k. By (a) and (2) we have
0 < z,, < 3/4 for all k. Hence, there is a convergent subsubsequence
Tn,; With limit contained in [0,3/4]. Hence inf S < 3/4. a



MAT 601 HW 3.5 SOLUTION: EVALUATING LIMITS

Problem 1. Suppose that {z,} is a sequence of real numbers that
converges to L € R. Let y, = (1 + 2o+ - + z,)/n for n € N. Prove
that y, — L.

Proof. Let 2z, = z, — L, so that 2, — 0. Observe that

Ty+Za+- - +Tn—nl  z+- 42z,
n n

(1) yn_L=

Since convergent sequences are bounded, there exists M such that
|zn| £ M for all n € N.

Given € > 0, let K be such that |2,| < ¢/2 when n > K, and choose
an integer N such that

2MK
(2) N > max (K, = )
I claim that |y, — L| < € whenever n > N. Indeed, for such n we have,
using (1),
lym — L| < |za] + - - + |2« + |zre41| + -+ + |24 s KM + ne/ <e
n n n n
since KM/n < KM/N < ¢/2 according to (2). ' O

Problem 2. Suppose that {zr,} is a sequence of real numbers. that

» I
converges to L € R. Let y, = (z; + 2x3 + 323 + -+ + nz,)/n? for
n € N. Prove that y, — L/2. "

Proof. Let z, = z,— L, so that z, — 0. Since 1+---+n =n(n+1)/2,
it follows that

(3) Yn —

é_zl+2z2+-~+nzn+ 'n(n+1)L__£
2 n? 2n? 2

1



2 MAT 601 HW 3.5 SOLUTION: EVALUATING LIMITS

The term in parentheses simplifies to L/(2n) and therefore tends to 0

as n — oco. It remains to show that
21 +229+- -+ n2,
@ ~
Given € > 0, let K be such that |z,| < ¢/2 when n > K, and choose
an integer NV such that

-0

(5) N > max (K, 2MK2)

€
I claim that |2; + 222+ - - - + n2,|/n? < € whenever n > N. Indeed, for

such n we have

|21+ 2204+ -+ - + 12, 1+2+4+---+K e(K+1)+---+n
n? <M n? *3 n?
K? en?
<M tIm
<st-=¢
2 2

completing the proof. O



MAT 601 HW 5.1: THE NOTION OF DERIVATIVE

Due Friday 11/18

Problem 2. Prove that if f: R — R is continuous and | f| is differen-
tiable, then f is also differentiable.

Lemma 1. If 122 F(t) > 0, then there is § > 0 such that F(t) > 0
whenever 0 < d(t,p) < 4. (This works on any metric space, and works

the same for “<0”).

Proof. Let L = limy.,, F(z) and choose ¢ = L. By the definition of
limit there exists § > 0 such that |F(t) — L| < € when 0 < d(t,p) < 4.
This implies

-e<F(t)-L<e

hence F(t) > L — ¢ = 0 as claimed. O

Proof. Consider a point € R. There are three cases.

Case 1: f(z) > 0. By the lemma there exists § > 0 such that
f(t) > 0 when 0 < |t — z| < §. The existence of a limit as t — z is
determined by values of ¢ close to z, and for such ¢ we have | f(t)| = f(¢),

hence
1) = £(=) _ 5@ = 1f(@)]
t—z t—-z
as t = z, proving f'(z) exists.
Case 2: f(z) < 0. Let g = —f. This is also a continuous function.

- |f](=)

Since |g| = | f| everywhere, lg| is continuous. Applying Case 1 to g, we
get that g is differentiable at z. Hence f is differentiable there too (the

product of differentiable function and the constant —1.)
1



2 MAT 601 HW 5.1: THE NOTION OF DERIVATIVE

Case 3: f(z) = 0. If |[f|'(z) > 0 then by applying the lemma to
F(t) =|f(t))/(t — =) we get § > 0 such that
THOTP

t—=z
when 0 < |t — z| < 4; but this is impossible when ¢ < z. Similarly,
the assumption |f|'(z) < 0 leads to w}_'xﬂ < 0 around z, which can’t
happen when ¢ > z. We conclude that | f|'(z) = 0. By definition of the

limit this means that for every ¢ > 0 there exists  such that

i
% <e  whenever O0<|t—-z|<d.
But the above is the same as
t
E-f% <e  whenever O<|t—z|<d.

which means lim f(t) =0. O

tiozt—2x

Remark: The continuity of f is not needed in Case 3.



MAT 601 HW 5.2 SOLUTION: MEAN VALUE
THEOREMS

Problem 2. Suppose that f: (0,1) — R is a differentiable function
such that | f'(z){ < 1/y/z for z € (0,1). Prove that :E%I+ f(z) exists.

Proof 1. Let g(z) = f(z)+2y/z and h(z) = f(z) -~ 2+/Z. Then ¢’(z) >
-1/Vz +1/y/z = 0 and k'(z) < 1/v/z —1/\/T = 0. Hence g is
increasing and h is decreasing on the interval (0,1). Also, g(z) > h(z)
for all z € (0, 1).

