Group Dictionary

Wednesday, August 29, 2018 3:53 PM

(1) Cm = Ze, a, a² ..., a² 3 where $a^{i} \cdot a^{j} = a^{r}$ where i+j=qm+r for 0=r=ma°=e Cm is a group and a'a' = a (i+j) (mod n) This is the cyclic group of order n. (2) Sn = 2 f: <u>n</u> - <u>n</u> | f is bijective 3 where n = 21, 2, ..., n3fog = fog is for composition ein A a -> a Symmetric group on n letters. 3) Kis a field $GL_{n}(K) = \Xi A \in M_{n}(K) | det(A) \neq 0 \exists$ 2 A has an inverse General Linear Group (Set of invertible non matrices) e= In (4) SL, (K) = ZAEM, (K) det(A) = 13 Especial Linear Graup (5) If X is a regular n-gon (has n sides of equal length +angles) The <u>Dihedral Group</u> Dan (or Dn) is the group of symm(X). $\begin{array}{c} (6) H = R + R \overline{z} + R \overline{j} + R \widehat{j} \\ \dot{z}^{2} = p^{2} = h^{2} - l \\ \dot{z} \dot{j} = h, \ \dot{j} k^{-} \dot{z}, \ \dot{z} k^{-} \dot{j} \end{array}$

H is a (noncomm.) Fing. $Q = \xi^{\pm} |_{, \pm \overline{f}, \pm \overline{$ Ex. Find all subgroups of Sy (Should be 24) All transp. subgroup of order 2: (4)=6 $S_{x} \approx S_{z}$ 4 3-queles; 4/2) = 4 Sy stelf Identity 2 disjoint transpositions

TE Symm(X) T(1) = K, 1 = K = n T = R^k or Tis R^k composed w/ reflection through line => [Dan] = 2n and this is R*S = <u>Exercise</u>: L₁, L₂ are lines with angle & b/w them. P(R2R(P)) L₂ O R.(A) L S, is reflection in Li and S, is reflection in La. Show 5,5 = R20 Example: K=Zp (Integers mod p) Compute [GLn(K)]. Sol: Construct A - [A, |A2 -.. |An] E GLn(K) ohere A: = [an] Then the number of choices for A, is (p^{-1}) since $A_1 \neq \vec{O}$ If of choices for A_2 $p^{-}p$ since if cannot be a multiple of A_1 . If of choices for A_3 is $(p^{-}p^{2})$ since $A_3 \neq a_1A_1 + a_2A_2$ for $a_1a_2 \notin K$. etc $= |GL_n(K)| = (p^{n} - 1)(p^{n} - p)...(p^{n} - p^{n-1})$ $\frac{E_{X}}{\iota^{2}} H = R + R \epsilon + R \epsilon + R \hat{\rho} + R \hat{h}$ ij= k, jk=i, ik=j ji=-k, kj=-i, ik=j H is a (noncomm.) Fing. $Q = \{\xi^{\pm}\}, \pm \hat{\xi}, \pm \hat{\xi}, \hat{\xi},$ <u>Def</u>: If $B: S \times S \rightarrow S$ is a binary op. on S, then $T \subseteq S$ is <u>closed</u> (under B) if $B(T \times T) \subseteq T$ $S = \mathbb{Z}$ and $\mathcal{B}(m,n) = m+n$ then $T = \mathbb{N}$ is closed. Def: If G is a group with H=G (subset) s.t. (1) H is closed $(z) | \in H$ (3) VaEH, a'eH we say that H is a subgroup of G and we write $H \leq G$. Prop: If H=G then H inherits the structure of G. <u>Cancelation</u> If G is a group with o, b, c EG w/ ab = ac then b=c. $Why? ab = ac = a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)b = (a^{-1}a)c = b = c = b = c_{\#}$ Note: It follows that • If ab=e=> b=a⁻¹ and a=b⁻¹

Exist If G = GL_n(K), K a field
SL_n(K) = G (Inv. Dag. Matrice)
Tin(K) =
$$\int_{-\infty}^{\infty} \frac{1}{1} e_{GL_n}(K) \ge e_G$$

 $N_n(K) = \int_{-\infty}^{\infty} \frac{1}{1} e_{GL_n}(K) \ge e_G$
 $N_n(K) = \int_{-\infty}^{\infty} \frac{1}{1} e_{GL_n}(K) \ge e_{GL_n}(K) = e_{GL_n}(K)$
 $N_n(K) = \int_{-\infty}^{\infty} \frac{1}{1} e_{GL_n}(K) = e_{$

Lemma: If
$$ZH_1|i \in I_3^2$$
 is a hamly of subgroups of G_1 that
 $AH_i \in G_2$
 Pf_1^{i}
(2) If $H_i \Rightarrow H_i$
 $\Rightarrow X_i \notin H_i^{i}$
 $(A) < X > = A_i^{i}$
 $A_i^{i} < G_i^{i}$
 $X \in A_i^{i}$
 $A_i^{i} < G_i^{i}$
 $A_i^{i} < G_i^{i} = A_i^{i} < G_i^{i}$
 $A_i^{i} < A_i^{i} = A_i^{i} < G_i^{i} + A_i^{i} < A_i^{i} = A_i^{i} < G_i^{i} = A_i^{i} <$

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^$$

partitions of D
Defi Hield. Define Xing iff xight. ~ is an equiv. rel.
Lannaei Hield with as a bare, than
$$[X]=xH=Exh[heH]$$
 $\forall x \in G$.
To particular, if xight as the $[X]=xH=Exh[heH]$ $\forall x \in G$.
To particular, if xight as the $[X]=xH=Exh[heH]$ $\forall x \in G$.
Part is the interval of t

Symmetric draw and
Recall:

$$S_n = 2f_{:0} \rightarrow 0.1f$$
 by color 3 for $a = 21, 2, ..., n = 3$
 $S_n = 2f_{:0} \rightarrow 0.1f$ by color 3 for $a = 21, 2, ..., n = 3$
 $(1 + 3, 3, ..., n)$ but $a = 1, 2i_{1}, i_{2}, ..., i_{1} = 3$
 $(2i_{1}, 0) = 0, ..., n)$ but $a = 0 = a = 0 = a = 0 = color - 1$
 $(2i_{1}, 0) = 0, ..., n)$ but $a = 0 = a = 0 = color - 1$
 $(3) = Tf a_{-1}, a_{0}, ..., a_{0} \in \Omega$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) \in S_{n}$ divides the clean t where
 $c(a_{1}; a_{2}, ..., a_{0}) = a_{1}, ..., c(a_{1}; a_{2}, ..., a_{0})$
 $for a = 1 color t color t$

We repeat the process (by induction) to write
$$\sigma|_{L_{0}}^{1} R_{0} \Rightarrow 2R_{0}$$
 as a product of dright cycles $c_{1}c_{2}...c_{n}$.
Now $\sigma = c_{1}c_{2}...c_{n}$
 $represent = c_{1}c_{2}...c_{n} = c_{1}d_{2}...d_{n}$ where $c_{1}...,c_{n}$ and $d_{1}...,d_{n}$ disjoint.
Consider 1_{1} this appears in a cycle c_{1} say and d_{1} say.
Then $c_{1} = (1, \sigma(1), ..., \sigma^{(1)}(1))$ where $\sigma^{(1)} = 1$ with infinite k .
 $d_{1} = (1, \sigma(1), ..., \sigma^{(1)}(1))$ where $\sigma^{(1)} = 1$ with infinite k .
 $d_{n} = (1, \sigma(1), ..., \sigma^{(1)}(1))$ where $\sigma^{(1)} = 1$ with infinite k .
 $d_{n} = (1, \sigma(1), ..., \sigma^{(1)}(1))$ where $\sigma^{(1)} = 1$ with infinite k .
 $d_{n} = (1, \sigma(1), ..., \sigma^{(1)}(1))$
Now multiply by $c_{1} = d_{1}$. To get $c_{2}c_{2}$. $c_{3} = d_{3}d_{3}$. d_{4} and repeat
from this we get $c_{2} = d_{1}$. t_{5} get $c_{5}c_{5}$. $c_{5} = d_{5}d_{5}$.
 $(4 \ 2 \ 1 \ 3 \ 10 \ 9 \ 5 \ 7 \ 6 \ 9)$
 $= (1, 4, 3)(2)(5, 10, 8, 7)^{2}(6, 9)$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 4, 3)^{2}(2)^{2}(5, 10, 8, 7)^{2}(6, 9)^{2}$
 $= (1, 5, 6)^{2}(2)^{$

 $\begin{pmatrix} i \vee \end{pmatrix} \begin{pmatrix} i \vee \\ 7 \end{pmatrix} \begin{pmatrix} i & \cdot & \cdot \\ 7 \end{pmatrix} \begin{pmatrix} 7 & \cdot & \cdot & \cdot \\ 2 & \cdot & \cdot & \cdot \\ \hline 3 \end{pmatrix}$ Thus there are $|3! + (14) 6! \left[\begin{pmatrix} 7 \\ 2 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} + \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \right]$ For the largest 101: Note 14 = 7+5+2 Note 14 = ++5+2Destrue $C = d_1d_2d_3$ where $d_1 \rightarrow 7$ -cycle $d_2 \rightarrow 5$ -cycle $d_3 \rightarrow 2$ -cycle We could also get a 7 cycle, 4 cycle, and 3 cycle => Order = 7.4.3:84 Lemma: Given the cycle $(a_1, a_2, ..., a_t) = c$ we have that $c = (a_1 a_1)(a_1 a_{t-1}) \cdots (a_n a_3)(a_n a_n).$ Why? a, is sent to a, by (a, a_2) a, $\neg a_3$ by (a, a_2) but az does not appear again. Thus the product sends $a_2 = a_3$. Similarly for $a_5, a_{41}, ..., a_{4}$ Now a, can only go to a_2 since c is a bijection. # Thm: So is generated by the set of transpositions. why? oreSn is a product of cycles and cycles are products of trans. Exercise: (Wait but think about). Sn = <(1,2)(1,2,...,n)> $\frac{E_{x}}{(1,2,3)} = (1,3)(1,2)$ = Transpositions not recessarily (2,3,1) = (2,1)(2,3) disjoint or unique.and (2,4)(1,4)(2,4) = (1,2)

Group Homomorphism

Monday, September 10, 2018 9:36 AM

Recall:
$$0: G \rightarrow H \Rightarrow a group hemomorphism : f \forall x, y \in G$$

 $f(x_y) = \phi(x) \phi(y)$

Examples in 'Notes'

Def: Kernel: $ker(d) = 2x \in G \mid \phi(x) = I_{4} \xrightarrow{3}$

 $kernel$

Propositie IF $0: G \rightarrow H$ is a group homomorphism, then

 $(1) \phi(c_{0}) = c_{H}$

 $(2) T \leftarrow x \in G, \phi(x') = \phi(x)^{-1}$

 $(3) ker(d) \xrightarrow{a} 2x \in G \mid \phi(x) = I_{H} \xrightarrow{3} a G$

 $(L_{1}) I_{M}(d) \xrightarrow{a} = 2\phi(x) \mid x \in G \xrightarrow{3} = H$

 $pc:$

 $(1) \phi(1) = \phi(1, 1) = \phi(1) \phi(1)$

 $\Rightarrow I_{4} = \phi(1)^{-1} \phi(1) = \phi(1) \phi(1) = I_{4} \phi(I_{6}) = \phi(I_{6})$

 $(2) \phi(1) = I_{4} = \phi(xx^{-1}) = \phi(x) \phi(x^{-1})$

 $\Rightarrow \phi(x') = \phi(xx^{-1}) = \phi(x) \phi(x^{-1})$

 $\Rightarrow f(x) = \phi(x)^{-1}$

 $(3) \mid c \ker(\phi) \Rightarrow \ker(\phi) \text{ is non empty}$

 $If x_{y} \in \ker(\phi), \text{ then}$

 $f(x_{y}, g \in Ker(\phi), \text{ then}$

 $f(x_{y}, g \in G), \text{ ther}(\phi) \text{ is nonempty}$

 $If g \in G, n \in ker(\phi), \text{ then}$

 $f(x_{y}, g \in G), \text{ then}(\phi) \text{ then}$

 $f(x_{y}, g \in G), \text{ then}(\phi) \text{ then}(\phi) \text{ then}(\phi) \text{ then}(\phi) \text{ then}(\phi)$

 $f(x_{y}, g \in I_{4}) \xrightarrow{a} f(x_{y}) = \phi(x_{y}) \text{ the}(g)^{-1} = I_{4}$

 $f(x_{y}, g) = I_{4} \xrightarrow{a} f(x) \phi(x_{y}) = \phi(g) \text{ the}(g)^{-1} = I_{4}$

 $f(x_{y}, g) = I_{4} \xrightarrow{a} f(x_{y}) \oplus f(g) = I_{4} \xrightarrow{a} f(x_{y}) = I_{4} \xrightarrow{a} f(x_{y}) \oplus f(x_{y}) = I_{4} \xrightarrow{a} f(x_{y}) = I_{4} \xrightarrow{a} f(x_{y}) \oplus f(x_{y}) \oplus f(x_{y}) \oplus f(x_{y}) = I_{4} \xrightarrow{a} f(x_{y}) \oplus f(x_{y}) \oplus$

 $\phi(x) = z, \quad \phi(y) = w \quad \text{for some } x, y \in G.$ $= \sum \phi(x^{-1}y) = \phi(x^{-1}\phi(y) = z^{-1}w \in Im(\phi)$ $= \sum m(\phi) \leq H. \quad \#$

G-sets

Monday, September 10, 2018 9:51 AM

Det: If
$$\Omega$$
 is any set, the symmetric group on Ω is Symmetric group on Ω
sym(Ω) = 24: $\Omega \to \infty$ (f is bijectrue)
Ex: $S_n = Sym(\Omega)$ when $\Omega = 21, 2, ..., n$ 3.
Matrix A G-set X har some group G is a pair G-set
(X, X) where $\alpha: G \times X \to X$ s.t.
(i) $[q: X \to X \to X \to X]$ s.t.
(i) $[q: X \to X \to X \to X]$ s.t.
(i) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(i) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[q: X \to X \to X \to X]$ s.t.
(j) $[Q: (h, X) = [Q: h] H h^{-1}] = [Q: h] H (hg^{-1}) = -(g: h] (hg^{-1}) = -(g: h]$

Also
$$(f_{1}^{*}h) x = g^{+}(hx) = g^{+} x = x$$
 since $h \in G_{h}$ and above
 $g^{-1}h \in G_{h} = G_{h} \in G$.
(2) Horize where A
Prove where A
Prove is a group home-amplitus $\phi: G \rightarrow Sym(X)$.
(2) (Shellon)
(3) ADDOM $\phi \in G \rightarrow Sym(X)$ is a group hom.
Path a $a_{0} \in G \times X \rightarrow Y$
 $(g, x) \rightarrow \phi(g)(A)$
 $g^{-1}h \times \phi(h) x = 1_{X}(x) = x$
 $g^{-1}h \oplus g^{-1}h \times \phi(h) x = 1_{X}(x) = x$
 $g^{-1}h \oplus g^{-1}h \times \phi(h) = 0_{X}(h) x = 1_{X}(x) = x$
 $g^{-1}h \oplus g^{-1}h \times \phi(h) = 0_{X}(h) = 0_{X}(h) (x)$
 $g^{-1}h \oplus g^{-1}h \times \phi(h) = 0_{X}(h) (x)$
 $g^{-1}h \times \phi(h) = 0_{X}(h) = 0_{X}(h) (x)$
 $g^{-1}h \times g^{-1}h = 0_{X}(h) = 0_{X}(h) (x)$
 $g^{-1}h = 0_{X}(h) = 0_{X}(h) = 0_{X}(h) = 0_{X}(h) (x)$
 $g^{-1}h = 0_{X}(h) = 0_{X}(h$

Exi
$$G = S_{n} \Rightarrow G = 4! = 24$$

 $G = 213 \cup 0_{n} \cup 0_{n} \cup 0_{n} \cup 0_{n}$
 $K_{n} \in (1, 2)$
 $K_{n} \in (1, 2, 3)$
 $K_{n} = (1, 2)$
 $K_{n} =$

 $\frac{\text{Thm:}\left(\text{Character,strc}\right) \text{ Class Equation}}{\text{ The G is a fryite group, then } |G| = |Z(G)| + \sum_{i=1}^{L} [G:C_G(X_i)]}$ where x, x2,..., XE are representatives of the nontrivial Conjugacy classes $\begin{array}{l} \begin{array}{c} \overbrace{Iet} \mathbb{Z}(G) = \mathbb{E}[, \mathbb{Z}_{2}, ..., \mathbb{Z}_{m}] \\ G = \mathbb{Z}(G) \cup \mathbb{O}_{X_{1}} \cup \mathbb{O}_{X_{2}} \cup ... \cup \mathbb{O}_{X_{k}} \quad disjoint \quad \text{union} \\ = \mathbb{E}[G] = \mathbb{E}[G] + \mathbb{E}[\mathbb{O}_{X_{1}}] \\ = \mathbb{E}[\mathbb{E}[G]] + \mathbb{E}[G] \cdot \mathbb{E}_{G}[X_{i}]] \\ \end{array}$ $\frac{Def:}{for some \ n \ge 0.}$ $pa prime, if |G| = p^{n}$ $\frac{for some \ n \ge 0.}{for some \ n \ge 0.}$ Thm: If G is a nontrivial finite p-group then [Z(G)]>1. $\frac{Why!}{|G| = |Z(G)| + \sum_{i} [G: C_G(x_i)]}$ (CG(X;) - IGI since these elements are not central =) $p\left[G:C_{G}(x_{i})\right]$ $\forall i = p \neq \left[G:C_{G}(x_{i})\right]$ and $p||Z(G)| = 2|Z(G)| \neq 1$. Def: Let H=G, then NG(H)=ZgeG|gHg=1=HZ is the normalizer of H in G. normalizer Exercise: (1) Na(H)=G (2) H > Na(H) and this is the unique largest subgroup of G w/ H as a normal subgroup. Theorem: Let N = G TFAE (1) N = G(2) $N_G(N) = G$ (3) gN = Ng $\forall g \in G$ (4) $gNg^T \in N$ $\forall g \in G$ Proof: (Exercise!)