For every z € (0,1/2) we have g(z) < ¢(1/2) and g(z) > h(z) >
h(1/2). Thus, g is bounded between h(1/2) and g(1/2) on this interval.
As in the proof of Theorem 4.29, this leads to the conclusion that
g(04+) = inf{g(z): 0 < z < 1/2}. Since 2/ — 0 as z — 0+, it follows
that f(0+) = g(0+). a

Proof 2. Let g(t) = f(t?). By the chain rule, g'(t) = 2t'(t2). Hence,
lg'(8)] = 2Jt]| £/ (3| < 2Jt)/ Ve =2

for all ¢ € (0,1). By the mean value theorem, |g(t) — g(s)| < 2|t —s| for
all 5,t € (0,1). This implies that g is uniformly continuous (as proved
in class; specifically, one can take § = ¢/2). A uniformly continuous
function on an open interval has limits at both ends; this is a special
case of Problem 2 of Homework 4.3. So, there is L € R such that
for every € > 0 there is § > 0 with the property that |g(t) — L| < ¢
whenever 0 < ¢t < 4. Returning to f, we see that |f(z) — L| < ¢
whenever 0 < z < §2. Thus, f(0+) = L. O



MAT 601 HW 4.5-6 SOLUTION: DISCONTINUITIES,
MONOTONE FUNCTIONS

Problem 1. Let f: X — Y be a function, where X and Y are metric
spaces. Let C be the set of all points of X at which f is continuous.

Prove that C can be written as a countable intersection of open sets.

Proof. Forn=1,2,... let A, the set of all points z such that
diam f(N,(z)) < 1/n for some r > 0.

Claim 1: A, is open. Indeed, for every z € A,, we have r > 0 such
that diam f(N,(z)) < 1/n. For y € N(z) let p = r—dx(z,y); then the
triangle inequality implies N,(y) C N.(z), hence diam f(N,(y)) < 1/n.
This shows y € A,, hence z is an interior point of A,,.

Claim 2: C C A, for every n. Suppose p € C; then by definition
of continuity there exists § > 0 such that dy(f(z), f(p)) < 1/(3n)
whenever dx(z,p) < §. Therefore, for every two points z,y € Nj(p)

we have

&y (1(2), /) < dr(/(a), S0) + dy (S(3), SP) < o

This implies diam f(Ns(p)) < =& < 1/n, hence p € A, as claimed.
Claim 3: If p € A,, for all n, then p € C. Given ¢ > 0, pick n such
that 1/n < €. Since p € A,, there exists r such that diam f(N,(z)) <
1/n. This implies dy(f(z), f(p)) < 1/n < € whenever dx(z,p) < 7;
thus, the definition of continuity is satisfied by taking § = r.
The combination of three claims shows that C is the intersection of

open sets A,. O

Remark: Not every set can be written as a countable intersection

of open sets. For example, Q cannot be written in such a way. Indeed,
1



2MAT 601 HW 4.5-6 SOLUTION: DISCONTINUITIES, MONOTONE FUNCTIONS

suppose Q@ = ()22, A, and consider also the sets B, = R \ {r,} where
{r1,72,...,} is an enumeration of all rational numbers. Note that every
A, and every B, is a dense open subset of R. Since R is complete,
Baire's category theorem implies that the intersection A;NB;NAzNByN
-- must be dense. On the other hand, this intersection is Q N (R \ Q)
which is empty.
As a consequence of this remark and #1, we obtain that there does
not exist a function f: R — R that is continuous at all rational points

and discontinuous at all irrational points.

Problem 2. Define f: R — R so that f(z) = 1 when z is rational
and f(z) = 0 when z is irrational. Prove that it is impossible to find
two monotone functions g,h: R — R such that f = g+ h.

Proof. We know that the set of discontinuities of a monotone function
is at most countable. Since the sum of two functions continuous at p is
also continuous at p, it follows that the sum of two monotone functions
also has an at-most-countable set of discontinuities.

On the other hand, the given function f is discontinuous at every
point, since every neighborhood of any point p contains both rational
and irrational points, making it impossible to have |f(z) — f(p)| < ¢
with e < 1. O



MAT 601 REVIEW FOR EXAM 3

Exam 3 Monday covers 3.11-4.7.

1. Let X be a metric space. Suppose that f: X — R is a continuous surjective
function. Prove that the set {z € X: f(z) # 0} is not connected.

2. Suppose that f: R — R is a continuous function. Prove that the set {f(z): 0 <
z < 1} can be written as a countable union of closed sets.

3. Suppose that f: (0,1) — R is an increasing bounded continuous function. Prove
that f is uniformly continuous.

4. If f: R — R is continuous, does it follow that g(z) = is uniformly

1
(F(z))?+1
continuous?

5. Let a and b be distinct points of a connected metric space X. Let r be a number
such that 0 < r < d(a,b). Prove that there exists z € X such that d(z,a) =r.