Factor Groups

Friday, September 14, 2018 9:42 AM

Theorem: Let NOG. G/N is the set of (left cosets) on NinG. Define a binary operation on G/N by $(aN) \times (bN) = abN$ then G/N becomes a group. Also, Ti: G-G/N is a swjective group homomorphism. $g \rightarrow gN$ Proof: We need to show that (*) is well defined. Suppose aN = a'N and bN=b'N. We need that abN = a'b'N. We know $a^{-}a'_{,} b^{-}b' eN'_{,}$ $(ab)^{-}(ab') = ba^{-}a'b'_{,}$ $= \frac{b^{-1}b^{-1}(b^{-1}a^{-1}a^{-1}b^{-1})}{\epsilon N} \epsilon N$ => abN = a'b'N => (*) is well defined. Associativity: (aN*bN) * cN = abcN = aN*(bN*cN) N = |N|, N * aN = aN = GN) * NHence : dentity IN is unique. $(a^{-1}N) \times (aN) = IN = (a_{AI})$ Hence G/N is a group. $\pi(a)\pi(b) = aN \star bN = abN = \pi(ab)$ =) it is a group homomorphism and it is clearly surjective since Ma) = aN Vaca. # Notes (1) Recall if A, B=G, then AB= EablatA, bEB3 ·NDG and a, bEN (aN(bN) = a(Nb)N = a(bN)N = abNN = abNso same multiplication. (un don't always write *) (2) KCTTI = N. · If a & herit => aN= N => a EN factor group Clearly NEKETT (3) G/N is called the factor group of G modulo N.

Usary is a with the factor group of 6 modulo N.
[3] G/V is called the factor group of 6 modulo N.
Exi G = Gi-m(K) for some field K.

$$N = Z = Im [a \in K^* S]$$
 (K* non-zero elements of K)
G/V = PSt-m(K), We identify A C GL-m(K) with
all innervo scalar multiples xA , $x \in K^*$.
Elements of PSt-m(K) are one dimensional subspaces of
 $SL_m(K)$ with O remained.
Ex. $G = (Z, +)$ (Abelian $P = can [a + b] + nZ$.
 $a + nZ = b + nZ = n + O$
G/V has $(a + nZ) + (b + nZ) = (a + b) + nZ$.
 $a + nZ = b + nZ = a + b + nZ$.
 $n = (2, 3 + 7 + 16 + 3)$ (undular as the multic)
Then $x' = M - 3F$ and $B' = -3F$
 $H - 3F$ and $B' = -3F$
 $H - 3F$ and $B' = -3F$
 $H - 3F$ and $B' = -3F$
 $R = (Shiteh)$
 $N = S = (a + N) = (A + N) = A + S = A + S = (Shite) + A = (Shite) = (Shi$

BOX = If # Propi. Let A, B=G. AB=G => AB=BA. (=>)Suppose AB = G. If GEA and DEB, then a=al, b=1bEAB=G. => ba EAB => BA = AB $ab = (a, b_1)^{-1}$ for some $a, b, \in AB$ with $a, \in A$, $b, \in B$ = $b_1^{-1}a_1^{-1} \in BA$ =) AB = BA (=) Now assume AB=BA. 1-1. (GAB => Novempty $\begin{array}{c}a_{1,1}a_{2} \in A \quad \text{and} \quad b_{1,1}b_{2} \in B\\ (a_{1,1}b_{1})^{-1}(a_{2,1}b_{2}) = b_{1,1}^{-1}a_{1,1}a_{2,1}b_{2} \in (BA)(AB)\end{array}$ = $A(BA)\tilde{B}$ = AABB = AB =7AB = G # EX: If H = G and N=G, then HN=UhN=UNh=NH. = H / = / H = GEx: $12\mathbb{Z} \triangleleft (\mathbb{Z}, +)$ $14 = \mathbb{Z}\mathbb{Z}, 2\mathbb{Z}, 3\mathbb{Z}, 4\mathbb{Z}, 6\mathbb{Z}, 12\mathbb{Z}\mathbb{Z}$ The subgroups of Z12 = Z/DT are F = S I / 2 I / 3 I / 4 I / 6 I / 12 I / 2 I /

Isomorphism Theorems

Monday, September 17, 2018 9:33 AM

Prop: If H, K=G are finite, then [HK]= [H][K] = [H][K: H/K]. HAK Note. (1) We do not assume HK=G. (2) G= as is allowed Proo f. HK= UhK hK=h,K"=> hh, GK => hh, GHAK We get [H: HAK] distinct, cosets HK[-1K[[H:HNK] - [H]|K] # Def: If H=G the normalizer of H in G is $IN_G(H) = \Sigma_G \in G \mid GHG^1 = H3$ Exercise: NG(H) = G is (!) largest subgroup in which H is normal. HAAR(H. Thm: 2nd Isomorphism Theorem. Let A = G, $N \triangleleft G'$. Then $A \cap N \triangleleft A$ and $A' \cong A N/N$ froof NJG=> AN=NA=G and NJAN. Refine: $\phi A \rightarrow AN/N$ as the composition of $i: A \rightarrow AN$ and TI. AN -> AN/N A is AN AN AN/ \$ is a group homomorphism. Kerq ¢(a) = aN = |AN/N E) a EN <=> a EANN => Ker \$= A AN 4 A. In ¢ Element of AN/N looks like an N= aN some aEA, NEN. $= \mathcal{B}(a)$ => 0 is onto. = 1st Isomorphism Theorem: \$ A/ANN -> AN/N # > Note In the statement, we can replace N by B, and assume $A = N_{G}(B)$. Check! Note: In the Correspondence Theorem where NAG and $N \in A \in G$ we got that $A_{N} \in G_{N}$.

Note: In the Correspondence Theorem where NAG and $N \in A \in G$ we got that $A'_N \in G'_N$. Exercise: A/ a G/ E>AAG Thm. 3rd Isomorphism Theorem Let A, N&G with N=A, then A/ AG/ and $G_{N/A_{N}} \simeq G_{A}$ Proof: \$: 9/N -> G/A XNH)XA If XN=X,N=) x X EN=A=> XA=X,A=> \$ is well defined $\phi(xN)\phi(yN) = xAyA = xyA = \phi(xyN) = \phi(xNyN)$ => ϕ is hom. Ker & = ExNIXA=A3 = ExNIXEA3 = A/N This 1st Iso. This. $\overline{\Phi}: G/N \cong G/A \#$

Partition

Monday, September 17, 2018 10:23 AM

Def: A partition of nEN:s a necessarily finite sequence of positive integers $\lambda = (\lambda_1, \lambda_2, ..., \lambda_t)$ s.t. (1) $\lambda_i \ge \lambda_{i+1}$ $(2) \neq \lambda_i = n$ Ex n=6 (2, 2, 1, 1)(2, 1, 1, 1, 1)(3, 3)(6) (5,1)(3, 2, 1)(3,1,1,1)(2,2,2)(4,2) (4, 1, 1)Def: $\sigma \in S_n$ then $\sigma = C_1 C_2 \dots C_k$ where C_i are disjoint cycles, if $l(c_i) = |c_i|$, then $\not\equiv l(c_i) = n$ (include 1-cycles). since c_1, c_2, \dots, c_k commute WOLG $|c_i| \ge |c_2| \ge \dots \ge |c_k|$ then gives ($|C_1|, |c_2|, \dots, |c_k|$) a partition of n This is called the partition of a given by o. EXI $n=8, \sigma = (1,7)(2,6,5,4)(3)(8) = (1,2,3,4,5,6,7,8)$ $C_{2} = (1,7)(2,6,5,4)(3)(8) = (1,2,3,4,5,6,7,8)$ (7,6,3,2,4,5,1,8) = (1,4,6,7,3,2,8,5) = (1,4,6,7,3,2,8,5) = (1,2,1,1) = (7,2,5,1,3,6,8,4)Lemma: If $\mathcal{T}, \sigma \in S_n$ then $\mathcal{T} \sigma \mathcal{T}^{-1} = \begin{bmatrix} \mathcal{T}(1) & \mathcal{T}(2) & \dots & \mathcal{T}(n) \\ \mathcal{T} \sigma(1) & \mathcal{T} \sigma(2) & \dots & \mathcal{T} \sigma(n) \end{bmatrix}$ $\frac{21}{(267^{-1})(7(i))} = \frac{27(1)}{(767^{-1})(7(i))} = \frac{27(1)}{(767^{-1$ Why? Lemma. $TP = (a, a_2, ..., a_d) \in S_n$ is an l-cycle, then $TcT' = (T(a_1), T(a_2), ..., T(a_d))$ $\frac{Why?}{C} = \begin{pmatrix} a_1 & a_2 & \dots & a_k & a_{k+1} & \dots & a_n \\ a_2 & a_3 & \dots & a_1 & a_{k+1} & \dots & a_n \end{pmatrix}$ $\mathcal{C}\mathcal{C}\mathcal{T}' = (\mathcal{T}(a_1) \mathcal{T}(a_2) \dots \mathcal{T}(a_n)) \mathcal{T}(a_{n+1}) \dots \mathcal{T}(a_n)$ by Lemma 1.

 $\begin{aligned} \mathcal{T}\mathcal{C}\mathcal{T}^{-1} &= \begin{pmatrix} \mathcal{T}(a_1) & \mathcal{T}(a_2) & \cdots & \mathcal{T}(a_k) \\ \mathcal{T}(a_2) & \mathcal{T}(a_3) & \cdots & \mathcal{T}(a_1) \\ \mathcal{T}(a_2) & \mathcal{T}(a_3) & \cdots & \mathcal{T}(a_1) \\ \mathcal{T}(a_k) & \mathcal{T}(a_k) & \cdots & \mathcal{T}(a_k) \end{pmatrix} \\ &= \begin{pmatrix} \mathcal{T}(a_1) & \mathcal{T}(a_2) & \cdots & \mathcal{T}(a_k) \\ \mathcal{T}(a_2) & \mathcal{T}(a_2) & \cdots & \mathcal{T}(a_k) \end{pmatrix} \end{aligned}$ by Lemma 1. $\underbrace{E_{X'}}_{\mathcal{T}} (1,3)(1,2)(1,3) = (3,2) \qquad \mathcal{T}(2) = 2$ Themis If o, u ESn then or and u are conjugates ; ff they give the same partition of n. <u>Pf;</u> (a) $\sigma = c_1 c_2 \dots c_t$ where $|c_i| = l_i \neq l_i = n \quad c_i \ge c_{i+1}$ $\forall i \quad disjoint \quad cycles$ Then, $To C^{-1} = C_{c_1} \dots C_{t_k} T^{-1}$ $= (Tc_1, T^{-1}) (Tc_2, T^{-1}) \dots (Tc_{t_k} T^{-1})$ Tc; T-1 is a cycle of length 1c; . Tc; T-1 Tc; T', ..., Tc; T' are disjoint since T is bijective =) To T-1 gives the same partition as o (=) Assume o and a give the same partition. o=(a,..., ae,)(b,..., be)...(gi,..., ge) $\mathcal{M} = (a_1, \ldots, a_{\ell_1}) \left(b_1', \ldots, b_{\ell_2} \right) \ldots \left(g_1', \ldots, g_{\ell_{\ell_1}} \right)$ $If T = \begin{pmatrix} a_1 & \dots & a_{\ell_1} & b_1 & \dots & b_{\ell_2} & \dots & \dots & g_1 & \dots & g_{\ell_\ell} \\ a_1 & a_{\ell_1} & b_1 & \dots & b_{\ell_2} & \dots & \dots & g_{\ell_\ell} \\ About$ Now $\mathcal{T}_{\sigma}\mathcal{T}^{-1} = \mathcal{T}(a_{1}, \dots, a_{k})\mathcal{T}^{-1} \dots \mathcal{T}(g_{k}, \dots, g_{k})\mathcal{T}^{-1}$ $= (\mathcal{T}(a_{1}) \dots \mathcal{T}(g_{k})) \dots \mathcal{T}(g_{k}) \dots \mathcal{T}(g_{k})$ $= (\mathcal{G}_{1}^{'} \dots \dots \mathcal{G}_{k}^{'}) \dots \mathcal{T}(\mathcal{G}_{k}) \dots \mathcal{T}(\mathcal{G}_{k}) = \mathcal{M} \quad \neq$ Def: A group G is simple if $(1)G \neq 1$ (2) The only normal subgroups of G are 1 and G.

Note: If NAG, G is "made up" of N and G/N using "group chemistry" (cohomology) (C20) Classified all finite simple groups! Considerin (1) ZX, X2, ... Xn & GI=Sn-set via o(xi)=Xo(i) (2) Polynomials in a variables $K[x_1, x_2, ..., x_n]$ K field. R is a G-set via $\sigma(f(x_1, ..., x_n)) = f(x_{\sigma(1)}, ..., x_{\sigma(n)})$ Ex: $\sigma = (1, 3) \in S_4$ $\sigma(x_1 x_4 + 3 x_2^2 - 4 x_3 x_2^5) = x_3^2 x_4 + 3 x_2^2 - 4 x_1 x_2^5$ This inches R a G-set. <u>Def</u>: Let $\Delta = \Pi(X_{i} - X_{i})$ $|\leq_{i} \leq_{j} \leq n$ $\begin{array}{ccc} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$ Note If $\sigma \in S_n$, then $\sigma(\Lambda) = \pm \Delta$

Recall. G=Sn acts on ZX, X, ..., X, Z, J.X; Xoti Gives G acts on K[x, x, ..., x] K field. $\sigma \cdot f(x_1, x_2, ..., x_n) \sim f(\sigma(x_1), \sigma(x_2), ..., \sigma(x_n))$ Def: $\Delta = \pi(x_j - x_i)$ 14iejen $\underline{E_{X'}} = A^{-4} \int \sum_{i=1}^{n-4} (x_{4} - x_{i}) (x_{4} - x_{2}) (x_{4} - x_{3}) (x_{5} - x_{i}) (x_{5} - x_{5}) (x_{2} - x_{5})$ Note: Degree = $\binom{n}{2} = \frac{n(n+1)}{2}$ $\begin{array}{cccc} \underline{Def:} & Sg: S_{n} \rightarrow \tilde{Z}^{\pm}|\tilde{J} \subseteq K & (K=R) \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$ Exi $\frac{E \times (2,3) \cdot \Delta}{n=3} = (2,3) \left[(\chi_3 - \chi_1) (\chi_3 - \chi_2) (\chi_2 - \chi_1) \right]$ $= (\chi_2 - \chi_1) (\chi_2 - \chi_3) (\chi_3 - \chi_1) = -\Delta$ => Sq(2,3) = - (We say Sq(o) is the sign of o in Sn. $\frac{Prop}{S_g} : S_n \longrightarrow \mathcal{E}^{\pm}[\mathcal{F}] \text{ is a group homomorphism with} \\ S_g(\mathcal{K}) = -1 \quad \forall \text{ transpositions } \mathcal{C} \in S_n \text{ and } S_g \text{ is} \\ \frac{Pf}{Onto} \quad \text{if } n \geq 2. \end{cases}$ 1) WTS is how. OT OZESA $(\sigma, \sigma_2) \cdot \Delta = Sq(\sigma, \sigma_2) \Delta$ $\sigma_1(\sigma_2 \cdot \Delta) = \sigma_1(S_g(\sigma_2)\Delta) = S_g(\sigma_2)(\sigma_1 \Delta).$ $= S_{g}(\sigma_{2}) S_{g}(\sigma_{1}) \Delta$ $= S_{g}(\sigma_{1}) S_{g}(\sigma_{2}) \Delta$ $\Rightarrow S_{g}(\sigma_{1}, \sigma_{2}) \Lambda = S_{g}(\sigma_{1}) S_{g}(\sigma_{2}) \Delta \quad \text{since} \quad \Delta \neq 0.$ = 5g .s a hom. 2) Show all 5g(T) = -1 -112 $\chi = (1, \mathcal{Z})$ If T = (i,j) choose $\sigma \in S_n$ s.t. $\sigma(1) = i$ and $\sigma(2) = j$. Now $(i,j) = \sigma(1,2)\sigma^{-1}$. $5_{g}(i,j) = S_{g}(\sigma(i,2)\sigma^{-1}) = S_{g}(\sigma)S_{g}(i,2)S_{g}(\sigma^{-1}) = S_{g}(i,2)S_{g}(\sigma^{-1}) = S_{g}(i,2)S_{g}(i,2$ Def: The Kernel of the Sg. 5, -> 2=13 is called the Alternating Group, denoted An Note: [Sn: A] -] 2+13] =2 Cor. If oesn o can be written as a product of a product of an even number of transpositions or an odd number of transpositions, but not both. Why? $\sigma = \gamma_{i} \dots \gamma_{e}$ transpositions $S_{i}(\sigma) = S_{i}(\gamma_{i}) \dots S_{i}(\gamma_{e}) = (-1)^{e}$

$$\begin{array}{l} \left| \left(\int_{-\infty}^{\infty} \int_{-\infty}^{$$

Kecall: oreAn = Sn then [o] = Lo Isn · We get $[\sigma]_{A} = [\sigma]_{S_{A}}$ iff $\mathcal{L}_{A_{A}}(\sigma) \neq \mathcal{L}_{S_{A}}(\sigma)$ · As is simple · If H=G, then [H] IGI. Ex. If k[16], does G have a subgroup of order k? Answer: In general no. Why? As is simple if N=As, |N| = 30 => [As.N]=2 => N4As As has no subgroup of order 5. Prop. An is generated by 3-cycles. n=1,2,3 easy to check. Assume $n \ge 4$ and $a, b, c d \in n$ distinct $O(a \ b \ c) = (a \ c)(a \ b) \in A_n$ O3-cycles in A_n $O(a \ b)(c \ d) = (a \ b)(b \ c)(b \ c)(c \ d)$ Odisjoint 2-cycles can be $= (b \ c \ a)(c \ d \ b)$ written as 3-cycles $(a \ b)(a \ c) = (a \ c \ b)$ $(a \ c) = (a \ c \ b)$ $(a \ c) = (a \ c \ b)$ Lemma: Let $n \ge 6$ $| \neq \sigma \in N$. Then $\exists \sigma, a conjugate of \sigma (in An)'s.t. <math>\sigma, \neq \sigma$ but $\sigma(i) = \sigma(i)$ for some i. P£: Let o = (1,2,...,r) i where (1,2,...,r) and i are disjoint. Case 1: 5=3 Let $\sigma_{1} = (3, 45)\sigma(3, 4, 5)^{-1} = (1, 2, 4, ...)[(3 45) \widetilde{n}(3 45)^{-1}]$ $\sigma(1) = \sigma(1) = 2$ $\sigma(2) = 3 \neq 4 = -\sigma(2)$ Case 2: r = 2Fixed Below 0=(12)(34) Take $\sigma_1 = (45)\sigma(45) = (12)(3,5)...$ $\sigma(1) = 2 = \sigma_1(1)$ $\sigma_1(3) = 4 \neq 5 = \sigma_1(3) \square$ Thm: If n=5, then An is simple. Pf; We know As is simple. Using induction. Assume true for n-1. Let Na An. By lemma, $\exists \sigma, \in N \text{ s.t. } \sigma, \neq \sigma \text{ but } \sigma(i) = \sigma(i) \text{ for some } i$. WLOG $\sigma(i) = \sigma_i(i) = n$ by replacing σ and σ , by $(\sigma(.), n) \sigma(\sigma(.), n) * (\sigma(.), n) \sigma_1(\sigma(.), n) S$ $1 \neq \sigma \sigma, -1 \in N, \text{ and } \sigma \sigma, -1 (n) = n$ => NAA_{n-1} = 1 Exercise - This works if o(i) to what if An-1 is simple by induction.

Automorphism Groups

Wednesday, September 26, 2018 9:49 AM

Def: Given a group G. Aut (G) - Zø: G->G | Ø:s is an automorphism 3 = Zø: G->G | Ø is a bijective homomorphism 3 Exercise: Aut (6) is a group under composition Ex: If $G = C_n = \langle |g^2 = | \rangle$. If $k \ge 1$, $\phi: G \longrightarrow G$. $\chi \mapsto \chi^{k}$ is a group homomorphism φ is an isomorphism $\iff gcd(k, n) = 1$ $Why? \varphi(g) = g^{i}$ has order gcd(i, n)L) Aut $G \cong V(\mathbb{Z}_n) = \Xi$ invertible clements of \mathbb{Z}_n under multi \mathbb{S} Remarki $\phi(x) = x^{k}$ $\forall x \in G$ $\Psi(x) = x^{e}$ $\gamma \phi(x) = (x^k)^l = x^{kl}$ <u>Defi</u> Define $Y: G \longrightarrow Aut(G)$ where $Y_g(x) = g \times g^{-1} \quad \forall x \in G$. $q \rightarrow \gamma_q$ <u>Prop</u>: 8 is a group homomorph.sm and Y(G) = Aut(G) is a normal subgroup of Aut(G). Moreover, $ker(8) = \overline{I}(G)$ Pf: If ghea $Y_g Y_h(x) = Y_g(hxh^{-1}) = ghxhg^{-1} = (gh)x(gh)^{-1} = Y_{gh}(x) \forall x \in G$

=> Yg X_= Ygh_=> Y is a group hom. Let of Aut (G) $\frac{\sigma \mathcal{X}_{g} \sigma^{-1}(\mathbf{x}) = \sigma \mathcal{Y}_{g}(\sigma^{-1}(\mathbf{x})) = \sigma(g \sigma^{-1}(\mathbf{x}) g^{-1})}{= \sigma(g) \sigma(\sigma^{-1}(\mathbf{x})) \sigma(g^{-1})}$ $=\sigma(g) \times \sigma(g^{-1})$ $= \sigma(g) \times \sigma(g)^{-1}$ $= \forall_{\sigma(a)} \times \forall \times \mathcal{E}(a)$ $= \sum_{\sigma} \chi_{g\sigma}^{-1} = \chi_{\sigma} \in \mathcal{X}(G_{1})$ $= \sigma \gamma(G) \sigma^{-1} \subseteq \gamma(G) \quad \forall \sigma \in Aut(G)$ = Y(G) a Au + & Def: Y(G) is denoted by Inn(G) a Aut(G) and is called the group of inner automorphisms .. E_{X} . If $n \ge 5$, $Y:A_n \rightarrow Aut(A_n)$ is an isomorphism. Product of Groups. a group under $(g_1, h_1)(g_2, h_2) = (g_1g_2, h_1, h_2)$ $I_{GXH} = (I_G, I_H) (g_1, h_2)^{-1} = (g_1^{-1}, h_2^{-1})$ E_X : Gx+1= Z(g,h) g = G, h = F1Z is $G = H = C_2$ GXIEGXH is a normal subgroup $\phi_{G \times H} \longrightarrow G \times H 2 \phi \in Aut(G \times H) but$ $(x,y) \rightarrow (y,x)$ $\phi(G \times I) = |xG \neq G \times |$

Characteristic Subgroup

Wednesday, September 26, 2018 10:07 AM

Det:
$$N \leq G$$
 is Characteristic Subgroup :⁴
 $\phi(N)=N \quad \forall \ \varphi \in Aut(G)$
Example: An $\leq S_n$ is a characteristic subgroup of G
Exercise: $G' = \langle xyx'y'' | x, y \in G \rangle$ is a characteristic subgroup of G
Recall: KAH and $H^{\Delta}G$. K need not be a normal subgroup of G
Note: $(D, N) \subset Char G$ means N is a characteristic subgroup of G
 (\oplus) It suffices to show
 $\phi(N) \leq N \quad \forall \ \varphi \in Aut(G)$ to get that $N \subset Char G$.
This: $I.f$ H char N and $N \leq G$ then $H^{\Delta}G$.
This: $I.f$ H char N and $N \leq G$ then $H^{\Delta}G$.
Pli:
Let $g \in G$. Then $Y_0 \in Aut(G)$
 $B \subset N \leq G$. $Y_0 = Kat(N)$
 $= Y_0$ sends there $N \Rightarrow 1!self$
 $= Y_0 + K \leq G$ and $apply + hn \neq G$.
Pli: $N \subset Auf(G)$ and $apply + hn \neq G$.
Pli: $N \subset Auf(G)$ and $apply + hn \neq G$.
Pli: $N \subset Auf(G)$ and $apply + hn \neq G$.
Pli: $N \subset Auf(G)$ and $apply + hn \neq G$.
Pli: $N \subset Auf(G) = S_0(N) \cdot N \quad \forall g \in G$.
Exc. Recall given G
 $G_1 \in G'$, $G_2 = G'$, $G_3 = G'_2$, ...
The turns out $G_1 = G_1 = G_2 \leq G$
 $\Rightarrow Dy induction $G_1 = G_1 = G_2 \leq G$
 $\Rightarrow Dy induction $G_1 = G_1 = AG \quad \forall : \geq 1$
 $S_0 \quad G_{11} = G \quad \Rightarrow \ S_0(M) = N \quad \forall g \in S$.
 $S = G_{11} = S = B_{21} = G$.$$

Exercise
$$G = S_{g}$$
, Show $G = G_{g} = A_{g} = \langle (1, 2, 3) \rangle$
 $G_{g} = G_{g} = I$
 $I = G_{g} = G_{g} = G$
Def. G is metabelian if $G_{g} = I$.
Recall: $8.G \rightarrow Inn(G) = Aut(G)$
 $g \mapsto 8_{g}$
Def. (1) $\sigma \in Aut(G) \setminus Inn(G)$ is called an outer automorphism.
 \odot Out(G) = Aut(G)
 $Inn(G)$
 $S_{errolse}: If = \sigma \in Out(G)$ is outer; $g \in G + hen = \sigma \otimes_{g}$
 $S = g \approx outer$.
But $\sigma^{-1}(\sigma \otimes_{g}) = \otimes_{g} \in Inn(G)$
 m The outer automorphisms are not = subgroup
 $S_{errolse}$.
 $(1) Kar Y = Z(G)$
 $(2) Z(S_{h}) = 1$ if $r = 3$
 $F_{earrophism}$.
 $Tinn(f)If = n \neq 2$ or G , then $Y: G \rightarrow Inn(G)$
 $S = n$ isomorphism.
 $Tinn(f)If = n \neq 2$ or G , then $Y: S_{h} \rightarrow Aut(S_{h})$ is an
 $Somorphism$.
 $(2) If n \neq 4$ or G , then $Y: S_{h} \rightarrow Aut(S_{h})$ is an
 $Somorphism$.
 $Mode: Way A_{h} = A_{h}$ is an automorphism that is not.
Note: G is weird! S_{h} has a weird automorphism that is not.

Note: 6 is weird! So has a weird automorphism that is not inner, so $Out(S_6) \cong C_2$, $Out(A_6) \cong C_2 \times C_2$

Free Groups

Friday, September 28, 2018 9:48 AM

Sylow Preview

Friday, September 28, 2018 10:15 AM

Thm: (Sylow) If G is a group and IGI = p'm, where p is prime and ptn then (1) G has P=G s.t. |P|=pⁿ (2) If P and Q are subgroups of G w/ |P|= |Q|=pⁿ, then Pand Q are conjugates. (3) If $Sy|_{p}(G) = 2P = G : |P| = p^{3}$ then |Sylp(6)| divides m. and $|5_{y|p}(G)| = 1 \pmod{p}$ Ex: If IGT show G is not simple. P£: 28=2°.7 X=5y1,(6) is a G-set under conjugation $|X| | 4 and |X| = 1 \pmod{7}$ =) $|\mathbf{X}| = |$ =) The unique PESylz(G) is a normal subgroup =) G is not simple.

Vector Spaces

Monday, October 1, 2018 9:33 AM

Def: (F+.) where F is a set and +: FxF->F $(a,b) \longrightarrow a+b$ • $: F \times F \longrightarrow F$ (a, b)) a.b ave two binary operatitions s.t. () (F, +) is an abelian group. (2) (F, ·) :s commutative and associative (3) VaEFLO EBEFS.t. ab=1=ba where 1+0 is an identity for . $(L) a(b+c) = ab+ac \qquad \forall a, b, c \in F$ (a+b)c = ac+bc SNote: 2+3 give that (F, ·) is a group. EX. DQ Note: $det(a b) = a^2 + b^2 \neq 0$ if $(a b) \neq 0$ $(-b a) \neq 0$ (f) Zp = /, p is prime Define $\overline{ab} = \overline{ab}$ where $\overline{a} = a + PZ$, etc is a field and 1 Zpl=p 5 If p is prime and n=1 then I a field Fu/ IFI = p" which is (!) up to isomorphism Fundamental Theorem of Algebra. If $f = a_n x^n + \dots + a_n \in C[x]$ where $a_n \neq 0$ $f = a_n (x - d_1) \dots (x - d_n)$ Defi Fis a field. A vector space (v.s.) aver F is an

abelian group (V, +) w/ an operation FXV -> V s.t. $(a, v) \mapsto av$ (1) $|_{FV} = V$ (2) a(bv) = (ab)v(3) (a+b)v = av + bv(4) a(v+w) = av+awVabéFand VWEV $E_{X:OV} = F^{(n)} = \{(a_1, ..., a_n) | a_i \in F_3^{-1} = Row_n(F)\}$ usual + and · by a scalar. $(2) Col_n(F) = 5(a, a, cF)$ 3) F[x] = Zanx"+...+a. a. EF n203 = Poly over F when 'x is "indeterminate" (L) V= C[0, 1] = Zf: [0, 1] -> R | f is continuous 3 $(f+q)(t) = f(t)+g(t) \quad \forall t \in [0,1]$ (af)(t) = f(at) VaeF q, fev Def: W = V, V a v.s. over F is a subspace if (N(W, +) = (V, +)(2) If a & F and weW, then a weW. Exercise: W inherits the structure of a V.S. $\frac{\text{Lemma:}}{(0)} \bigvee : s \in \text{vector space of } F, \text{ then}$ $(1) a \cdot v = \vec{o} \quad iff \quad a = O_F \quad o_F \quad v = \vec{o}$ (2)(-1)V = -V(1) Assume av=0

Propi If SEV a V.S./F then S is linearly indep. iff each NE (S> can only be written one way N= ZaiX: X, Xa,..., Xn eS distinct a, ..., an are all nonzero. Recall: V V.S /F $S \in \bigvee$ (1) S spans V if $\langle S \rangle = V$ (2) S is linearly independent: f Za, x; = O x; eS distinct $a_1 \in F$ then $a_1 = a_2 = \dots = a_n = O$. (Really we cave about the above proposition.) Pf of Prop. If S is not lin. ind. $D = \neq a_i X_i$ not all $a_i = O$ does not have a unique representation. Assume S In. indep. Suppose V= = a:X; = = b;X: (add O coeff so we can add over the same subset of S) $=) \quad \widehat{\mathbb{O}} = \underbrace{\overline{\mathbb{O}}}_{i=1}^{n} (a_i - b_i) \times \mathbf{1}_{i}$ =) $a_i - b_i = 0$ $\forall i = a_i = b_i$ $\forall i$ since S is lin. ind. Example: V=C[0,1] cont. functions on LO,1] which of the following are subspaces? (1) W = Zf(f' exists on (0,1)3 $(a) W = \widehat{z} f(f(i) \ge f(o) \overline{z}$ (3) $W = \xi f | f(\chi) = 0.3$ $(4) W = \xi f | f(0) = 2 f(1) \xi$ Sol: $f, q \in W$ 1) (f+g)' = f'+g'0=0

Basis

Monday, October 8, 2018 9:30 AM

$$\begin{array}{l} \begin{array}{l} & \begin{array}{l} \displaystyle \Pr_{\text{rop}} & \displaystyle \text{Let} \; S = \underbrace{2 \, \underbrace{V, \, V_{\text{s}}, \dots, \, V_{\text{s}} \underbrace{S \in V}_{\text{s}} \; a \; V.s. / F \\ \hline \\ \displaystyle \text{Then} \; S \; is \; \underset{\text{linearly}}{\text{dependent} } \; \underbrace{\underline{W}}_{\text{s}} \\ & \displaystyle V_{\text{s}} = \underbrace{c_{\text{s}} \, V_{\text{s}} + \underbrace{c_{\text{s}} \, V_{\text{s}} + \cdots + C_{\text{s}} \, V_{\text{s}}}_{\text{s}} \\ \hline \\ \displaystyle Fus \; \underset{\text{thermore, in this case,}}{\text{Fus thermore, in this case,}} \\ \displaystyle & \quad \text{span}(S) = \operatorname{span} \underbrace{ZV, \, V_{2, 1}, \, V_{\text{s}}, \, W_{\text{s}} \\ \hline \\ \displaystyle & \quad \text{fus thermore, in this case,} \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{span}(S) = \operatorname{span} \underbrace{ZV, \, V_{2, 1}, \, V_{\text{s}}, \, W_{\text{s}} \\ \hline \\ \displaystyle & \quad \text{fus thermore, in this case,} \\ \end{array}{} \\ \displaystyle & \quad \text{span}(S) = \operatorname{span} \underbrace{ZV, \, V_{2, 1}, \, V_{\text{s}}, \, W_{\text{s}} \\ \hline \\ \displaystyle & \quad \text{for } \\ \hline \\ \displaystyle & \quad \text{for } \\ \hline \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{span}(S) = \underbrace{span} \underbrace{ZV, \, V_{2, 1}, \, V_{\text{s}}, \, W_{\text{s}} \\ \end{array}{} \\ \\ \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \hline \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \end{array}{} \\ \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle & \quad \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \text{for } \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \text{fo$$

but
$$v_{in}$$
, v_{in} by span $\mathbb{E}v_{in}$, $v_{in} \mathbb{E}$ by Poposition
 $\Rightarrow t \ge n + 4$
Page IF V has a basis $\mathbb{D} = \mathbb{E}v_{in}$, $v_{in} \mathbb{E}$ then
every spanning set 5 contains a finite basis
 $\mathbb{P}f_{-}^{+}$
 $W \cup O(a, V \ge D)$ (IF if volue, $\mathbb{D} = \emptyset$.)
Choose $w \le 5$, $w \ne 0$.
 $\mathbb{E}u_{in} v_{in}$, $v_{in} \mathbb{E}$ opposition \mathcal{A}_{in}
This we can delete some v_{in} say v_{in} to get
 $\mathbb{E}u_{in} v_{in}$, $v_{in} \mathbb{E}$ of spanning set.
If $\mathbb{E}v_{in} \mathbb{E}$ oppositions $\mathbb{E}v_{in} \mathbb{E}v_{in}$
 $\mathbb{E}v_{in} v_{in} \mathbb{E}v_{in} \mathbb{E}v_{i$

 $E_{X}: l^{2}(M) = \mathcal{E}(q_{i})_{i=1}^{\infty} | \mathcal{E}[a_{i}|^{2} < \infty, a_{i} \in \mathbb{R}^{3}]$ is a V.s closed under addition. $e_i \in L^2(\mathbb{N})$ s.t. (0, 0, ..., 0, 1, 0, ...) I in ith position. S=Ze; [iz] 3 is lin. ind. but $\left\{1, \frac{1}{2}, \frac{1}{3}, \dots \right\} \notin \operatorname{span}(S)$ For an analyst, 5 is a basis since the completion of span(s) is $l^2(N)$. Def: If V has a basis B= EV, V2, ..., Vn 3 we say n=dim(V), the dimension of V. Recall. DV is a fin. dim. U.S. it it has a finite basis B = EV, V2,..., Vn 3 (2) In this case, all basis have a elements. Thm: Let V be a finite dim. V.S. with B= EV, ..., Vn3 a basis. Then the following are true. (1) Every lin. ind. set S has at most n vectors. (2) Every spanning set has at least n elements. (3) Every spanning set contains a basis. (4) Every lin. ind. set can be extended to a basis Pf: (1) Suppose (5/>n. Take Zw, ..., WAHIJES lin ind. Then ZW, ..., WAH, VI, ..., Vn 3 spans V sinces Vi's span. Pelete vectors one at a time that are lin. comb. of earlier vectors. Eventually you get a lin. ind. spanning set which is a basis, but Zwi, with 3 survive. Thus we get a basis with more than n elements. X Thus SEn # (2) Already proved. (3) 5 spans V. Choose O = W, ES

(3) > spans V. Choose O = w, ES Continue to get Zw, Z= Zw, wz Z=. = Zw, ..., wz where W: \notin Span \Im , ..., $W_{i-1}\Im$. This is possible since \Im , ..., $W_{i-1}\Im$. This is possible since \Im , ..., $W_{i-1}\Im$ does not span V if i-1 < n. Apply (4) to get \Im , ..., $W_n\Im$ is a basis. # (4) Assume \Im , ..., $W_k\Im$ [in. ind., K = n by (1). Consider Zw, ..., wh, V, ..., Vn 3 and as in (1) we reduce this to a basis Ew, ..., Wh, ... some of Vis3 []