6. Suppose that f: (0, +00) = R is a uniformly continuous function such that
f(2z) = f(z) for all z € (0, 00). Prove that f is a constant function.

7. Suppose that f: [0,00) — R is a continuous function such that lim,.,o, f(z) = 0.
Prove that f is uniformly continuous.

8. If 3" a, converges absolutely, then 3 |a, — an41| converges. Prove this is false

without “absolutely”.



MAT 601 HW 4.3 SOLUTION: CONTINUITY AND
COMPACTNESS

Problem 1. Suppose that A and B are disjoint nonempty subsets of
a metric space X. Let dg(z) = inf{d(z,b): b€ B} forz € X.

(a) Prove that dp is a continuous function on X.

{(b) Suppose in addition that A is compact and B is closed. Prove that
there exists € > 0 such that dg(z) > ¢ for all z € A.

(c) Show that the conclusion of the previous item fails if A is assumed
to be closed instead of compact. (Hint: an example can be found
with X =R and B =N.)

Proof.
(a) The function dg(z) is well-defined since {d(z,b): b € B} is
bounded below by 0. I claim that

(1) |dg(z) — dp(y)| < d(z,y) forall z,y € X,

from where the uniform continuity of dg follows by taking é = ¢. To
prove (1), note that for every b € B the triangle inequality implies

dg(z) < d(z,b) < d(y,b) +d(z,y), hence dp(z) — d(z,y) < d(y,d)

So, dg(z) — d(z,y) is a lower bound for {d(y,b): b € B}, which by the
definition of infimum yields dg(y) > dp(z) — d(z,y). Thus dg(z) -
dp(y) < d(z,y), and the inequality dp(y) — dp(z) < d(z,y) follows by
interchanging = and y above. This completes the proof of (1).

(b) For every = € A we have ¢ B, and since B is closed, there
exists r > 0 such that N, (z) N B = 0. So, r is a lower bound for
{d(z,b): b € B}, which implies dg(z) > r > 0.

1
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Since dp is continuous and A is compact, by the Extreme Value
theorem there exists a € A such that dg(e) = inf{dp(z): z € A}.
Choose € = dg(a), which is positive; then dg(z) > e for all z € A as
claimed.

(c) Let B=Nand A= {n+2"": n € N}. Both A and B are closed
because they have no limit points: indeed, since lim(n + 2™") = o0,
every neighborhood N,(z) of any point contains only finitely many
points from A (and from B). Also, they are disjoint because n + 2™
has nonzero fractional part, namely 27".

The fact that dg(n + 27",n) = 27" shows that inf,¢4 dg(z) < 27,

And since n is arbitrarily large, inf,c4 dg(z) = 0.

Problem 2. Let F be a subset of a metric space X such that E' = X,
Suppose that f: E — Y is a uniformly continuous function, where Y
is a complete metric space. Prove that for every p € X there exists a

limit lim f(z).
T-p

Proof. Given p € X, consider any sequence {z,} of elements of E'\ {p}
that converges to p. Being convergent, this sequence is Cauchy. Being
uniformly continuous, f maps Cauchy sequences to Cauchy sequences
(stated in class; proved below for completeness). Since {f(z,)} is a
Cauchy sequence in a complete metric space, it has a limit g € Y.

In order to use the sequential characterization of lim,.,, f(z), we
must show that ¢ is the same for every sequence {z,} as above. One
way to do this is the interlacing trick: given another sequence {y,}
of elements of E \ {p} that converges to p, consider the combined
sequence {zi, y1, T2, ¥2, T3, Y3, - - - }- Lt also converges to p, which by the
above implies that {f(z1), f(x1), f(z2), f(y2),...} has a limit. Since
all subsequences of a convergent sequence converge to the same limit,
we have lim f(z,) = lim f(y,). a



MAT 601 HW 4.3 SOLUTION: CONTINUITY AND COMPACTNESS 3

Lemma If {z,} is a Cauchy sequence in X and f: X - Y is uni-
formly continuous, then {f(z,)} is Cauchy.

Proof. Given € > 0, let § > 0 be as in the definition of uniform con-
tinuity, so that dx(a,b) < § = dy(f(a), f(b)) < e. Pick N such
that dx(z,,zm) < § whenever m,n > N. Then for m,n > N we have
dy (f(zn), f(zm)) < € as required. ]



MULTIPLIERS PRESERVING SERIES CONVERGENCE

Let’s say that a sequence {b,} preserves convergence of series if for
every convergent series }_ a,, the series ) anby also converges.

Similarly, a sequence {bx} preserves absolute convergence of series if
for every absolutely convergent series }_a,, the series ¥ anby also
converges absolutely.

How to describe such convergence-preserving sequences?

Theorem 1. A sequence {by} preserves convergence of series if and only
if it has bounded variation, meaning Y0 |by — bys1| converges. (One
can say that {b,} is BV for brevity).

The situation with absolute convergence is much simpler.

Theorem 2. A sequence {b,} preserves absolute convergence of series if
and only if it is bounded.