Linear Transformations

Wednesday, October 10, 2018 9:52 AM

Defi Let V, W be v.s. / F a function $\begin{array}{c} \hline \vdots \\ & \swarrow & \swarrow \end{array}$ $\gamma \longrightarrow \overline{l}(\gamma)$ s.t. (1) $T(v_1 \cdot v_2) = T(v_1) + T(v_2)$ $(2) \top (cv) = c \top (v)$ - HV, V, V EV and CEF. Lor equivalently T(CV,+CV2) = cT(V1) + cT(V2) is called a Tinear transformation. Ex. () F=R V=R², W=R $T: \mathbb{R}^2 \to \mathbb{R}$ (x,y) (Projection on to x-axis.) $D: C^{\circ}[0,] \rightarrow C^{(n-1)}[0,]$ f Imp) f' is a lin. trans. (i) D(f+q) = (f+q)' = f'+q'(i) D(cf) = (cf)' = cf'(3) $V = IR^{n}$, $W = IR^{m} = Col_{m}(IR)$ A is an mxn fixed matrix. $T: V \longrightarrow W$ $V \longrightarrow AV$

is a linear trans. $A \begin{pmatrix} a_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n \\ \vdots \\ a_{m1}c_1 + a_{n2}c_2 + \dots + a_{mn}c_n \end{pmatrix} = \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \begin{pmatrix} c_2 \\ a_{12} \\ \vdots \\ a_{n2} \end{pmatrix} + \dots + \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$ = lin. comb. of col. of A. Prop: If T: V-W is a lin. trans. then $(1) T(O_v) = O_w$ (2) T(-v) = -T(v)Why? $(1) - \overline{(5)} = T(5) + T(5) = T(0) + T(0)$ $= 0_{\omega} = T(\vec{o}) + (-T(\vec{o})) = T(\vec{o}) + (-T(\vec{o}))$ = 10 = 10(2) $T(-v) = T(F_1)v = (-1)T(v) = -T(v)$ Def: V is a v.s. with basis B = Zv, V.3. If we can be written uniquely as $w = C, V_{1} + \dots + C_{n} V_{n}$ $We call [w]_{B} = \begin{bmatrix} c_{1} \\ c_{n} \end{bmatrix}$ the coordinate of w $\begin{bmatrix} c_{n} \\ c_{n} \end{bmatrix}$ wrt B. thm: If V has a basis B= 2 V, ... Vn 3 then $T: V \longrightarrow Col_n(F)$ $\nu \longmapsto [\nu]_{R}$ is an isomorphism of vector spaces. $\frac{ff}{T}$ - 1 /

Pf.
• T is clearly 1-1 since w= G.V. + ... + G.V. for w∈V is unique.
• Also if didd ∈ Cola(F), then T(d.V. + ...+ d.d) = d.
(d)
= 0 T is onto
• If V=GM+...+GM and w=d.M.+...+d.M.
V+w: (G.+d.)N+ (G.+d.)V.
=1 [V+w]g =
$$\binom{G.+d}{G.+} = \binom{G.+}{(d)} + \binom{d}{(d)} = T(V) + T(w)$$

=1 [V+w]g = $\binom{G.+d}{(c_1)} = \binom{G.+}{(c_1)} + \binom{d}{(d_1)} = T(V) + T(w)$
=1 G ∈ F, check $T(av) = a T(v)$. #
Exercise: OIF T.V=W is an iso. of vs then
T=: W=V is an iso. of vs
(2) T:V=W and S:W==Z are 1.0. tran. then
S=T:V=Z is a lin. trans.
(3) IF T and S are iso. in (2) then
S=T:V==Z is an iso.
Prop. Let V and W w/ v.s. with e-dimV= dim W then
= an iso. T:V=W.
Pf:
Let B = EV..., Vn S a basis for W.
Let C= Zw,..., wn S a basis for W.
Let C= Zw,..., wn S a basis for W.
T V== Gola(F) T(W) = [w]g.
S:W== Gola(F) T(

Linear Page 13

=> SoliV->W is an isomorphism. Chech $T(v_i) = w_i$

Subspaces

Friday, October 12, 2018 9:34 AM

Def: W=V, V a U.S. over F is a subspace if $(N(W, +) \leq (V, +)$ (2) If a EF and wEW, then awEW. Def: Let W=V be a subspace. Then V/w is again a vector space using the usual addition on V/w and $\propto (v+W) = \alpha v+W$ VXEF, V+WEYW. Why? We know Wav since Visabelian. So V_{W} is a group using (v+W)+(u+W)=(v+u)+W. Its "easy" to check the scalar multiplication makes /w is a V.S. # E_{Xi} V= F"= Row, (F) $W = \frac{2}{2}(a_1, a_2, ..., a_t, 0, 0, ..., 0) | a_1 \in F \leq \frac{1}{2}$ $\mathcal{V}+\mathcal{W}=\left(\begin{array}{c}0,0,\ldots,0,\mathcal{V},\mathcal{V}_{a},\ldots,\mathcal{V}_{n-k}\right)+\mathcal{W}$ $\approx (0,0,\ldots,0,b_1,b_2,\ldots,b_{n-\epsilon}) \\ \approx F^{(n-\epsilon)}$ Thm. Assume V is a U.S. W/ dim V = n < 00 and W=V is a subspace. Then $d_{im}V = d_{im}W + d_{im}(V_w)$. Pf: Choose a basis Zw, w2, ..., wk3 for W.

Extend to B= Ew, W2,..., WK, V, V2,..., Ve S a basis for V where l=n-k. Claim ZV, +W, V2+W, ..., Ve+WZ is a basis for V/W Spans 1+W = (C, W + ... + C, W + d, V, + ... + d, Ve) + W for some ci, d; EF $= \underset{\sim}{=} c_{i}(\omega_{i} + \omega) + \underset{\sim}{=} d_{j}(\nu_{j} + \omega)$ $= O + \neq d(v + W)$ since with is the O coset Hence spars. Lin Indepe Suppose $\xi_{i=1}^{*} a_i(v_i + W) = O_{v_{i,i}}$ $=) \stackrel{<}{\underset{\scriptstyle}{\sim}} a_{i} v_{i} + \omega = 0$ $= \sum_{i} a_i V_i \in \omega$ = $z_a, V_i = z_b, \omega_i$ =) $\overline{O} = \overline{z}_{i}a_{i}v_{j} + \overline{z}(-b_{i}w_{i})$ =) $a_{i}=0$, $b_{j}=0$ $\forall i, j$ since B is a basis. Exercise: If T:V > U is a bij. lin. trans. (ie. isom. of v.s.) then (I) T-1: U-V is also an isom. (2) dim V = d.m U. Def: If T:V->W is a l.n. trans. then (1) Ker T= $2V \in V | T(v) = 0$ $(2) Im(T) = ET(v) v \in VE = T(V)$

Exercise : (1) KerTEV is a subspace. (2) T(V) EW is a subspace. Thm: Assume T:V->U is a lin. Frans. and $\dim_{\mathbf{F}} V = n < \infty$ then $\dim V = \dim(ker(T)) + \dim(T(V))$ Remark: Still true if n=00. Proofi By 1^{st} Iso. Thm. for groups, $\frac{1}{1} = T(V)$. This is a U.S. isomorphism $= 1 \dim_{\mathbf{F}} \left(\frac{V}{\ker(T)} \right) = \dim_{\mathbf{F}} \left(T(V) \right)$ => dim V - dim (her (T)) - dim (T(V)) #

Matrix of Lin. Transformation

Friday, October 12, 2018 10:04 AM

Situation: V is U.S. w/ basis $B = \frac{2}{3}v_1, v_2, \dots, v_n$ W is VS. w/ basis $B' = \frac{2}{3}w_1, \dots, w_n$ $T: V \rightarrow W$ is a lin. trans. We know, $T(v_5) = \underset{i=1}{\overset{w}{=}} a_{i5} W_i$ for some (!) $a_{ij} \in F$ Def: Matrix $A = [a_{ij}]_{m \times n}$ is the matrix of T wat B and B'. Notation: $[T]_{B}^{B'}$ $[T(v_{i}) T(v_{a}) \dots T(v_{n})] = [w_{i} w_{2} \dots w_{n}] \begin{bmatrix} a_{i} & \cdots & a_{in} \\ \vdots & \vdots \\ a_{m} & a_{m} \end{bmatrix} = [w_{i} \dots & w_{n}] \begin{bmatrix} T \\ B \\ \vdots \\ a_{m} & a_{m} \end{bmatrix}$ Motors of vectors in W Prop. In the above situation, we get $[T(v)]_{B'} = [T]_{B}^{B'}[v]_{B}$ $V \longrightarrow Col_{n}(F)$ $T \downarrow [T]^{B}_{B}$ $W \longrightarrow Col_{M}(F)$ $W \longrightarrow Col_{M}(F)$ $W \longrightarrow F$ $W \longrightarrow F$ W $= \left[T(v_1) + \dots + C_n I(v_n) \right] \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ $= \left[T(v_1), T(v_2), \dots, T(v_n) \right] \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ $= [w_{1}, \dots, w_{m}][T]_{B} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \end{bmatrix}$

- LWI, ..., WMJLIJB C2 $= \left[w_{1}, \dots, w_{n} \right] \left(\begin{bmatrix} T \end{bmatrix}_{B} \begin{bmatrix} c_{1} \\ \vdots \\ c_{n} \end{bmatrix} \right)$ $= \sum \left[T(v) \right]_{B'} = \left[T \right]_{B'}^{B'} = \left[$ $= \begin{bmatrix} T \end{bmatrix}_{\mathcal{B}}^{\mathcal{B}} \begin{bmatrix} C_n \end{bmatrix}$ Def If V, V2 are V.S. / F the external direct sum is V, & V2 = E(V, V2) V, EV, and V2 E V23 $\frac{P_{cq}}{V_{1}} = \left(V_{1} + V_{2} + (V_{1} + V_{2}) \right) = \left(V_{1} + V_{1} + V_{2} + V_{2} \right) \quad \text{and}$ $C(V_1, V_2) = (CV_1, CV_2)$ makes V. OV, a v.s. / F Propi If W, W2 are subspaces of V, then (i) With W2 = 2 W, + W2 | W, EW; 3 is a subspace of V (and :s the smallest subspace containing W and W2) (2) If $W_1 + W_2 = V$ and $W_1 \cap W_2 = 0$ then $\varphi: \mathcal{W}_{\mathcal{O}} \otimes \mathcal{W}_{\mathcal{O}} \longrightarrow V$ $(w_1, w_2) \longrightarrow w_1 + w_2$ is a isom. of v.s. Note TIV->W dim V=n, dim W=m V has a basis $B = \frac{2}{V_1}, \dots, V_t, V_{t+1}, \dots, V_n \frac{2}{S}$ s.t. $\frac{2}{T(v_1)}, \dots, T(v_t) \frac{2}{S}$ is a basis for T(V). We extend to B'= & T(v,), ..., T(v,t), w_t, ..., wn 3 for W. $\begin{array}{c} Wc \quad extend \quad to \quad v \quad T(v_n) \\ \hline Now \quad \left[T(v_1) \quad T(v_2) \quad \dots \quad T(v_n) \right] \quad \begin{array}{c} \leftarrow t \quad \longrightarrow \\ \hline = \quad \left[T(v_1) \quad \dots \quad T(v_n) , \\ \psi_{t+1} \quad \dots \quad \psi_n \right] \quad \left[\begin{array}{c} 0 \quad \dots \quad 0 \\ 0 \quad \dots \quad 0 \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \end{array} \right] \quad \begin{array}{c} \bullet \\ \bullet \\ \vdots \quad \vdots \quad \end{array}$

 $= [T(v_{1}), ..., T(v_{n}), w_{t+1}, ..., w_{n}] \begin{bmatrix} 1 & 0 & ... & 0 & 0 & ... & 0 \\ 0 & 1 & ... & 0 & 0 & ... & 0 \\ ... & 0 & ... & 0 & ... & 0 \\ 0 & ... & 0 & 0 & ... & 0 \\ 0 & ... & 0 & 0 & ... & 0 \end{bmatrix}$ $\begin{bmatrix} T \end{bmatrix}_{B}^{B'} = \begin{bmatrix} I_{\ell} & 0 \end{bmatrix}_{n-\ell}^{T} \quad possible some of t_{1,n-\ell} m-t \\ \hline 0 & 0 \end{bmatrix}_{n-\ell}^{T} \quad possible some of t_{1,n-\ell} m-t \\ \hline t = \#_{n-\ell} - 1 \end{bmatrix}$

Operators and Conjugates

Monday, October 15, 2018 9:46 AM

Pefi Visa V.S. a lin trans. T.V->V'is called an operator (or linear operator) on V. Assume B= ZV, ... Vn3, E= ZW, ..., Wn3 are two basis for V. We can write $\begin{bmatrix} v_1, ..., v_n \end{bmatrix} = \begin{bmatrix} w_1, ..., w_n \end{bmatrix} \cdot M_B^{\varepsilon} \quad \text{for some (!) matrix } M_B^{\varepsilon}$ Similarly, $\begin{bmatrix} w_1, ..., w_n \end{bmatrix} = \begin{bmatrix} v_1, ..., v_n \end{bmatrix} M_E^{\varepsilon}$ Note: $M_B = [I]_B$. The matrix of a linear trans. $I \neq P = M_B^{\epsilon}$, $Q = M_E^{\epsilon}$ then $PQ = I_n = QP$. Why? $\begin{bmatrix} v_1 & v_n \end{bmatrix} = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix} P = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} Q P = D Q P = D D P$ Now V has B= EV, ... V,3 and E= Ew, ..., w, 3, 2 basis T: V>V a lin. oper. Compave [T]B and [T]E. $\begin{array}{l} Compave \left[T\right]_{B}^{\infty} \quad ad \quad LIJE \\ \left[T(v_{1}) \dots T(v_{n})\right] = \left[V_{1} \dots V_{n}\right] \left[T\right]_{B}^{\infty} \\ \left[T(w_{1}) \dots T(w_{n})\right] = \left[w_{1} \dots w_{n}\right] \left[T\right]_{E}^{E} \\ \Rightarrow \left[T(v_{1}) \dots T(v_{n})\right] = \left[w_{1} \dots w_{n}\right] P\left[T\right]_{B}^{\infty} \\ \left[T(w_{1}) \dots T(w_{n})\right] = T\left(\left[w_{1} \dots w_{n}\right]\right) = T\left(\left[v_{1} \dots v_{n}\right]Q\right) \\ = \left[T(v_{1}) \dots T(v_{n})\right] Q \quad (**)$ $\left[T(w_1) - T(w_1)\right] = \left[T(v_1) - T(v_2)\right] Q$ $b_{Y(xx)}$ $= [w, ..., w_n] P[T]_{\mathcal{B}}^{\mathcal{B}} \cdot Q \qquad by (\star)$ Hence'. Prop: In the above s, tration. [T] = P[T] BQ = P[T] BP-1 Def: We say $A, B \in M_n(F)$ are conjugate if $\exists P \in GL_n(F)$ s.t. $B = PAP^{-1}$.

Note: $Tf P \in GL_n(F)$ and $B = \frac{2}{N}, ..., \frac{2}{N}$ is a basis for V_i then $[w_1, ..., w_n] = [v_1, ..., v_n]P$ gives a new basis $2\omega_{\mu}, \omega_{n}S.$ In other words, given $T:V \Rightarrow V$ an operator, we can always find a basis s.t. $[T]_{\varepsilon}^{\varepsilon} = P[T]_{B}^{B} P^{-1}$. Exi F=C, favorite form of [T]B is Jordan Canonical form. Propi Let V, U, W be U.S. with finite bases B= EV, ..., V, S, D= Z u, ..., u, 3, and E= Zu, ..., wm 3 respectively. (a) If $T,S:V \rightarrow W$ are in trans then (i) $[T,S]_{B}^{E} = [T]_{E}^{E} + [S]_{B}^{B}$ (ii) [cT]B = c[T]B (b) If T: V-3U and S: U-3W, then SoT: V-3W is a lin. traps. and $[S \circ T]^{\varepsilon}_{B} = [S]^{\varepsilon}_{0} [T]^{D}_{B}$ PF; (a) An exercise. (b) $[T(y_1)...T(y_n)] = [u_1...u_k][T]_B^B$ Apply S to both sides to get $[S \circ T(v_i) \dots S \circ T(v_n)] = S([u_1 \dots u_n][T]_B)$ = [S(u,) ... S(uk)][T]B \mathcal{D} $= \left(\left[\omega_{1}, \ldots, \omega_{n} \right] \left[5 \right]_{D}^{E} \right) \left[T \right]_{B}^{E}$ => [S·T]^e = [S]^e [T]^b by miqueness of this matrix. # Defi Conjugate matrices are called "similar" <u>Exercise</u>: Show that being similar gives an equivalence relation on M₂(F).

Linear Page 23

Exercise: If TiV -> W a lin. trans. dim_F(V) = n=00 then the possible matrices of T WRT bases form an equivalence class under similarity equiv. relation.

Multilinear Objects and Determinants Wednesday, October 17, 2018 9:35 AM

$$\begin{split} & \underset{(A_{n,n},A_{n})}{ & \underset{(A_{n,n},A_{n}$$

$$\begin{array}{c} \left(\frac{1}{4} \frac{1}{2} \right) & \left(\frac{1}{4} + \frac{1}{2} \frac{1}{4} \right) & \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \\ = \left(\frac{1}{4} \right) \left(\frac{1}{4} \right) + \left(\frac{1}{4} \right) \\ = \left(\frac{1}$$

Def/Recall: A is invertible if IB s.t. BA=I=AB Pf: =) If A is invertible, then AB = In for some B. => $de+(AB) = de+(A)de+(B) = 1 => de+(A) \neq 0$. (=) Assume det (A) = 0. Consider ACT where C = [CII ... CIN is the matrix of cofactors. Cn. ... Cnn In the (i ·) - position we get Ea; C; = Ea; (-1)^{i+j} det (A;) = det (A) If $i \neq k$, then in the k position we get $\sum_{j=1}^{k} a_{ij}C_{kj} = det \left(A w / k^{th} row \right)$ = 0 sine 2 rows are the same. =) ACT = det(A) In => $A\left(\frac{1}{det(A)}C^{T}\right) = I_{n}$ Similarly, CTA = det(A) In => (1 CT) A = In. => A⁻¹ exists and A⁻¹ = <u>C^T</u> (Uses expansions of det(A) det(A) Re along columns.) Exercise: det(C) = ? Thmi Let A & Mn (F) and A1, ..., An are columns then TFAE and CI, ..., Con are rows. (1) A is invertible (2) def(A) =0 (3) ZA, ..., And spans cd, (F) (4) ZA, ..., And is (in. ind. (5) EC, ..., Cn 3 spans row, (F) (6) EC.,..., Cu3 is lin ind. (1) (2) is known. $\frac{(3)}{(3)} = \frac{(1)}{(3)} + \frac{(1)}{(3)} +$ $(5) \leftarrow (6) \qquad \text{S.m.lar.} \qquad \dim_F(Row_r(F)) = n.$ $(3) = (2) \qquad e_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in (0, 1)$

(3) says $\exists b_{1i}, b_{2i}, ..., b_n$ s.t. $b_{1i}, A_i + ... + b_{ni}, A_n = e_i$ Let $B = [b_{1j}] \in M_n (F)$ $AB = [A, b_i] + A_2 b_{2i} + ... + A_n b_{ni} [...] A_i b_{in} + ... + A_n b_{nn}]$ $= [e_i | e_2 | ... | e_n] = I_n$ => det(A) det(B)= det(AB)=1 > => det (A) =0 (5)(-)): Col(AT) are lin. ind. =) A^{T} is invertible =) $A^{T}B = BA^{T} = I_{n}$ some B^{T} =) $(A^{T}B)^{T} = (BA)^{T} = J_{n}^{T}$ =) $B^{T}A = AB^{T} = I_{n}$ =) $A^{-1} = B^{T}$. (1)=>(3) AB=In =) e, ... en f Span ZA, ..., An 3 -> Span 2A, , An3-col(F)

Dual Vector Spaces and Transposes

Wednesday, October 24, 2018 9:36 AM

Secall: V is a Vs. V*=Hom (V, F) is a vs.
If
$$B = Zv_1, ..., v_n^* S$$
 where $v_n^*(v_n)^* = \leq 1$ if $i + j$.
Where $E = 2v_1 ..., v_n^* S$ where $v_n^*(v_n)^* = \leq 1$ if $i + j$.
Where $E = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $B = 2(1, 0), (a, i) S = 2v_1, v_n S$
 $a = v_n^* (u_1 + v_n) = 1$
 $a = (u_1) = 0$
even through $u_1 = v_1 - u_1 + v_1^*$ since u_1^* depends on
other isoss elements.
Note: $T: V \rightarrow V^*$ where $B = 2v_1, ..., v_n S$ is a basis for V
 $g_1 + \cdots + v_n^*$ is an isomorphism. but if national
isomorphism from V to V^*
Quit Lat $T: U \rightarrow U^*$ be a in trans. then
 $T = U^* - V^*$ is called the dual of T or
 $f + \cdots + T^*(F) = for the trans of T or
 $f + \cdots + T^*(F) = for the trans of T or
 $T^*(F) = V^*$
Check $T^*(F) = (F, T) = a Im trans other if $r = a$ composition of Im trans.
 $F(F) = (F, G) = T^*(F) + T^*(F_n)$
 $T^*(F) = (F, G) = T^*(F) + T^*(F_n)$
 $T^*(F) = (F, G) = T^*(F) + T^*(F_n)$
 $T^*(F) = (F, G) = T^*(F) + T^*(F_n) = T^*(F_n) - T^*(F_n)$
 $Exercise: 2E lies [ai] S is lin indep, bit of epending.$
Exercise: 2E lies [ai] S is lin indep, bit of epending.$$$

Def: The double dual of a V.S. V is $(v^*)^* = v^{**}$, (dual of the dual) Fact. If SEV, Vav.s., Slin. ind. then JBEVs.t. SEB Thm: Let V be a vs then E=E': V -> V* V-)EV where $E_{\nu}(f) = f(\nu)$ is an injective lin. trans. that is a natural isomorphism if $d_{im_{\rm F}}(V) < \infty$. Note: E stands for <u>evaluation</u>. J Pf: Let V, V2 EV $E_{v_1+v_2}(f) = f(v_1+v_2) = f(v_1) + f(v_2) = E_{v_1}(f) + E_{v_2}(f)$ $= (\underline{E}_{v_1} + \underline{E}_{v_2})(f) \quad \forall f \in V^*$ $=) = E_{V,+V_{A}} = E_{V,+} E_{V_{A}}$ Similarly, Ecr = CEV. Check! Injective Suppose Ev= O for some VEV. =) t(1)=0 Ate N* · If v + O then S= Ev3 is lin. ind. =)] basis {13U {11: EI3 for V. Define f + V × by f(v)=1, f(v)=0 V; EI Now $E_{\nu}(f) = f(\nu) = | \not \otimes$ =) E is 1-1. Natural Tivaw any lin. trans. induces TX: WX -> VX induces T**: W**->V** The diagram. $V \longrightarrow W$ "Naturality" (Check!) $E^{v} = C = E^{v}$ V**____W*X # Thm: Let T:V-W be a lin. frans. with B= EV, V2, ..., Vn 3 and E= Ew, wm 3 be bases for V and W respectively. Then the matrix B* is the transpose of [T*] & Pf;

 $\overline{\text{Let}} A = [a_{ij}] = [T]_{B} \in M_{n \times n}(F)$ $\left[T(v_1) \dots T(v_n) \right] = \left[w_1 \dots w_n \right] A$ $T^{*}(\omega_{k}^{*})(v_{i}) = \omega_{k}^{*}(T(v_{i})) = \omega_{k}^{*}\left(\sum_{j=1}^{n} a_{j_{i}}, \omega_{j}\right) = a_{k,i}$ $=) \top^{*}(w_{k}) = \sum_{j=1}^{n} a_{k,j} \cdot V_{j}^{*}$ $= \left[\left[\left[\left[\begin{array}{c} \chi \\ (\omega_{n} \times) \\ (\omega_{n}$ $= \sum_{T \neq T} \begin{bmatrix} B^{*} & & \\ B^{*} & & \\ E^{*} & = A^{T} \end{bmatrix} = \begin{bmatrix} v_{1}^{*}, \dots, v_{n}^{*} \end{bmatrix} \cdot A^{T}$

Eigenvectors and Eigenvalues

Friday, October 26, 2018 9:34 AM I dea. Let V be finite dimensional/F T: $V \rightarrow V$ be a lin. op. Then T is an isom. if f ker T = 0, since $d_{im}(k_{0}T) + d_{im}(T(V)) = d_{im}(V) = n$ More generally, we see veker(T) satisfies T(v)=Ov.
 Similarly, veker (T-XI)
 <=> (T-XI)v=0 $z = \overline{T}(v) = \lambda v$ any $\lambda \in V$ Defiver is an <u>eigenvector</u> if v=0 and T(v)=1v for some $\lambda \in F$. (Also called <u>characteristic vectors</u>.) X is called an eigenvalue. Recall! If $A = [T]_{B}^{B}$, B basis for V then •Note, $v \in V$ is an e-vector for T precisely when $[v]_B = u$ is an e-vector for $A \cdot : F^{-} \to F^{-}$ $\mu \longrightarrow A\mu$ Def: If AEM, (F), its characteristic polynomial is det (XIn-A) E F[X]. $= \chi^2 - (a+b)\chi + (ad-bc)$ $= x^{2} + f_{c}(A) \cdot x + det(A)$ Thm: (Cayley - Hamilton)If $A \in M_1(F)$ and p(x) is its char. poly. then p(A) = 0.

Note: If T.V -> V is a lin. fran. the e-values should not depend on the basis chosen. Thm: (1) The evalues of A & M. (F) are the zeros of its char. poly (2) If A BEM, (F) are similar, then they have the same char. poly. (1) X, s as e-value of A. <=> Au= Lu, some UEF, u=0 <=> 0 = (1 - A) M <=> XI-A is not invertible $\langle = \rangle def(\lambda I - A) = 0$ (2) Suppose B= PAP⁻¹ some P invertible => char pdy of B is det (xIn-B) $def(xI_n - B) = def(xPP^{-1} - PAP^{-1})$ $= det(P \times P^{-1} - P A P^{-1})$ = det (P(XI_n - A) P^{-1}) = det(P) $det(xT_n-A)$ $det(P^{-1})$ = $det(x T_0 - A)$ = char. poly. of A # Def: $A \in M_n(F)$ is diagonalizable if A is similar to a diagonal matrix, $D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \lambda_2 & \cdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$ Note: If PAP' = D, then the char. poly of A is equal to the char. poly. of $D = |x-\lambda|$. $G = (x-\lambda_1)(x-\lambda_2) \dots (x-\lambda_n)$ $O = x-\lambda_n$ <u>Thm</u>: $A \in M_n(F)$ is diagonalizable if $Cd_n(F)$ has a basis consisting of e-vectors for $A \cdot : Col_n(F) \longrightarrow Col_n(F)$ <u>Pf:</u> ELET V= ?. Vn 3 be a basis consisting of e-vectors.

Let Q = [V, Vn] & Mn(F). $Q \quad (S \quad invertible \quad since \quad the \quad (O, \quad un \quad (AQ = [AV, \dots AV_n] = [AV, \dots AV_n] = [AV, \dots AV_n] = [Q \cdot D, \quad D = [A, \quad O] = [V, \dots V_n] \begin{bmatrix} \lambda, O & \dots & O \\ O & \lambda^2 & \vdots \\ \vdots & O & \cdot & O \\ O & \vdots & \ddots & O \\ O & \vdots & \dots & O & \lambda_n \end{bmatrix} = Q \cdot D, \quad D = [A, \quad O] = [A, \cap] = [A,$ $= 2 Q^{-1} A Q = D$ $PAP^{-1} = D, \quad Q^{-1} = P$ $= \sum f A \quad is \quad diag.$ $PAP^{-1} = D = \begin{bmatrix} \lambda_{1} & 0 \end{bmatrix} \quad \text{for Some } \lambda_{1}, \dots, \lambda_{n} \in F$ $\begin{bmatrix} 0 & \lambda_{n} \end{bmatrix}$ $= \lambda Q = Q D \quad \text{where } Q = P^{-1}$ Write Q=[V....Vn] Q: nvertible = EV, ..., Vn3 basis for (ol, (F) $=) \left[A_{V_1} \dots A_{V_n} \right] = \left[V_1 \dots V_n \right] O = \left[\lambda_1 V_1 \dots \lambda_n V_n \right]$ => AV:= XV: U:=> EV.,..., V.3 is a basis of c-vectors. # Ex: $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ char poly is $(x-2)^2$ only e-value is 2. $\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 2 \begin{bmatrix} a \\ b \end{bmatrix} Z = 2 \begin{bmatrix} 2a + 3b \\ 2b \end{bmatrix} = \begin{bmatrix} 2a \\ 2b \end{bmatrix} Z = 2 \begin{bmatrix} 2a \\ 2b \end{bmatrix} Z$

Algebraically Closed

Monday, October 29, 2018 9:34 AM

Def: A field F is algebraically closed if every $f(x) \in F[x]$ with $deg(f) \ge 1$ has a zero in F. lf(a)=0 for some a CF.] Prop: F is algebraically closed iff given $f(x) \in F[x]$ w/ deg(f) = 1 we can write that $f(x) = c(x-a_1)...(x-a_n)$ where $c_1a_1,...,a_n \in F$ $c \neq 0$ Why? $(<=) \quad f(a_1) = 0$ (=) Choose $a_i \in F$ $w/f(a_i) = 0$, by Div. Alg. f(x) = (x - a,)g(x) + r, $r \in F$. $O = f(a_1) = (a_1 - a_1)g(a_1) + \Gamma = \Gamma$ =) $\Gamma = O$ and $f(x) = (x - a_1)g(x)$. By induction, $g(x) = c(x - a_2)(x - a_3)...(x - a_n)$ =) $f(x) = c(x-a_1)...(x-a_n)$ Example: (Fundamental Theorem of Algebra) C are algebraically closed. Why? Use if f(x) E C[x] is a poly. w/ no zoro, then fix) is an entire function and is bounded =) $\frac{1}{f(x)}$ is constant =) f(x) is constant =) deg(f) = 0 &. Fact: Every field is contained in an algebraically closed field.

Thm: Assume F is algebraically closed. AEM. (F), then A is similar to an upper triangular matrix Furthermore, I, ..., In are the eigenvalues of A counting multiplicity. Pf: Induction on n. M=1 A=[a] is dragonal. 1 and assume for n-1. f(x) = det(xIn-A) has deg n Choose $\lambda_i \in F$ s.t. $f(\lambda_i) = O_i$ =>), I-A is not invertible. $\rightarrow (\lambda, I - A) v = 0$ some $0 \neq v \in (0 \mid (F))$ or Av = J.V. Extend to $B = \frac{2}{v_1}, \frac{1}{v_n} \frac{3}{5} \leq Col_n(F)$ a basis [V. ... V.] EM, (F) invertible => A[v,...,v_n] = [Av,... Av_n] $= \begin{bmatrix} \lambda_{1} v_{1}, \star \dots \star \end{bmatrix} = \begin{bmatrix} v_{1} \dots v_{n} \end{bmatrix} \cdot \begin{bmatrix} \lambda_{1} & \star \dots \star \\ 0 & A_{1} \\ \vdots & \vdots \\ 0 & \end{bmatrix}$ $= PAP^{-1} = \begin{pmatrix} \lambda_{1} & \star \dots \star \\ 0 & A_{1} \\ \vdots & \vdots \\ 0 & \end{bmatrix}$ where $P = \begin{bmatrix} v_{1} \dots v_{n} \end{bmatrix}^{-1}$ By induction, IQ. EM ... (F) s.t. $Q' A Q = [\lambda_1] \times \dots \times]$

1) y induction I (X, + MI,-, (H) s.t. $Q_1^{-1}A_1Q_1 = \left[\begin{array}{c} \lambda_2 \times \dots \times \\ 0 & A_2 \\ 0 & \end{array}\right]$ Let $Q = \begin{bmatrix} 1 & 0 \\ 0 & Q \\ \vdots & 0 \end{bmatrix}$ $= \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \vdots \\ \vdots \\ \lambda_a \end{bmatrix}$ Now $QPAP'Q' = T = \begin{pmatrix} \lambda_1 \\ QP \end{pmatrix} A(QP)' = T = \begin{pmatrix} \lambda_1 \\ QP \end{pmatrix} \lambda_1$ Finally T= (QP)A(GP)-1 = (wr) r (wr), = They have the same char. poly. $= A has char. poly. f(x) = def(x-\lambda, x) = (x-\lambda_1)...(x-\lambda_n)$ $= (x-\lambda_1)...(x-\lambda_n)$ =) Last statement. Exercise (1) $f(x) \in F[x]$ and $A, B \in M_n(F)$ are similar, then $f(A) = 0 \quad c = 7 \quad f(B) = 0$ (2) Show $T = \{\lambda_{1}, \chi_{1}\}$ satisfies $f(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n) = 0$

 $f(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_n) = 0$ [Hint: Induction on and $f(T) = (T-\lambda, I)g(T)$ where $g(T) = (x-\lambda_2) \dots (x-\lambda_n)$] $\begin{bmatrix} 0 & \underbrace{\times} &$ (3) Conclude you have C-H Thun for Alg. Closed.

Direct Sums

Monday, October 29, 2018 10:13 AM

Defi Let V, V, be v.s/F, then $V_1 \oplus V_2 = \tilde{\Sigma}(v_1, v_2) | v_1 \in V_1, v_2 \in V_2$ is the direct sum of V. and V2. Propi. If we define operations on V, ΘV_2 by $(v_1, v_2) \oplus (v_1', v_2') = (v_1 + v_1', v_2 + v_2')$ $c(v_1, v_2) = (cv_1, cv_2) \quad \forall v_1, v_1 \in V_1, v_2, v_2 \in V_2, c \in F$ then VE Vais a U.S./F. Why? Vi EV2 is a group. Exercise: If B= Zu, ..., Un ? is a basis for V, and C= Ewi, whith is a basis for V2 then $\mathcal{Z}(u, 0)$, (u, 0)(0, w)...(0, w) is a basis for $V, \oplus V_2$ = $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$ Prop. Let $V_1, V_2 \subseteq V$ are subspaces of v.s. V_1 then (i) $T: V_1 \oplus V_2 \rightarrow V$ is a lin. trans. $(\mathcal{V}, \mathcal{V}_2) \longrightarrow \mathcal{V}_1 + \mathcal{V}_2$ (2) T is one-to-one iff V, NV2 = 0 (3) T ; s onto ; $ff V_1 + V_2 = V_1$ Why? (1) Clear (2) If V, AV, =0, choose $O \neq w \in V, A V_{a}$ = T((w, w)) = w - w = 0

but $(w, -w) \neq O_{v, ov_2}$ =) T is not (-1 If $V_1 \wedge V_2 = 0$, and $T(v_1, v_2) = v_1 + v_2 = 0$ =) $V_1 = -V_2 \in V_1 \wedge V_2 = 0$ $= 1 V_1 = V_2 = 0$ =) T :s 1-1. (3) Clearly T(V, 0 V2) = V, + V2 12 Det. Given V.S. V., ..., Vr $\bigvee_{\mathcal{A}} \oplus \bigvee_{\mathcal{A}} \oplus \dots \oplus \bigvee_{\mathcal{A}} = (\bigvee_{\mathcal{A}} \oplus \bigvee_{\mathcal{A}} \oplus \bigcup_{\mathcal{A}} \oplus \bigvee_{\mathcal{A}}) \oplus \bigvee_{\mathcal{A}}$ $= \frac{2}{2} \left(\frac{v_1}{v_1} + \frac{v_2}{v_1} \right) | v_i \in V_i$ is the direct sum of V, ..., VA Thm: V, Va = V are V.S./F then $d_{im}(V_{i} + V_{2}) = d_{im}V_{i} + d_{im}V_{2} - d_{im}(V_{i} \cap V_{2})$ as long as dim V; < 00, 1=1,2 Pf. $\begin{pmatrix} v_1, v_2 \end{pmatrix} \longrightarrow v_1 + v_2$ $\rightarrow Im(T) = V_1 + V_2$ $ker(T) = \overline{2}(v_i - v_i) | v_i \in V_i \cap V_a \overline{3} \cong V_i \cap V_a$ $d_{im}(I_m(T)) = d_{im}(V_{,\oplus}V_{a}) - d_{im}(K_{er}(T))$ $\dim(V_1+V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2) \implies$ CAUTION. When V, AV2=0, T is an isomorphism and we write V, OV2 for V, + V2 EV. We call V. DV2 the internal direct sum of V, and V2 in this case.