Remark 3. By the triangle inequality, every BV sequence is Cauchy:

n-1
|bw — bm| < Y 1B — bi—1

k=m
where the sum on the right is small when m, n are large. Thus, a
BV sequence has a limit. But the converse is false: for example, the
sequence {(—1)"/n} has a limit but is not BV since
el = (1 1
’El |bn — bpy1] = ngl (§+n_-1'-_1)
diverges by comparison to harmonic series.

We'll prove Theorem 2 first, as its proof is much simpler.

Proof of Theorem 2. If there is M such that |b,| < M for all n, then
{anbn| < Ml|ay|, so the series ¥ |ayb,| converges by comparison to

MY |an|. .



2 MULTIPLIERS PRESERVING SERIES CONVERGENCE

Conversely, suppose by is unbounded. Then for every k there is
ng such that |by,| > 2*. We can ensure n; > n;_; since there are
infinitely many candidates for ;. Define

2 = 2-k if n = ny forsome k
"7 lo otherwise

Then ¥ a, converges, since its partial sums are bounded by Y52, 2% =
1. But J"a,b, diverges because its terms do not approach 0: we have
|anby] 2 1 for infinitely many values of n. ()

The proof of Theorem 1 requires two lemmas.

Lemma 4. A sequence {b,} is BV if and only if there are two increasing
bounded sequences {c, } and {dy} such that b, = c, — dy, for all n.

Proof. 1f such cy, dy exist, then by the triangle inequality

N N
Z 'bn - bn+l| = Z(Icn - Cn+1| + |dn+1 - dn|)

n=1 n=1
N N
= Y (cnr1—cn) + Y (dns1 —dn)
n=1 n=1

and the latter sums telescope to cy4+1 ~ €1 + dn41 — dy which has a
limit as N — oo since bounded monotone sequences converge.

Conversely, suppose {bn} is BV. Let ¢y = T2} |bx — b4/, under-
standing that ¢; = 0. By construction, the sequence {c,} is increas-
ing and bounded. Also let d, = ¢, — by; as a difference of bounded
sequences, this is bounded too. Finally,

dni1 = dn = Cup1 — Cn + by — buyy = by — byyy| + b — buy1 20
which shows that {d,} is increasing. 0O

Lemma 5. If a series of nonnegative terms }_ A, diverges, then there is a
sequence ¢y — 0 such that the series J_ cy Ay still diverges.

Proof. This was proved in class. (The idea was to make it so that
partial sums of }_ c, A, are square roots of the partial sums of ° A,.)
0
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Proof of Theorem 1. Suppose {b,} is BV. Using Lemma 4, write b, =
¢p — dp. Since apby = azcy — andy, it suffices to prove that ¥ a,c, and
L and, converge. Consider the first one; the proof for the other is
the same. Let L = limc, and write auc, = La, — a,(L — c,). Here
Y La, converges as a constant multiple of }_a,. Also, ¥ a.(L - c,)
converges by the Dirichlet test: the partial sums of } 4, are bounded,
and L — ¢, decreases to zero.

For the converse, suppose {by } is not BV. The goal is to find a con-
vergent series T ay such that ¥ a,b, diverges. If {by, } is not bounded,
then the proof of Theorem 2 applies here as well, delivering an ab-
solutely convergent series }_a, such that ayb, # 0. It remains to
consider the case when {by } is a bounded sequence.

Since Ypv.q |by — bp41] diverges, by Lemma 5 there exists {c, } such
that c, — 0 and Y5 cn|by — bpy| diverges. Let d, be such that
du(by — byt1) = cn|bn — bp41|; that s, dy differs from ¢, only by sign.
In particular, 4, = 0. Summation by parts yields

N N
1) E dn(by = bys1) = Z (dn = dn—1)bn + d1by ~dNbN 1

n=1 n=2

As N — oo, the left hand side of (1) does not have a limit since
Y dn(by — by41) diverges. On the other hand, d1b; — dyby 41 — diby
since dy — 0 while bN+1 stays bounded. Therefore,

) o, E —dy_1)by does not exist

Leta, = dy — dy-1. The series }_ a, converges (by telescoping, since
limy 0 dpn exists) but ) a,b, diverges, as shown by (2). O



MAT 601 HW 3.9-10 SOLUTION: ROOT AND RATIO
TESTS; POWER SERIES

Problem 1. Determine, with a proof, the set of all complex numbers

z such that the following power series converges.

oo

Y@+ (=)

n=1

Claim: the set of convergence is {z € C: |z| < 1/3}.
Proof. If |z] < 1/3, then
(2 + (=12 < (@2 = 3]
hence limsup,_,, [(2 + (=1)*)"2"|"/* < 3|z| < 1, which implies the

series converges by the Root Test.

If |2] = 1/3, then for even n we have
2+ (-1)")%2" 2 3*(1/3)" =1

Since the terms of the series do not converge to 0, the series diverges.

O

Problem 2. Determine, with a proof, the set of all complex numbers

z such that the following power series converges.

Z n' 2n
Claim: the set of convergence is {z € C: ]z| < 1}.