Exercise: $d.m(V, \oplus, \dots \oplus V_t) = dim(V_1) + \dots + dim(V_t)$ Thm: Let W. WEEV V.S. /F. Then $(\omega_1, \ldots, \omega_t) \longrightarrow \omega_1 + \ldots + \omega_t$ (2) T is onto iff $V = W_{+,...} + W_{t}$ (3) T is 1-1 if $W_1 M_2 = O_1 (W_1 + W_2) \Lambda W_3 = O_1$ $(W_1 + \dots + W_{n-1}) \cap W_t = 0$ Note this is similar to lin. ind. 7 Pf: (1) and (2) are clear. (3)=Assume Tis [-1. Suppose wie Wis.t. wit and $W_{i} \in (W_{i} + ... + W_{i}) \land W_{i}$ = $w_i = w_i + \dots + w_{i-1}$ some $w_i \in (w_i)$ l = j = i - l $Naw = T(w_{1}, ..., w_{i_{1}}, w_{i_{2}}, 0, ..., 0) = (w_{1} + ... + w_{i_{2}}) - w_{i_{2}} = 0$ => Kos T = O since wi= O Conversly, if T is not 1-1, this $T(w_1, \dots, w_k, 0, \dots, 0) = 0$ where $w_k \neq 0$ =) $W_{1} + ... + W_{k} = 0$ =) $\omega_{k} = (-\omega_{1} - \dots - \omega_{k-1}) \in (\omega_{1} + \dots + \omega_{k-1}) \land \omega_{k}$ Ex: Suppose V=F=F@F $W_{1} = F(1,0), \quad W_{2} = F(0,1), \quad W_{3} = F(1,1)$ $W_1 \wedge W_2 = W_1 \wedge W_3 = W_2 \wedge W_3 = O$ but $\overline{(: W_{\mathcal{D}} \otimes W_{\mathcal{A}} \oplus W_{\mathcal{A}} \longrightarrow V \text{ is not } I-I.}$ (Note: $W_1 + W_2 = V$ so $W_3 \cap (W_1 + W_2) = (W_3)$

CW, DW2 Note: When (2) and (3) in the theorem are satisfied than vev can be written uniquely as V= w, + ... + Wt, w, E W; and we write that V= W, O. .. O Wt the internal direct sum. -Def: T. V -> V is a lin. Op. then O + V EV is an eigenvector for T; f $T(v) = \lambda v$ for some $\lambda \in F$. λ is an eigenvalue. Exi O = V = ker T is an e-vector for l=0. If V has a fin. basis B= {V, ..., V, 3 the dig $V \xrightarrow{T} V$ where $A = [T]_B^B$ and $[]_B] \xrightarrow{G} [I]_B A \cdot is mult. by A$ $(J_A(F) \xrightarrow{A} \cdot (J_A(F)) Commutes.$ Thus, NEV is an e-vector for A if [V]B is an e-vector for A Note: Char. pdy. of A, denoted char(A) does not depend on the basis chosen. Def: char(T) = char(A) where A is the matrix of T WRT my basis. Thm: If T:V -> V is a lin. op. and

N..., N. are e-vectors up doint e-values
$$A_{i_1,...,i_n}$$
 respectively.
Here $\overline{2}V_{i_1,...,i_n}$ is lin ind.
Pf:
Suppose not
Thun $a_iv_{i_1...,i_n}v_{i_n} = \overline{0}$ $a_i \in F$ not all O .
Pick such eq. with as few nonzero coeff as possible.
By reordoing we have, $\overline{a_i}v_{i_1...,i_n}v_{i_n} = \overline{0}$ where $a_{i_1...,i_n} \in F$ all nonzero
Apply T to (\otimes) be get
 $\overline{a_i}V_iv_{i_1...,i_n}v_{i_n} = \overline{0}$ $(\times \times)$
Subtract A_i multipled by $(*)$ from $(\times \times)$ to obtain
 $(a_i e_{i_n}A_i)v_{i_1...,i_n}v_{i_n} = \overline{0}$ $(\times \times)$
Subtract A_i multipled by $(*)$ from $(\times \times)$ to obtain
 $(a_i e_{i_n}A_i)v_{i_n...,i_n}v_{i_n} = \overline{0}$
 $a_i de - a_iA_i = a_i(A_i - A_i)*O$ enerce $a_i \neq 0$, $\lambda_i \neq \lambda_i$
So we have contradicted the numinality of \pm . By
Thus $A \otimes M_{i_n}v_{i_n}$ distinct
 e -values $A_{i_1...,i_n}v_{i_n}$ distinct
 e -values $A_{i_1...,i_n}v_{i_n}$
 $B = \overline{2}v_{i_1...,v_n}v_{i_n}$
 $B = \overline{2}v_{i_1...,v_n}v_{i_n}$
Exercise: $A \otimes M_h(F)$ and chart F .
Here $A \otimes degenstizable$.
Why?
Exercise: $A \otimes M_h(F)$ av_i distinct e-values $A_{i_1...,i_n}v_{i_n}$.
Exercise: $A \otimes M_h(F)$ av_i distinct e-values $A_{i_1...,i_n}v_{i_n}$.
Exercise: $A \otimes M_h(F)$ av_i distinct e-values $A_{i_1...,i_n}v_{i_n}$.
Exercise: $A \otimes M_h(F)$ av_i distinct e-values $A_{i_1...,i_n}v_{i_n}$.
Exercise: $A \otimes M_h(F)$ av_i distinct e-values $A_{i_1...,i_n}v_{i_n}$.

Bilinear Form

Friday, November 2, 2018 9:32 AM

Def V is a v.s. then a bilinear form B is a bilinear map B: V×V->F $(u,v) \rightarrow \langle u,v \rangle$ $\underbrace{\text{Exi}}_{X} \quad V - \mathbb{R}^3 - \operatorname{Col}_3(\mathbb{R})$ $\langle u, v \rangle = u^{t} v \in \mathbb{R}$ E_{X} V=C[0,1] $\langle f, q \rangle = S' f q$ Ex: V=P(F) = Poly. of deg = n over F Fix h(x) & Pr(F) Define < p,q>= Sphq Def: < > is a bilin. form. on v.s. V and basis B= EV.,..., Vn 3 for V. Then A= [qij] = M,(F) where aij = (Vi, Vi) is the matrix of <, > wrt B. Notation: MB Thmi V, basis B= EV, ..., V.3, <, > bilin. form. Then $\langle u, w \rangle = [u]_{R}^{t} M_{x,y}^{B'} [w]_{B}$ Furthermore, B Mass is the only matrix w/ this property Pf: Let $u = C_1 V_1 + ... + C_n V_n$ $w = dv_{+} + dv_{+}$ $\langle u, w \rangle = \langle c, v, + \dots + c_n v_n, d, v, + \dots + d_n v_n \rangle$ $= \leq C_{1} \langle V_{1}, d_{1}V_{1} + \dots + d_{n}V_{n} \rangle$ $= \underbrace{\leq}_{i:i} \underbrace{\langle}_{i} \underbrace{\langle}_{v_{i}, v_{j}} \underbrace{\rangle}_{i} = \underbrace{[c_{i} \dots c_{n}]}_{i} \underbrace{M}_{c_{i}} \underbrace{[d_{i}]}_{d_{i}}$ $= \int u^{\dagger} M^{\beta} \int u^{\dagger} d\rho$

$$= \left[u_{1g}^{+} M_{a}^{\beta} \left[u_{2g}^{+}\right]g^{\alpha}\right]$$
Note if B is any other motive that satisfies this property.
Then $[M] = e_1 = [0]$

$$= \{V_{1}, W_{2}\} = e_1^{+} Be_{3} = b_{13} = 1, B = M_{k,2}^{\beta} = B$$

$$= \{V_{1}, W_{2}\} = e_1^{+} Be_{3} = b_{13} = 1, B = M_{k,2}^{\beta} = B$$

$$= \{V_{1}, W_{2}\} = \int_{0}^{1} g^{\alpha} = \frac{1}{1 + 1 + 1}$$

$$M_{k,2}^{\beta} = \left(1, \frac{W_{k}}{2}, \frac{W_{k}}{2}\right) = A$$

$$= \left(1, \frac{W_{k}}{2}, \frac{W_{k}}{2}, \frac{W_{k}}{2}\right) = A$$

$$= \left(1, \frac{W_{k}}{2}, \frac{W_{k}}{2}, \frac{W_{k}}{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1}\right) = \frac{1}{1 + 1}$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1}\right) = \frac{1}{1 + 1}$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1}\right) = \frac{1}{1 + 1}$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1}\right) = \frac{1}{1 + 1}$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1, 2 - i\right)A + \left(\frac{2}{1 + 1}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right) = \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 2 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 3 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 3 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 3 - x + x^{2}\right)$$

$$= \left(1 + 2A - x_{1}^{2}, 3 - x + x^{2}\right)$$

$$= \left(1 + 2A - x^{2}, 5 - x^{$$

Pf:
(i) II-II-I
Lat (I) = [I] = [I] = M_B^B M_B^B
Sm M_B^B M_B^B = In
(2) II- suffices to show two, will is line and.
Suppose Que + Que = 0

$$\Rightarrow 3 = [0, m, 0] [Q]$$

 $\Rightarrow Q \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$ since $E_{V_1, \dots, V_n} S$ line and
 $\Rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} = Q^T Q \begin{bmatrix} 0 \\ 0 \end{bmatrix} = Q^T \overline{O} = 0$ BB
(a) $= 2 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = Q^T Q \begin{bmatrix} 0 \\ 0 \end{bmatrix} = Q^T \overline{O} = 0$ BB
Their (change of Bosis Theorem)
 $V \Rightarrow a V.S. and $K > a$ billine form.
 $B = E_{V_1, \dots, V_n} S$ is another basis, then
 $[U_m, w_n] = [V_m, v_n] P$ where $P \in M_n(E)$ is martible.
Thus, $M_{K, n}^{C} = P^T M_{K, n}^{C} P$
 P_{K}^{C}
 $IP = Cu_{k-1} \dots K_n F hen
 $z = [u_{k-1} \dots V_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-1} \dots V_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-1} \dots V_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-1} \dots V_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-1} \dots V_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-1} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-2} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-2} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-2} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-2} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = z = [u_{k-2} \dots U_n] P \begin{bmatrix} 0 \\ 0 \end{bmatrix} = [z]_E$
 $IF = u_{k-2} \vee Jhen (u_{k-2}) = [u]_E M_{k-2} \square P [z]_E$$$

KCCGII. OU fin. dim. U.S. /F $f: \bigvee \longrightarrow \lor \overset{*}{\longrightarrow}$ $v \longrightarrow f_{v}$ where $f_{v}(u) = \langle u, v \rangle$ Write fr=<_v> Is a lin. trans. (2 < , > is called nondegenerate if f is an isomorphism. (<=> f is one-to-one since dim V = dim V*) Thm: If Le, ..., e, 3 is a basis for V and <) is a bilin. form, then $\frac{2}{\sqrt{e_1}}, \frac{2}{\sqrt{e_2}}, \frac{2}{\sqrt{e_1}}$ is a basis for $\sqrt{\frac{1}{2}}$ iff $\sqrt{\frac{1}{2}}$ is non degenerate. If \langle , \rangle is nondeg. then $f: V \longrightarrow V^{\times}$ is an isom. $V \longrightarrow f_{1}$ =) f sends a basis to a basis. Conversely, if 2<,e,>,..,< en>3 is a basis. Suppose vekerf. $=1 \langle u, v \rangle = 0$ $\forall u \in V$ We can write N= ZC, C, C, FF => $O = \langle u, v \rangle = \langle u, z_{c,e_i} \rangle = Z_{c_i} \langle u, e_i \rangle = \langle Z_{c_i} \langle -, e_i \rangle \langle u \rangle \forall u \in V$ =) $Z_{C_i} \langle -, e_i \rangle = O \in V^{\times}$ By lin. ind. of basis, C,=...= Cn=0 => y= 0=> ker f=0=> f is an isom. The $\frac{\text{Ref: Given V, <, >, W = V subspace.}}{W^{\perp} = \Xi u \in V | \langle u, w \rangle = O \quad \forall w \in W \\ \exists is the left}$ W^LR = EuEV (<w, w>= O HwEW3 is the right orthogonal compliment of W. Exercise! Show Wh and Where subspaces of V. Notation: If S,TEV, then <S,T>= E<S,E> (SES, EET 3)

Exercise: Give an example where both agree. (Hint: Its a type of basis ve falked about today.)

Matricies

Wednesday, November 7, 2018 10:07 AM

Def: A symmetric metrix $A \in M_n(R)$ is positive definite if $u^{\epsilon}A \ge 0$ $\forall u \in Col_n(R)$ w/ = iff u = 0Note: < > V fin. dim over R is pos. def. iff M&: is pos. def. for one (and hence all) basis B. Thm: Let $A \in M_n(\mathbb{R})$ then A is possible. iff $A = P^{\epsilon}P$ for some $P \in GL_n(\mathbb{R})$ Assume A is pos. def => < >: V × V → IR for V = Col_n(IR) is pos. def. $(u, v) \rightarrow u^{t} A v$ Using G-S, V has an orth. norm. basis $\mathcal{E}=\frac{3}{2}e_{1,...,}e_{n}\frac{3}{2}$. => $M_{\mathcal{E}_{1,2}}^{\mathcal{E}_{1,2}}=I_{n}$ but if $\mathcal{B}=\frac{3}{2}v_{1,...,}v_{n}\frac{3}{3}$ where $v_{i}=\begin{bmatrix}0\\0\\1\\0\\0\end{bmatrix}}$ w/ 1 in ith pos. then $M_{L,2}^{\mathcal{B}} = A = 7 A I_n$ are congruent. =) $A = P^{t} I_n P = P^{t} P$ for some $P \in GL_n(\mathbb{R})$ Conversely, if $A = P^{t}P$ for some $P \in GL_{n}(\mathbb{R})$, thun $A^{t} = (P^{t}P)^{t} = P^{t}P^{t} = P^{t}P = A => A$ is symm. If $u \in V$, then $\langle u, u \rangle = u^{t}(P^{t}P)u$ $= (P_{u})^{t} (P_{u})$ $= \underbrace{\underset{i=1}{\overset{2}{\leftarrow}} C_{i}^{2} \quad \text{where} \quad P_{u} = \begin{bmatrix} C_{i} \\ C_{2} \\ \vdots \\ C_{n} \end{bmatrix}$ Moreover, <4, u>=0; ff Py=0 ; ff u= 0 since P is invertible

Sylvester's Law of Inertia

Friday, November 9, 2018 9:34 AM

Prop. Let V le a fin. dim. US. /R w/ <, > symm WEV is a subspace s.L <, >In is nondeq. Then $V = W \oplus W^{\perp}$ Pf: Let ue WAW => <u,w>=0 VweW but <, > lw is nondeg. $=) u = 0 = 0 W A W^{\perp} = 0 (X)$ Now fix vev then <, >1, e w* => $\exists w \in W$ s.t. $\langle \rangle | w = \langle -, w \rangle \in W^*$ -> < w, v> = < w, w, > Unew $= \langle w v - w \rangle = 0$ -7 $V - w_{1} \in W^{\perp}$ $= v = w_0 + (v - w_0) \in W + W^{\perp}$ =) $V = W + W^{\perp} (* \times)$ (*) and $(* *) = \vee = \vee = \cup = \bigcup^{\perp}$ Ex: V=R $\langle v, u \rangle = v^{t} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} u$ () is nondeg- on V but () $|_{w} \equiv 0$, $W = \mathbb{R}[o]$ =) <, >/w is not randeg. Def. V. K. > symm. bil form., W, W2,..., Wr = V subspaces where $W, \oplus W, \oplus \dots \oplus W_{\Gamma} = V$. If < w, w, >= 0 for w, EW; and w; EW; it; is called an orthogonal direct sum.

1=xi. In prop we saw W. D. W2 is an orth. d.s. Thm: Assume V is fin. dim / IR and <, > symm. Then I a basis B= Ew, ..., with for V s.t. $= \begin{bmatrix} I_{s} & 0 & 0 \\ 0 & -I_{t} & 0 \\ 0 & 0 & 0 \end{bmatrix}$ MB Furthermore, s and t are unique. PP. i) Suppose <4, u>= O yueV. => $\forall v, w \in V$ we have $O = \langle v + w, v + w \rangle = \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$ => $0 = 2\langle v, w \rangle = 1 \langle v, w \rangle = 0 \quad \forall v, w \in V$ => M^B_{<,>} = O ∈ M_n(R) so s=t=O for any basis. ii) Suppose <V, V> = O for some VEV. Let $w_1 = \frac{1}{N}$ so that $\langle w_1, w_1 \rangle = \pm [$ JIKV, V> Let $W = \langle w \rangle = IRW$ By prop. $V = W \oplus W^{\perp}$. By induction, Wt has a basis Ews, ..., w, 3 = B's.t. $M_{z,z|\omega^{\perp}}^{R} = \underline{T}_{z,z} \underbrace{O}_{z,z} \underbrace{O}_{z,z}$ $\begin{array}{c|c} 0 & -I_{t} & 0 \\ \hline 0 & 0 & 0 \end{array}$ Ewi, way is a basis for V and ME 1 $O I_{S_i} O$ \bigcirc 0 $\delta \left| -I_{\epsilon} \right| O$ 0 0 0 Λ

By reordering the basis if <w, w, >=-1, we get B with Ms, in the desired form. -> Existence. Let $W_{+} = \langle W_{1}, ..., W_{5} \rangle$, $W_{-} = \langle W_{5+1}, ..., W_{5+\epsilon} \rangle$, and $W_0 = \langle w_{s+t+1}, \cdots, w_n \rangle$ < ,> | w, :5 pos. def. () Iw_ is req. def. $\langle \rangle |_{w_2} = O$ $- > |/ = W_{+} \oplus W_{-} \oplus W_{0}$ Now assume, B'= Ewi, w 3 is a basis w/ $M_{c,2}^{B'} = \begin{bmatrix} I_{s'} & O & O \end{bmatrix}$ $\begin{array}{c|c} 0 & - \\ \hline 0 & 0 \\ \hline 0 & 0 \\ \end{array}$ As above V= W; & W' & W. Note $W = V^{\perp} = W_0$ => dim Wo = dim Wo =) $\dim(W_{+} \oplus W_{-}) = \dim(W_{+} \oplus W_{-})$ or that s+t=s'+t' Let $T: V \rightarrow W_+$ is a lin. trans. $W_{+} + W_{-} + W_{p} \mapsto W_{+}$ Ker T= W_D Wo Let $\phi = T |_{W'}$ $k_{er}\phi = W_{+}\Lambda (W_{-} \oplus W_{o})$ but if u & W+ A (W_ @ Wo) then <u, u>≥0 since u∈W+ and $\langle u, u \rangle = \langle w_{\perp} \omega_{0}, w_{\perp} + \omega_{0} \rangle = \langle w_{\perp}, \omega_{\perp} \rangle + 0 = 0$ $=> \langle u, u \rangle = 0$ But (,) wi is pos. def. =) u=0

=> () is one - to -one -> dim W+ = dim W+ Similarly, dim W+ = dim W+ =) $s = \dim W_{+} = \dim W_{+}' = s$ >=t=t' since s+t=s+t' 1 Cor: (Sylv. Law of Inertra) If A e M. (R) is symm. then I PEGL (R) s.t. $P^{t}AP = \begin{bmatrix} I_{s} & O & O \\ O & -I_{t} & O \\ 0 & 0 & 0 \end{bmatrix} \text{ and } s_{t}t \text{ unique.}$ PF. Define <, > on Cola(R) by <u, v>=u^EAv Charge basis to get $M_{c,r}^{B} = \left[\frac{I_{s}}{T} \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \right]$ $\begin{array}{c|c} 0 & -I_t \\ 0 & 0 \\ 0 & 0 \\ \end{array}$ Nou PtAP = same for some P. Note if < > is pos. def. on V finite din. /R then ME,= In so V has an orth. norm. basis. Exercise: V, K, > pos. def. W=V a subspace. Then < > I w is nondeg.

Inner Product Spaces and Adjoint Operators

Monday, November 12, 2018 9:32 AM

Fact: If VIO fin. dim. /C there is no <, > b. form. w/ <v, v>>0 the with equality iff v=0. $\frac{whg?}{IP} \langle v, v \rangle > 0$ $\langle iv, iv \rangle = i \langle v, v \rangle < 0$ $\begin{array}{cccc} Dcf & V & v.s. / \mathcal{E} \\ f : V \times V \longrightarrow \mathcal{E} & \text{is a Hermitian form} \\ (v, w) \longmapsto \langle v, w \rangle & (\underline{Sesquilinear Form}) \end{array}$; f (1) $\langle V u_1 + u_2 \rangle = \langle V, u_1 \rangle + \langle V, u_2 \rangle$ $\begin{array}{l} (2) \langle v_{1} + v_{2}, u \rangle = \langle v_{1}, u \rangle + \langle v_{2}, u \rangle \\ (3) \langle v_{1}, u \rangle = \langle u_{1}, v \rangle \\ (4) \langle v_{1}, cu \rangle = c \langle v_{1}, u \rangle \\ \langle cv_{1}, u \rangle = \overline{c} \langle v_{1}, u \rangle \end{array}$ Yuuu, V, V, V2 EV and VCEC Note: <iv, iv> = ii<vv> = <vv> and (V,V) = (V,V) ER Def: An inner product space (ISP) is (1) (V, ζ, S) where V is a v.s. /R, ζ, S pos. def. (2) (V, ζ, S) where V is a v.s. /C, ζ, S is Hermitian, and (V,V)=0 tvEV w/ equality ift V=0. Adjuint Operators Assume V fin. dim. <, > nondegen. let uev TiV->V a lin. op. $h_{u}: \bigvee \longrightarrow F$ $\nu \longmapsto \langle u, T(\nu) \rangle$ (Chech as Exercise) then hy EVX Recall: q:V -> V*

Recall
$$g(V \rightarrow V^{\#})$$

 $w \rightarrow \infty = \infty$ $(u, v) = (u, v)$
 $p_{2}g_{2} = T^{\#}(v) \rightarrow V$ is the left adjoint of T
 $u \rightarrow \infty$
 $(Note this is not $T^{\#}(v^{\#} \rightarrow V^{\#})$
 $T_{voi} = T^{W}(v \rightarrow v)$ is a line taxe.
 g_{2}
 $u_{v_{1}}u_{v} \in T$
 $(u_{v}, u_{v} \in T$
 $(u_{v}, u_{v} \in T)$
 $(u_{v}, u_{v} = (u_{v}, u_{v}, T(v)))$
 $(u_{v}, u_{v} \in T)$
 $(u_{v}, u_{v} = (u_{v}, u_{v}) + (u_{v}, v))$
 $(u_{v}, u_{v}) = T(u_{v}) + T(u_{v})$
 $S_{v_{v}}(u_{v} = u_{v}) + (u_{v} = (u_{v}, u_{v}) + (u_{v} = u_{v}))$
 $Note: (T^{*}u_{v} v) = (u_{v}, T(v)) = u^{t}v$
 $A^{e}(M_{v}(E), define T(v) \rightarrow V$
 $A^{e}(M_{v}(E), define T(v) \rightarrow V$
 $A^{e}(M_{v}(E), define T(v) \rightarrow V$
 $A^{e}(u_{v}) = A^{t}u_{v} + u^{e}v$
 $Mote: T^{*} is sometimes called for frampose of T.''$
 $T_{v_{v}}(u) = A^{t}u_{v} + u^{e}v$
 $Mote: T^{*} is sometimes called for $[T^{*}]_{E} = ([T]_{E})^{\frac{t}{2}}$
 $W_{v_{v}}^{e} = T$
 $M_{v_{v}}^{e} = T$
 $M_{v_{v}}^{e} = T$
 $M_{v_{v}}^{e} = T$
 $u_{v_{v}}^{e} = T$
 $u_{v}^{e} = T$
 $u_{v_{v}}^{e} = T$
 $u_{v}^{e} =$$$

Let
$$A = [T \le e, B = [T] e$$

 $\langle u, T(v) \rangle = [T \upharpoonright u]_{e}^{e} [T] Ie$
 $= [u]_{e}^{e} A [v]_{e}^{e} [v]_{e}^{e}$
 $T^{*}(u), v > = [T \lor u]_{e}^{e} [v]_{e}^{e} [v]_{e}^{e}$
 $= (B[v]_{e})^{e} [v]_{e}^{e} [v]_{e}^{e} S^{e} [v]_{e}^{e}$
 $\Rightarrow [u]_{e}^{e} A [v]_{e}^{e} = [u]_{e}^{e} B^{e} [v]_{e}^{e} \forall u v \le v$
 $\Rightarrow B^{e} A or B = A^{e}$
Cori $(V, <), E$ as in theorem. Then
 $T = T^{*} iA^{e}$ [T]_{e} is symm.
 $(c^{*} [T]_{e}^{e} s symm. \forall orth. rorm. bases E])$
Back to C
 $\langle . \rangle$ term. form on $V = v \le /C$.
Bet $TP = B = E_{V_{e}} = u_{e}^{*} 3 is a basis for V the matrix
 $of < S w RT = B is$
 $M_{e,v}^{e} = A \cdot [u]_{e}^{e} [C] st = a_{ij}^{*} \le (u, v_{j})$
Result $a_{i} = a_{i}^{*} = d_{aj} onal entries are in R$
Def: $A \in M_{e}(C)$ is terminal if $A^{e} = A$ where $\overline{A} = [\overline{a}_{ij}^{*}]$
Note $(X, S) = V = S C$
 $(v, v) = - = u^{*}Av$ where $V = Col_{n}(C)$ and $A \in M_{n}(C)$
 $v = a + Herm. form if $A = A^{*} = (\overline{A}^{e})$
 $E = A^{e} [a \in S] = M_{n}(C)$
 $A = is Herm. if $A = A^{*} = (\overline{A}^{e})$
 $E = A = [a \in S] = M_{n}(C)$
 $A = is Herm. if $(1) = S \in R$
 $(2) Y = B$$$$$

Thmi Let (V, <, >) be an IPS/C and basis B= EV, ..., V_3 then I an orth. norm basis E= Ze, ... en Z s.t $span 2e_1, \dots, e_k 3 = span 2v_1, \dots, v_k 3$ for $l \leq k \leq n$. Same as are R (Gran-Schmidt) $\mathcal{C}_{i} = \frac{1}{\int \langle v_{i}, v_{i} \rangle} \cdot V_{i}$ We get Ze, en 3 a basis. If we have $t \in [0, ..., e_t, V_{t+1}, ..., V_n]$ as desired, replace V_{t+1} by $u_{t+1} = V_{t+1} - \leq \langle e_i, v_{t+1} \rangle e_i$ then $\begin{cases} c_{i_1}u_{\ell+1} > = 0 & | \leq ; \leq \ell \\ let & c_{\ell+1} = \frac{1}{\sqrt{u_{\ell+1}}u_{\ell+1}} \\ u_{\ell+1} \end{cases}$ Now Ee, ..., C++1, V+2, ..., Vn 3 is a betto basis Continue this process Ed Prop: Assume (,), s a Herm. form on V, V.s./E B = EV, ..., V.3; s a basis. Then $(u, v) = [u]_B^* M_{K,2}^B [v]_B$ $\begin{bmatrix} u \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} v \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ $\langle u, v \rangle = \langle \Xi a, v, \Xi b, v \rangle = \Xi \overline{a}, b, \langle v, v \rangle$ $= [u]_{R}^{*} M_{<,>} [v]_{R} \mathbb{E}$ Prop' V, <, >, B as in last prop. TFAE () If ueV w/ <u, v>= 0 UveV then u=0. (2) If veV w/ <u, v>= 0 UveV then v=0. (3) MB is invertible. (3) M& is invertible. Pf. "Same" as before / Exercise

Defi If V, <, >, B satisfies the last Prop. cond. we say <) is nondeg Thm Let V, <, >, B as in props. then $g: \bigvee \longrightarrow \bigvee^*$ $u \longrightarrow \langle u, - \rangle = h_u$ that is $h_u(v) = \langle u, v \rangle$. g is additive and when <, > is randed. g is a bijection. $() h_u(cv_i+v_a) = \langle u, cv_i+v_a \rangle = c \langle uv_i \rangle + \langle u, v_a \rangle$ = $ch_u(v_i) + h_u(v_a) \quad \forall c \in C, \quad v_i v_a \in V$ =) h. E V* (2) $g(u_1+u_2) = g(u_1) + g(u_2)$ as before (3) $c_1 \leq v_1, - > + c_2 \leq v_2, - > + \dots + c_n \leq v_n, ->$ $= \langle \overline{c}, V_{1}, - \rangle + \dots + \langle \overline{c}, V_{n}, - \rangle \quad (\not\prec)$ =) Im(g) = span(S) where S = Z(V, _>, ..., (V, _>) If (, > is nondeg. then (*) shows S is lin. ind. but we know dim(V* = n = dim(V. =) Im(g)= span S = V*. CAUTION (D g(cu) = Eg(u), so g is not lin. $(R) I + v \in V, then <math>\langle -, v \rangle$: $V \rightarrow C$ is not in V^* . Ihm: Assume (V, <, >) is an I.P.S. w/ an orth. norm. basis E= Ze, e, 3 $T: V \longrightarrow V$ is a lin. op then furthermore if $A = [T]_{\varepsilon}$ then $[T_{\varepsilon}] = A^{*}$ Tix ue V $v \mapsto \langle u, T(v) \rangle'$ then $h_u \in V^{\times}$ lefine hy: V-)C () is pos. def. => nondeg => $h_u(v) = \langle \hat{u}, v \rangle$ for some $\hat{u} \in V$ and $\forall v \in V$. Let $T_u^* = \hat{u}$. $T^{*}(u_{1}+u_{2}) = T^{*}(u_{1}) + T^{*}(u_{2})$ as before.

 $\langle T^*(cu), v \rangle = \langle cu, T(v) \rangle = \overline{c} \langle u, T(v) \rangle$ $= z < T^{*}(y, v)$ $= \langle c T^{*}(u), v \rangle \quad \forall v \in V.$ $= T^{*}(cu) = cT^{*}(u)$ So ve have TX. It is ! since given u EV is is unique by last theorem. Let A = [T] E and B = [T*]E $\langle u, T(v) \rangle = [u]_{\varepsilon}^{*} [T(v)]_{\varepsilon} = [u]_{\varepsilon}^{*} A[v]_{\varepsilon}$ Hu, veV Similarly, $\langle T^{*}(u), v \rangle = (B[u]_{\mathcal{E}})^{*}[v]_{\mathcal{E}}$ $= [u]_{\mathcal{E}}^{*}B^{*}[v]_{\mathcal{E}}$ $\Rightarrow \chi^{*}Ay = \chi^{*}B^{*}y \quad \forall \chi, y \in Col_{\mathcal{E}}(C)$ $=) A = B^{*} = A^{*} = B^{**} = B$ HUVEV Def: T* is the adjoint operator of T (relative to <,>).

Adjoint

Wednesday, November 14, 2018 10:14 AM

Def If (V,<,>) is a fin dim I.P.S. (over C or R) then T is self adjoint if T=T*. Note (Exercise) OT: V-> V over R is self adj. iff [T] E is symm WRTM(y) or the norm. basis E. 2 If T.V->V over C is self adj. iff [T] e is Herm. for any orth. norm. basis E. Def. (DA & MA(R) is orthogonal if AT = A and the set of these is denoted $O_n(\mathbb{R})$ (2) $A \in M_n(\mathbb{C})$ is unitary if $A^* = A^-$ and the set of these is denoted $U_n(\mathbb{C})$. Exercise ? $(D O_n(R) \in GL_n(R))$ (a subgroup) (a) $U_n(c) \leq GL_n(C)$ Pf: $(D A, B \in O_n(IR))$ $(AB)(AB)^{t} = ABB^{t}A^{t} = ATA^{t} = AA^{t} = T$ => $AB \in O_n(R)$ $(A^{-1})(A^{-1})^t = (A^{-1})(A^{t})^{-1} = (A^t A^{-1})^{-1} = I$ Lemma. DIF A ∈ M_n(R) w/ A=A^t then all e-values of A are real.
DIF A ∈ M_n(R) w/ A=A^t then all e-values of A are real. pf '

(2) Suppose $A_{\nu} = \lambda \nu, \nu \neq 0$ $\nu^* A_{\nu} = \nu^* (\lambda \nu) = \lambda (\nu^* \nu)$ $(v^*A)_{\mathcal{V}} = (v^*A^*)_{\mathcal{V}} = (Av)^*v = (\lambda v)^*v = \lambda (v^*)_{\mathcal{V}}$ $\Rightarrow \lambda(\nu^*\nu) = \lambda(\nu^*\nu)$ =) $\lambda = \overline{\lambda}$ = $nce(v^*v \neq 0)$ =) XER E DAGM(R) aymon. is Herm. =) done by (2) & Recall. MT.V-V IPS/C E=Ze,..., en 3 is an orth. norm. basis. $\begin{bmatrix} T \end{bmatrix}_{\mathcal{F}}^{*} = \begin{bmatrix} T^{*} \end{bmatrix}_{\mathcal{F}}$ $T^*: \bigvee \longrightarrow \bigvee \quad \text{in op. s.t.}$ $\langle T^*(u), v \rangle = \langle y, T(v) \rangle$ $T = T * i f [T]_{E} is Herm. ([T]_{E}^{*} = [T]_{E})$ (Also called <u>self-adjoint</u>.) 3) "Same" for (V, < >) over R except that instead of Herm. we have symm. Ihm: OLet A e Ma (C) Herm. Then Jue Un (C), unitary, s.t. u*Au=D a real diagonal matrix. (2) Let AEM_(IR) symm. then FUEO_(R), orth, s.t. 4^tAu=D a real diag matrix. Pf; () Using induction and n=1 is frivial. We know e-values of A are real. Pick e-value λ , and take $O \neq v \in Col_n(C)$ s.t. $A v = \lambda_1 v$

Pick e-value λ , and take $O \neq v \in Col_n(C)$ s.t. $Av = \lambda, v$ Keplace v by l = v = u, where $||v|| = \sqrt{v^* v}$ ||v|| Now <4,4,>=1 We can extend to an orth. norm. basis $\overline{z}u_{1,...,u_{n}}$ for $Col_{n}(\mathbb{C})$ Let $X = [u_{1} u_{2} \dots u_{n}] = X^{*} = X^{-1}$ $A X = X \begin{bmatrix} \lambda & X \\ 0 & X \end{bmatrix}$ where $A \in M_{n-1}(\mathbb{C})$. $\Rightarrow X^* A X = \begin{bmatrix} \lambda & X \\ 0 & A \\ 0 & A \end{bmatrix}$ Note, $(\chi^* A \chi)^* = \chi^* A^* \chi^{**} = \chi^* A \chi$ $Herm = \chi^* A \chi = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \dots & 0 \\ \vdots & A_n \\ \vdots & \vdots \\ 0 \end{bmatrix}$ is Herm. => A, = A So by induction $\exists X, \in U_{n-1}(C)$ unitary s.t. $X, A, X = \begin{bmatrix} X, & O \end{bmatrix}$ real diag. $\begin{bmatrix} O & X_n \end{bmatrix}$ Now, $\begin{bmatrix} I & O \\ O & X_n \end{bmatrix}$ is unitary $T = \begin{bmatrix} O & V_n \end{bmatrix}$ Thus, $\begin{bmatrix} 1 & 0 \\ 0 & X, * \end{bmatrix} \times \begin{array}{c} \times & X \\ \hline & 0 \\ X, * \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & X, * \end{bmatrix} \begin{array}{c} \lambda_{i} \begin{bmatrix} 0 \\ 0 \\ X, * \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 \\ X, * \end{bmatrix} \begin{array}{c} \lambda_{i} \begin{bmatrix} 0 \\ 0 \\ X, * \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ X, * \end{bmatrix}$ $= \left[\frac{\lambda_{1} \circ}{\delta \times A \times A} \right]$ $= \left[\lambda_{1} \right]$

$$= \begin{bmatrix} \lambda_{1,x} & 0 \\ 0 & \lambda_{n-1} \end{bmatrix}$$

= D real diag
X, $\begin{bmatrix} 110 \\ 0|X_{n} \end{bmatrix}$ unitary
(2)
Steal the same polation
 $\lambda = 0$ nature where $\lambda \in \mathbb{R}$.
= $\exists u_{n} \in Coh(\mathbb{R}) = 1$.
Extend the orth. norm. Users $\exists u_{1,\dots,n} \exists and deleX = [u, u_{n} = u_{n}]$ then X is orth. $(X = X^{-1})$
Now,
 $X^{\pm}A X = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $(X^{\pm}A X)^{\pm} = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $(X^{\pm}A X)^{\pm} = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $(X^{\pm}A X)^{\pm} = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $(X^{\pm}A X)^{\pm} = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $(X^{\pm}A X)^{\pm} = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $X^{\pm}A X = \begin{bmatrix} \lambda_{1} \mid X \\ 0 \mid A_{1} \end{bmatrix}$
 $X^{\pm}A X = \begin{bmatrix} \lambda_{1} \mid 0 \\ 0 \mid A_{1} \end{bmatrix}$
 $A_{1} \in M_{n}(\mathbb{R})$ symm.
 $D \mid A_{1} \end{bmatrix}$
First by inductor as before. B
Def A form C is acreal if $AA^{*} = A^{*}A$
Remark A Herm $\Rightarrow AA^{*} = AA = A^{*}A \Rightarrow A$ is normal.
Then $DA \in M_{n}(\mathbb{C})$ is normal. Then $\exists U \in U_{n}(\mathbb{C})$ set.
 $U^{*}A U = D$ a diagonal matrix
 $Pt:$
 $(Exercise!)$

Exi
$$\begin{bmatrix} i & 0 \end{bmatrix} \in M_{2}(E)$$
 is normal, but not Heren.
Exerche: IP A is Heren. or symme over R then eved
corresp. to distinct e-val. are orth.
Def. $A \in M_{n}(F)$, Fany field.
D The raw space of A is span of the rows of A
in Row (F). It is dented by Rowsp(A)
(a) The column space is similar (d Sp(A))
Read: The damp RowSp(A) = dimp ColSp(A).
Pti (Exercise)
Def. dim RowSp(A) = reak of A.
Readed: A, B \in M_{n}(F)
 AB^{-1}
 $\begin{bmatrix} A, b, + A_{2}b_{n} + ... + A_{n}b_{n}, ..., A, b_{n} + ... + A_{n}b_{n} \end{bmatrix}$
Pti (ColSp(AB) $\leq ColSp(A)$ w/ equality if B is invertible.
(a) Sp(AB) $\leq ColSp(ABB^{-1})$ if B is invertible.
 $\begin{bmatrix} ColSp(AB) \leq ColSp(A) = M_{n}(F) \\ A = ColSp(AB) \leq ColSp(A) = M_{n}(F) \\ B = ColSp(AB) \leq ColSp(A) = M_{n}(F) \\ ColSp(A) \leq ColSp(A) \\ ColSp(A) \leq ColSp(A) \\ ColSp(A) \leq ColSp(A) \\ ColSp(A) \\ ColSp(A) \leq ColSp(A) \\ ColSp($