Proof. The series clearly converges when z = 0. For z # 0 we can use
the Ratio test, which seems practical because of n!:
('n + 1)! gn+l n + 1 on

3n+l e I I

where |2|2"* /|z]*" = |27 = |z|2".

| | =
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When |z| < 1, we have (n + 1)|2|>" < (n + 1)|z|® = 0, because the
exponential function beats any power of n (considered in section 3.5).
Thus, the series converges by the Ratio Test.

When |z| > 1, the ratio i l|z|2" > il
converges by the Ratio Test. O

tends to co. The series




MAT 601 HW 3.7 SOLUTION: SERIES WITH
POSITIVE TERMS

Problem 1. Give an example of a convergent series )~ | a, such that
an > 0 for all n, and the series Y s, 2¥ag diverges.

Let P={27: j=0,1,2,3,...} and define

_J1/n, neP
= {l/nz, n¢P
To prove Y a, converges, it suffices to show the partial sums are
bounded above. We have
K N |

The first sum on the right is bounded by 3772, 1/27 = 2. The second
one is bounded because 3_ 1/k? converges. Thus, 3 a, converges.

On the other hand, 2%asx = 2¥1/2% =1 for every k, so 3o, 26an
diverges (the terms do not approach 0.)

o0

n=t @n Such that

Problem 2. Give an example of a divergent series )
an > 0 for all n, and the series Y 5o 2¥as converges.
Let P={2/: j=0,1,2,3,...} and define
1/n?, neP
1, n¢P
Since the terms do not approach 0, the series 3 a,, diverges. On the
other hand, 2ax = 2% - 1/(2%)2 = 1/2* for every k, so 3 po,2%ap =

Sopeo 1/2F converges as a geometric series.



MAT 601 HW 3.6 SOLUTION: SERIES

Problem 1. Define a sequence by a; = 1/3 and ap4y1 = a2 forn =

1,2,.... Prove that the series ) .~ a, converges.

00
n=1

a, 2 0 for all n it it suffices to show that a, < (1/3)" to prove that

Proof. The geometric series Y- (1/3)" is known to converge. Since
Y a, converges by comparison.

Base case: a; = (1/3)}. Assuming a, < (1/3)", we get ap4; = a2 <
(1/3)** < (1/3)"*!, completing the proof by induction. O

Problem 2. Define a sequence by a; = 1/3 and a,4+; = an(1l —a,) for

n=1,2,.... Prove that the series ) - a, diverges.

Proof. The series 3 - diverges since its partial sums are 1/3 of the
partial sums of the harmonic series Y 1/n, which was shown to be
divergent. Thus, it suffices to prove that a, > 1/(3n) for all n.

Base case: a; =1/3.

The inductive step requires some preparation. From homework 3.4,
the sequence a, decreases to zero; thus 0 < a, < 1/3 for all n. Observe

that when 0 < 2 < y < 1/2, we have 1 — 2z > 1 — 2y > 0, hence
(1 -2z) > (1 — 2y)%. This leads to

1)  z(l-2)=1-(1-2)"<1-(1-2)=y(1-y)

Now, assuming a, > 1/(3n) and using (1) we get

1 1 n—-1

3 — > — -— — = e—

Qni1 an(l an) 23 (1 Sn) on?
1



2 MAT 601 HW 3.6 SOLUTION: SERIES

It remains to show that the right hand side is > 1/(3(n + 1)). To this
end, notice that
3n—1 1 (Bn—1)(n+1)—3r2  2n-1
9n2  3(n+1) - 9n2(n+1) - 9n?(n + 1)
which completes the inductive proof. [

>0




LIMSUP “EXERCISE”

Define the sequence {xn} as follows: x is some number in (0,1)
and x4 = 4x,(1 — x,;) forn € N.

Theorem 1. limsup x, = 1 ifand only if
(A) the number « = L cos™1(1 — 2xy) is irrational, and
(B) the binary expansion of « has arbitrarily long runs of the same digit.

Remark 2. Condition (B) means that for any k, the binary expansion
of « has either k consecutive Os or k consecutive 1s.

Remark 3. Condition (A) holds when x; = 1/3 (proof will be given
at the end) but I don’t know whether condition (B) holds.

Remark 4. limsup x, = 1 implies that liminfx, = 0 because when
Xy is close to 1, its successor x,,+1 = 4x,(1 — x,,) is close to 0.

Proof of Theorem 1. The quadratic polynomial f(x) = 4x(1 — x) maps
the interval [0, 1] onto itself. Observe that the linear function g(x) =
1 — 2x maps [0,1] onto [~1,1]. It follows that the composition h =
go fog~! maps [~1,1] onto [~1,1]. This composition is easy to
compute:

h(x) =1-2f((1-%)/2)=1-4(1-x)(1+x)/2=2x* -1

We want to know whether the iteration of the map f, starting from
x;, produces numbers arbitrarily close to 1. Since

fofo»uof:g'lohoho---ohog

the goal is equivalent to finding whether the iteration of h, starting
from g(x;), produces numbers arbitrarily close to g(1) = —1. To
shorten formulas, let’s write k(") for the nth iterate of , for example,

W@ =hohoh.
1



2 LIMSUP “EXERCISE”

So far we traded one quadratic polynomial f for another, 4. But i
satisfies a nice identity: h(cost) = 2cos®# — 1 = cos(2t), hence
h" (cos £) = cos(2"), neN
Recalling the definition of a from Theorem 1, we see that
K™ (g(x1)) = h"™ (cos2ma) = cos(2" - 27a)

The problem becomes to determine whether the numbers 2" - 27ta
come arbitrarily close to 7r, modulo an integer multiple of 27t. Di-
viding by 27t rephrases this as: does the fractional part of 2"« come
arbitrarily close to 1/2?

A number that is close to 1/2 has binary expansion beginning ei-
ther with 0.01111111... or with 0.10000000.... Since the binary ex-
pansion of 2™« is just the binary expansion of « shifted n digits to the
left, we conclude that the property limsup x, = 1 is equivalent to
the following: for every k € IN the binary expansion of & has infin-
itely many groups of the form “1 followed by k 0s” or “0 followed
by k 1s".

A periodic expansion cannot have the above property; this, # must
be irrational. The property described above can then be simplified
to “irrational and has arbitrarily long runs of the same digit”, since
a long run of 0s will be preceded by a 1, and vice versa. O

To prove Remark 3, we need a lemma.

Lemma 5. For every n € IN there exists a monic polynomial P, with
integer coefficients such that P,(2cost) = 2cosnt for all t.

Proof. Induction, the base case n = 1 being P;(x) = x. Assuming the
result for integers < n, we have

— (eint + e—int)(eit + e—it) _ (ei(n—l)! + e-i(n-l)t)
= Py(2cost)(2cost) — Py_1(2cost)
which is a monic polynomial of 2 cos £. O



LIMSUP “EXERCISE” 3

Remark 6. P, are related to the Chebyshev polynomials of the 1st
kind: https://en.wikipedia.org/wiki/Chebyshev_polynomials
Namely, P,(x) = 2T, (x/2) where T, is a Chebyshev polynomial.

Proof of Remark 3. Let & = 5= cos™1(1/3). Suppose to the contrary
that there exists n such that na € Z. Then 2cos(2nne) = 2. By
Lemma 5 this means P,(2 cos(27ra)) = 2, thatis P,(2/3) = 2.

Since 2/3 is a root of a polynomial with integer coefficients, the
Rational Root Theorem implies that 3 divides the leading coefficient
of P,. This contradicts the fact that P, is a monic polynomial (the
leading coefficient is 1). O

Remark 7. 1learned the proof of Remark 3 from a newsgroup post by
Robert Israel, http://mathforum. org/kb/message. jspa?messageID=
1675813



Final Exam (Friday 12/16, 3-5 pm) is cumulative. There will be 8 problems; do any 7 of them.
Sample problem set:

/1. Let X be a metric space. Suppose that (z,) is a sequence of elements of X such that
d(Tn, Tm) = 1 whenever n # m. Prove that X is not compact. BW Compact =7 ¥ &Ki’ hqs cowv sy

/. Suppose that f: R = R is a function such that f(0) = f’(0) = 0 and f"(z) > 10 for all
z € R. Prove that f(2) > 20. TC“‘{ e

/3. Suppose that (z,,) is a Cauchy sequence in R, and f: R — R is a continuous function. Prove
that (f(z,)) is a Cauchy sequence.

Suppose {z,: n =1,2,...} is a sequence in a complete metric space X such that the series
o0

_S_ d(Zn, Tn+1) converges. Prove that lim z, exists.
=00
n=1

/5. Let f: R —» R and g: R = R be two differentiable functions. You are given that f'(z) = ¢'(x)
for all z # 0. Prove that f/(0) = ¢'(0). nrevnediaie wloes ataved b7/ derd s

Let @ and b be distinct points of a connected metric space X. Let r be a number such that
0 < r < d(a,b). Prove that there exists z € X such that d(z,a) = r.

‘/7. Let E be a closed subset of a metric space X. Prove that there exists a sequence of open sets

o
G C X such that (i) Gus1 C Gy for all m; (i) (| Ga = E.

n=l

/8. Suppose that f: (0,+00) = R is a uniformly continuous function such that f(2z) = f(z) for

all z € (0,00). Prove that f is a constant function.
(=] [>-]

9. Given two power series; Za.,,z" has radius of convergence R,, and anz" has radius of
n=0

n=0
convergence R,. Suppose that 0 < R; < R; < 00. Prove that the radius of convergence of the
o0

power series Z(an + b,)2z" is equal to R,.

n=0

o0 oo
/ The power series z a,z" has radius of convergence 3. The radius of convergence of Z bp2"

n=0 n=0

is equal to 4. Prove that the radius of convergence of Z(a,.bn)z" is at least 12.

/ n=0
/ 11. Let Y be a metric space. Suppose that f: R — Y is a function such that for any z € R
L@@ _ g G097 dy (FGOLEEY)
lim =—————= =10 _ .,
=Ry gt 19300 {2 d (HR0) 0y
Prove that f is a constant function; that is, f(z) = f(0) forall z € R.

/12. Prove or disprove: “If f: R — R is a function differentiable at 0, then lim f(=) - /(0) &0
z=20 4 /Izl x




MATH 601 EXAM 1 SOLUTION
1. Suppose that f: R — Z is a function, and define a relation < on R by
z<y ifandonlyif f(z) < f(y)
Prove that < is not an order.

Proof. Suppose < is an order. By the Trichotomy property, whenever z # y we have either
f(z) < f(y) or f(y) < f(z). Thus, f is injective. It follows that f(R) is equivalent to R and
therefore uncountable. But f(R) C Z, and every subset of a countable set is at most countable.
This contradiction shows that < is not an order. a

2. Suppose that a and b are complex numbers such that |a + b] > 5 and |a - b] < 1. Prove
that |a| > 2.

Proof. Suppose to the contrary that |a| < 2. By the triangle inequality,
[bj=la+(b—a)|<|e|+|b—al<2+1=3
hence
l|a+b| <la|+|b] <2+3=5
contradicting the assumption |a + b] > 5. a

3. For z,y € R let d(z,y) = \/|z — y|. Prove that d is a metric.

Proof. The square root is nonnegative. It is zero iff |z — y| = 0, that is £ = y. The symmetry
follows from |z — y| = |y — z|. To prove the triangle inequality, note that

d(z,y) =z -yl <z 2|+ |y — 2| < |z = 2| + |y — 2| +2V/|z = z|ly — 2| = (d(z, 2) + d(2, z))’
for any z,y, z € R. Taking square roots yields d(z,y) < d(z, z) + d(z, z). a
4. Suppose that A is a nonempty, open and bounded subset of R. Prove that sup A ¢ A.

Proof. Let s = sup A and suppose that s € A. Then there exists r > 0 such that N.(s) C A. In
particular s + r/2 € A. But s +r/2 > s, contradicting that s is the supremum of A. O

5. Suppose that f: R — R is a function such that for every t € R the set {z: |f(z)| < t} is
compact. Prove that there exists a € R such that |f(z)| = |f(a)| for all z € R.

Proof. The set E = {|f(z)|: z € R} is nonempty and bounded below by 0, hence it has an
infimum. Let u = inf E. For n € N let K, = {z: |f(z)| < u+ 1/n}. By assumption, each K,
is compact. Also, these sets are nested: Ky O Ky O ... and nonempty (since u + 1/n is not
a lower bound for E). By the theorem on nested compact sets, the intersection K = (o, Kn

is nonempty. Pick a € K. Since u < |f(a)| € u + 1/n for every n, it follows that |f(a)| = u.
Recalling that u is a lower bound for E, we conclude that |f(z)| > |f(a)| for everyz € R. O



MaTH 601 EXAM 2 SOLUTION

1. Suppose that A, B are disjoint closed sets in a metric space X such that AU B is perfect.
Prove that both A and B are perfect.

Proof. Suppose the conclusion is false. Without loss of generality, A is not perfect. Since it’s
closed, this means there is a point z € A and a neighborhood N,(z) such that N.(z) N A = {z}.
Since A and B are disjoint, we have z ¢ B. As B is closed, there is a neighborhood N,(z) that
is disjoint from B. Let p = min(r,s). Then N,(z) N (AU B) = {z} which shows that z is an
isolated point of A U B, contradicting the assumption that A N B is perfect. a

2. Suppose that {z,} is a sequence of real numbers such that l'gn z, = L € R. Prove that
n—ec

limsup(—1)"z, = |L|.

n—00

Proof. Let y, = (—1)"z,. We have ypr = zop = L and ypx—; = —Zox-1 = —L, so both L and
— L are subsequential limits. It remains to prove that there are no other subsequential limits,
because then the statement limsup, _,, yn = sup{L, ~L} = |L| will follow.

Suppose y,, is a convergent subsequence. If infinitely many of the indices ny are even, these
terms form a subsubsequence that converges to L. Hence y,, — L (the limit of a convergent
sequence is equal to the limit of any of its subsequences).

If only finitely many of the indices n; are even, then infinitely many of them are odd. They
form a subsubsequence that converges to ~L. Hence y,, = —L. This proves that &L are the
only subsequential limits. a

Alternative proof, using tail supremum
Proof. For every € > 0 there exists N such that |z, — L| < € for all n > N. This implies
(=1)"zn < |20 € |L] +¢€
hence li:‘I: sol.}p(—l)"z,, < |L| + €. Since € > 0 was arbitrary, we have
limsup(-1)"z, < |L]
n—ro0

On the other hand, the subsequence {(—1)*"z,,} converges to L while the subsequence the
subsequence {(—1)**~!z,,} converges to —L. Since both L and —L are subsequential limits of
{(-1)"z,}, it follows that
limsup(-1)"z, 2> max(L,-L) = ||
n—oee

completing the proof. a



3. Suppose that {z,} is a Cauchy sequence in a metric space (X, d), and that this sequence
does not converge. Prove that the set £ = {z,: n € N} is closed in X.

Proof. Suppose to the contrary that there is a limit point z of E that does not belong to E. Then
each neighborhood of z contains infinitely many points of E. Using this fact, for each k € N
we can pick an index n; such that z,, € Nyk(z) and ng > nk_; (the latter is not applicable
when k = 1). This creates a subsequence {z,,} that converges to z, since d{z,,,z) < 1/k. But
a Cauchy sequence with a convergent subsequence converges (proved in class), contradicting the
assumption. O

o0
4. Let a; = 1 and ap41 = (an/2)? for n = 1,2,.... Prove that the series Zan converges.

na=1
Proof. The terms are nonnegative by definition. Claim: a, < 1/4""! for all n. The base case is
a; = 1 =1/4° Inductive step: if a, < 1/4"7, then

Gny1 =a2/4 < a,/4 < 1/4"

Since the geometric series ) 1/4""! converges, the series ) a,, converges by comparison. O
[+ o]
5. Suppose that a power series Zc,.z" converges at z = a and z = b (here a and b are
n=0
a+b

complex numbers). Prove that it also converges at z = —5

Proof. If a = b, then (a + b)/2 = a, so the series converges there. Suppose a # b. Let R be the

radius of convergence of the series. Since it diverges for |z| > R, it follows that |a| € R and

[b| < R. In order to prove convergence at (a + b)/2, it suffices to show that |(a + b)/2| < R.
This can be done by canceling cross-products as follows:

la+b® +|a = b]* = (a +b)(@ +b) + (a — b)(@ — b) = 2|a|® + 2|b|* < 4R?
hence |a + b2 < 4R?* — |a — b|> < 4R?, and |(a + b)/2| < R. a



MATH 601 EXAM 3 SOLUTION

1. Suppose f: R — R is a bounded monotone function. Let a, = f(n + 1) — f(n) for n € N.
[~ <3
Prove that the series Z a,, is absolutely convergent.
n=1
Proof. If f is decreasing, then — f is increasing. Since |a,| is the same for — f as for f, it suffices
to consider the case of increasing f.
Since f(n + 1) 2 f(n), we have |a,| = f(n + 1) — f(n). Hence, a partial sum Z,’:;l la.|
simplifies to
FRY=f)+fB) = Q)+ -+ F(N+1) = f(N) = f(N+1) - f(1)
There exists M such that |f(z)] < M for all z. Hence,

Z |an| < 2M

n=1

for all N. A series with nonnegative terms converges iff its partial sums are bounded. a

2. Let X,Y be metric spaces. Suppose f: X — Y is a surjection such that
dy(f(a), f(b)) > dx(a,b)* forall a,b€ X.
Prove that for every open set A C X the set f(A) is openin Y.

Proof. If a,b are distinct points of X, then dy(f(a), f(b)) = dx(a,b)® > 0, hence f is injective.
Since it's also surjective, it has an inverse g = f~!. We get

dx(g9(p),9(q)) < Vdy(p,q) for all p,g €Y.

by using the assumption about f with a = g(p), b = g(g). Therefore, g is uniformly continuous:
given € > 0, let § = €2 so that

dy(p,q) <6 = dx(g(p),9(q)) <¢

The inverse image of an open set under a continuous map is open. Thus g~'(A) is open in Y.
But g7! = f, so f(A) is open. 0

3. Let X be a compact metric space. For z € X define f(z) = sup{dx(z,y): y € X}. Prove
that there exists ¢ € X such that f(a) = inf{f(z): z € X}.

Proof. The existence of a follows from the Extreme Value Theorem once we prove that f is
continuous. To this end, consider any z,2 € X. Since the distance function d(y) = d(z,y) is
continuous, it attains its supremum on X at some point y. That is, f(z) = d{z,y). By the
triangle inequality

f(z) 2 d(z,y) 2 d(z,y) — d(z, 2) = f(z) — d(z, 2)



We have proved f(z) — f(z) < d(z,z). Applying the same to z,z in opposite order yields
f(2) = f(z) < d(z,2). So, |f(z) — f(2)| € d(z,z), which implies that f is uniformly continuous:
given € > 0 we can let § = ¢, and the definition holds. a

4. Suppose f: R — R is a function such that lim,_,, f(z) = 0 for every a € R. Prove that the
set {z € R: f(z) # 0} is at most countable.

Proof. By assumption, for every z € R and every € > 0 there exists a neighborhood N of z such
that |f| < e at every point of N \ {z}. For each n € N the set [—n,n] can be covered by finitely
many such neighborhoods (since it’s compact). Taking the union over n, conclude that R can be
covered by countably many such neighborhoods. Therefore, the set {z: |f(z)| > €} is at most
countable (it can only contain the centers of the neighborhoods we used to cover R).
Since -
{z €R: f(z) #0} = | J{z € R: | f()] > 1/k}
k=1
and each set on the right is at most countable, it follows that the set on the left is at most

countable. 0