Cauchy

Monday, November 26, 2018 9:33 AM

Thm: (Cauchy) If p is prime and pligt then G contains a an element of order p, for finite group G. If IGI=p, then gEG/EI3 has order p. Use induction: Assume true for groups of order less than IGI. IGI=1Z(G) + E[G:EG(X:)] where X, ..., Xt are rep. of distinct nontrivial conj. classes. i) If pt Z(G) => pt [G: CG(X:)] for some i. $\Rightarrow p | C_{x_i}(x_i) |$ By induction, $C_G(x,)$ contains an element of order $p. \in G$ i) If p[Z(G)] either $|Z(G)| \leq |G|$ and done by induction or G = Z(G) is abelian. Choose XEG EIZ N= < x> < G since G(is abelian. Let k= |x| If plk then x^{k/p} has order p. If pt | x | => pt |N| (since |x|= |N|) => p 10/N => I y NEG/ with order p by induction. Let 2 = 141. If ptl, then $(yN)^{l} = yN = N = |a|_{N}$ => $|yN||l \approx since |yN| = p$

=pll now y^{-p} has order p. E

Double Cosets

Monday, November 26, 2018 9:48 AM

Defi Let KH=G groups. We say X~y in G if X=kyh for some keK, hett. Lemmali~ as above is an equivalence relation and [x] = KxH. If K, I are finite, then |KxH|= |K||H| Ix Kx nH Pf; :) | EH and | EK => X = | · X · | => X ~ X ¥ X EG $= h^{-1} \times h^{-1} \times h^{-1} = h^{-1} \times h^{-1} \times h^{-1} = h^{-1} \times h^{-1} = h^{-1} \times h^{-1} \times h^{-1} \times h^{-1} = h^{-1} \times h^{-1}$ iii) If x_{ny} and y_{-Z} , x_{iy} , $z \in G$ =) $x = k_{iy}h$, and $y = k_{2}Zh_{2}$, h_{i} , $h_{2} \in H$ and k_{i} , $k_{2} \in K$ => $X = (k, k_a) = (h_a h_b) = X \sim Z$ Hence ~ is an equ. relation. iv) Finally, [x] = Ehxk | heH and keK3 = HxK $|[x]| = |H \times K| = |x'H \times K| = |x'H \times ||K| \quad (by Lemma 2 \downarrow \downarrow)$ Ix Hx OK $= \frac{|H||K|}{|x'Hx \cap K|}$ Lemma D: Let A B = G finite subgroups. Then |AB| = |A||B|. |AnB|Pf: AB = VaB a norm of left cosets of B.

IKAP [K: PAR] is a power of p but P is maximal p-subgroup. => [K; PAK] = | => K = P B Thm: (Sylow) Let G be a group w/ IGI = pm where p is prime, $k \ge 0$ and $p \not\equiv m$. Then (1) G contains a Sylow subgroup of order p^k.
 (2) If p∈ Sylp(G) and Q=G is a p-subgroup then Q = xPx⁻¹ for some x∈G. In particular. (a) Q is contained in a Sylow psub. (b) All Sylaw psub. are conjugate of order p. (c) If Sylp(G) is the set of all Sylow p-sub. then $|Sy|_p(G)| m$ and $|Sy|_p(G)| \equiv | \pmod{p}$. Pf: (1) If $pt | Z(G) \Rightarrow pt [G: C_G(X_i)]$ some $X_i \in G \setminus Z(G)$ $|C_{G}(\mathbf{x};)| = p^{m}$, where M, |M.By induction, $C_G(x_i)$ contains a subgroup of order p^k . If $p|Z(G) = \exists z \in Z(G)$ of order p. Agan, let N= <=> Agan, Now $\tilde{P} = \rho^{k-1} - \rho = \rho^{k}$.

Sylow Theorems

Tuesday, November 27, 2018 11:42 AM

Thm: (Cauchy) If pisprime and pligt then G contains a an element of order p. for finite group G. If IGI=p, then gEG/EI3 has order Use induction: Assume true for groups of order less than IGI. $|G| = |Z(G)| + \underset{i=1}{\overset{k}{=}} [G: \mathcal{K}_{G}(x_{i})] \text{ where } X_{i_{1}, \dots, X_{t}}$ are rep. of distinct nontrivial conj. classes. $p = f p + |Z(G)| = p + [G: C_G(x_i)] for$ some i. $\Rightarrow p | C_{i}(x_{i}) |$ By induction, $C_G(x,)$ contains an element of order p. = G i) If p|Z(G), either $|Z(G)| \leq |G|$ and done by induction or G = Z(G) is abelian. Choose XEG [213] N= < x> 1 G since G(is a belian. Let k= |x| If plk then x has order p. TO still => at hall lained bel = 1/1

It plk then x has order p. If pt/xl => pt/Nl (since |x|= INI) => p | G/N => I y NEGN with order p by induction. Let l = |y|. If ptl, then $(yN)^{\ell} = y^{\ell}N = N = |a|_{N}$ => $|yN||l \approx since |yN| = p$ => pll now y has order p. E Defi Let KH=G groups. We say X~y in G if X=kyh for some keK, hett. Lemmal:~ as above is an equivalence relation and [x] = KxH. If K, I are finite, the IKXHI = IK/IH/ XXXXAH :) | eH and | eK = X = |X| = X - X $\forall X eG$ iii) If $x \sim y$ and $y \sim z$, $x_{iy}, z \in G$ =) $x = k_{iy}h_{i}$ and $y = k_{2}zh_{2}$ $h_{i}, h_{2} \in H$ and $k_{i}, k_{2} \in K$ =) $x = (k_{i}, k_{a})z(h_{2}h_{i}) =) \times Z$ Hence ~ is an equ. relation. iv) Finally, [x] = Ehxk | het and keK3 = HxK $|[x]| = |H \times K| = |xH \times K| = |xH \times ||K| \quad (by Lemma 2 11)$ 1x1 Hx nK

 $(\forall 11 11) \forall_{\mathcal{A}} (T) = (\forall 11)$ Pf: Let K=QNNG(P) $K \leq N_G(P)$ => xPx-1 = P Vx EK => xP= Px Vx EK => KP=PK $= KP = PK \leq G$ PE PK=KP |KP| = |K||P| = [K:PnK]|P|KAP [K: PAR] is a power of p but P is maximal p-subgroup. => [K; PAK] = | => K = P = Thm: (Sylow) Let G be a group $w/|G| = p^{t}m$ where p is prime, $k \ge 0$ and p + m. Then (1) Ge contains a Sylow subgroup of order pk. (2) $Tf p \in Sylp(G)$ and $Q \in G$ is a p-subgroup then $Q \in xPx^{-1}$ for some $x \in G$. In particular: (a) Q is contained in a Sylow psub. (b) All Sylaw p-sub. are conjugate of order p^k.
(c) If Sylp(G) is the set of all Sylow p-sub. then ISylp(G) | m and ISylp(G) | = 1 (mod p). Pf: (1) If pt Z(G) => pt [G: Ca(xi)] some X; EG Z(G) $|C_G(X_i)| = p^m$, where $M_i|M_i$. By induction, CG(X;) contains a subgroup of order p. If p Z(G) = = = Z (G) of order p.

Agan, let N= <z> A. Now $|G_N| = |G|/|N| = p^{-1}$. Again by induction, G_N has a subgroup P_N of order p^{-1} . Now $|P| = p^{n-1} \cdot p = p^n$. Recall. OKH=G XEG KXH double coset $|K \times H| = |K||H|$ x KxnH Exercise: Not all (K, H) - double cosets have the same order. K×H is an equivalence class for x~y if y=hxk he H keK 2) If PESylp(G) (= Set of maximal p-subgroups of G) Q=G is a p-subgroup, pENN prime then QNNG(P) = QNP Thm (Sylow) (repeat) Assume $|G| = p^{m}$, p prime, $k \ge 0$ $p \nmid m$. (1) G has a subgroup $P \le G$, $|P| = p^{k}$ =>YE Sylp(G) (2) If PESylp(G) and Q is a p-subgroup then $Q \leq x' P x$ In particular.

(a) Q is contained in a Sylow p-subgroup (b) All Sylow p-subgroups are conjugate. (Have order pk by part 1.) (c) [Sylp(G)] divides m and is congruent to 1 (mod p). Pf: (1) Pore above (2) Let $x = \Xi gpg^{-1} | g \in G \Xi$, which is a G-set since $x(gpg^{-1}) = x(gpg^{-1})x^{-1} = (xg)p(xg)^{-1}$ $|x| = [P] = [G; Stab_G(P)] = [G: N_a(P)]$ $P = N_G(P) = |X| [G:P] = m$ ptm => pt |X| View X as a Q-set. (ie restrict to Q acting.) Orbits have order dividing [Q], powers of p. ptIX => One orbit has size]; call it xPx- $= \mathcal{D} Q \leq \mathcal{N}_{q} (X P X^{-1})$ => Q = Q AN(x Px-1) where x Px-1 = Sylowp (G) = QAxPx-1 by Prop (Recall #2) $\Rightarrow Q \leq x P x^{-1}$ (Replace x by x⁻¹) If Q = Sylp (G) then Q = x Px⁻¹ is a conjugate of P. $=) \chi = Sylp(G)$ $(3)|\chi| = |Sy|_{p}(G)|_{m}$ by (2) Fix PESylp(G) and have Pacton X => [P]={xPx-1 | x = P}= {P} is a orbit of size If $Q \in Sylp(G)$ and |[Q]| = | then $P = |N_G(Q)|$. => P=Q by Recall 2 =)P=QHence I! orbit of size 1. => All other orbits have a positive power of p.

 $= | (nod p) | = | + p^{x_i} + p^{x_{p+1}} + p^{x_{p+1}}$ $M_{otation}$: $n_p(G) = |Sy|_p(G)|$ Example: Show that a group of order 21 cannot be simple. Pf:_ |G|=24=2°.3 $\Lambda_2(G) = 1 \text{ or } 3$ N3(G) = 1 or 4 If n2(G)=1, the unique Syl 2-subgroup is a normal subgroup of order 8. => G is not simple If n. (6)= 3, we get a nontrivial action of G on X = Syl, (G) This gives a nontrivial group hom. $\phi: G \to S_x \cong S_3$ |Sx|=G=> D is not 1-1 => Ko D = | G nontrivial Crot 1-11 => Ker & ~G is a nontrivial normal subgroup. Similar argument for M3(G). or If n3(G)=4 then 8 elements of order 3 7 elements of order 2 1 identify U in intersection 20 not enough to conclude Ex: If allGI it does not imply IH=G, IHI=a

· Take &= A= simple. $|G| = \frac{5!}{3} = 60$ G does not have a subgroup of order 30 (since it hand have index 2=) Normal) Very Useful Facts XX (DIF np(G)=1 for some prime p, p) G the unique Syl. p-subgroup is normal (2) If np(G)>1 = a nontrivial Group hom. $\phi: G \to S_X \cong S_{1X1}$ where $X = S_{1} = S_{1}$ If IGI>IX! then Ker & AG is nontrivial. (3) If $P, Q \in Sylp(G)$ where $|G| = p^k m$, $k \ge 1$ then $|PUG| \ge 2p^k - p^{k-1}$ Exercise: Show # a simple group of order 42. Pf 42= 2.3.7 n2(G)= => not simple Exercise: There exists no nonabelian subgroup of order less than 60.

Examples

Friday, November 30, 2018 9:36 AM

Ex. Show the group of order 15 is cyclic.
P1:
15=3.55

$$n_1(G) = 1$$
 (mod 3) and divides 5
 $2^n n_1(G) = 1$
 $n_2(G) = 1$
 $n_2(G) = 1$
Hence $\exists P = \langle a \rangle$ is a unique $\exists J \exists \exists a b b group.$
 $\exists G = \langle b \rangle$ is a unique $\exists J \exists \exists a b b group.$
 $\exists G = \langle b \rangle$ is a unique $\exists J \exists \exists a b b group.$
 $\exists G = \langle b \rangle$ is a unique $\exists J \exists \exists a b b group.$
 $\exists G = \langle b \rangle d G.$
 $a b a^{-1}b^{-1} = \langle d \rangle$
 $= a(ba^{-1}b^{-1}) e^{-1}$
 $\Rightarrow aba^{-1}b^{-1} = (aba^{-1}b^{-1}) e^{-1}$
 $\Rightarrow aba^{-1}b^{-1} = (aba^{-1}b^{-1}) e^{-1}$
 $\Rightarrow aba^{-1}b^{-1} = 1$
 $\Rightarrow aba^{-1}b^{-1} =$

columns are lin. indep. How many elements in Col. (F)? p How many choices for A_i ? $p^2 - 1$ (can't be $\overline{\partial}$) Then now many choices for A_2 ? $p^2 - p$ (not scalar multi-11 11 11 11 Az? $p^2 - p^2$ (p^2 lin. comb. of A_1 , A_2) $\begin{array}{ccc} A_{n} & p^{n} - p^{n-1} \\ H_{ence} & |GL_{n}(F)| = (p^{n} - 1)(p^{n} - p) \dots (p^{n} - p^{n-1}) \\ & = pp^{n} p^{3} \dots p^{n-1}(p^{n-1})(p^{n-1} - 1) \dots (p^{n-1}) \end{array}$ $= p^2 \cdot m$ where p!mConsider $P = \begin{cases} 1 & X \\ 0 & 1 \end{cases} \leq GL_n(F)$ $|P| = P_{1124, +n-1} = \frac{1}{1} - \frac{1}{1} + \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac$ $\left[I - N \in P, (I_n - N) (I_n + N + N^2 + N^{3+\dots} + N^{n-1}) \right]$ (Count choices of X for each col) $= \int_{-\infty}^{\infty} \frac{n(n-1)}{n}$ => P e Sylp(G) Prop. (Frattini Argument) Let G be a finite grap, NAG, and PESylp(N). Then $G = NN_{G}(P)$ Pf. Let $g \in G_{\overline{A}}$. $g P g^{-1} \leq g N g^{-1} = N$ $= > g P g^{-1} \in Sylp(N)$ Now apply Sylow to N: $\exists n \in N$ s.t. nPn' = gPg' $= P = n'gPg'n = (n'g)P(n'g)^{-1}$ $= n'g \in N_G(P)$ =) $g \in n M_G(P) \subseteq N M_G(P)$

=> $G = NN_G(P) = N_G(P)N$ E Recall (Thm) As is the smallest nonabelian simple group (Pf by exhaustren) Ex: No simple group of order 42 Pf; 42:2.3.7 na(G)=1 (mod 2) divides 21 so N2(G)=137, or 21 N3 (G) = 1 (mod 3) divides 14 50 $N_3(G) = 1 \text{ or } 7$ N7(G)= 1 (mod 7) divides 6 so ng (G) = 1 => G is not simple. (The mique Sylz(G) is normal.) Ex. No simple group of order 57 D€: $56 = 7 \cdot 8 = 2^3 \cdot 7$ $n_2(G) \equiv 1 \pmod{2}$ and divides 7 => na (G)=1 or 7 $N_7(G) \equiv | \pmod{7}$ and divides 2^3 $= N_{-1}(f_{0}) = 0 + 0 + 8$ If nz(G)=8, then each PESylz(G) has 6 elements of order 7 with no overlap => G has 8.6 = 48 elements of order 7. So this leaves, 56-48= 8 elements not of order 7 these must form a unique Syl 2-subgroup => (a is not simple. Exercise: Show that if IGI = p" where k=2, G is not simple. $Z(G) \neq 1$ $\rightarrow \exists x \in \mathbb{Z}(G) \quad s \in |x| = \rho$

$=) + \langle x \rangle \frac{1}{4} \langle x \rangle$

Semidirect Products

Monday, December 3, 2018 9:44 AM

Recall : H, K groups $H \times K = \tilde{Z}(h, \mu) \mid h \in H, \mu \in K \tilde{Z}$ is a group using obvious $mu \mid H$. $(h, k, i)(h_{*}, k_{2}) = (h_{i}, h_{2}, k_{i}, k_{2})$ is the direct product (sum) of H and K. Ex: Assume N, K=G where K=NG(N) NAK=1. KN=NK Hick => KN= KEG also NXK ---- NK is a bijection of sets. $(n,h) \vdash nk$ $\frac{\text{If}}{(n, k,)(n_2 k_2)} = \frac{k_1 k_2 e k_1}{(n, k,)(n_2 k_2)} = \frac{k_1 n_2 k_1^{-1} k_1 k_2}{(n, k_1) k_1 k_2} = \frac{k_1 k_1 n_2 k_1^{-1} k_1 k_2}{(n, k_1) k_1 k_2}$ K - Aut (M) Really $k \longrightarrow \hat{k} [n \rightarrow \hat{k}(h) = kn | \hat{k} | = kn]$ $\frac{N_{ew} \text{ Situation } N, K 2 \text{ groups.}}{\Phi: K \rightarrow Aut(N) \text{ a group hom.}}$ Let $N \times K = N \times K$ as a set with binarg operation $(n, k)(n_2k_2) = (n, k, n_2, k, k_2)$ Thmi In the above situation. NXK is a group (called the <u>semidirect</u> product of N and K). Furthermore $\mathbb{O}a: N \longrightarrow N \rtimes K$ is a group hom. (n,1) $\mathcal{P}_{\mathcal{B}} \longrightarrow \mathcal{N} \times \mathcal{K}$ is a group hom. $\mathcal{K} \longmapsto (1, \mathcal{K})$ (3) If we identify N with <(N) and K w/ B(K) then N/2K=NK~ N4NK $K \in NK$

$$NAK = 1$$

$$Lda_{2}^{2}$$

$$(a, k)(a, k_{2}) = (a, k, a_{2}, k, k_{2})(a_{2}, k_{3}) = (a, k, a_{2})(a_{1}, k_{2})(a_{2}, k_{3})(a_{2}, k_{3}) = (a, k, (a_{1}, (k_{1}, n_{2})), k, k_{2}, k_{3})$$

$$= (a, k, (a_{1}, (k_{1}, n_{2})), k, k_{2}, k_{3})$$

$$= (a, k)(a_{1}, k_{3})(a_{2}, k_{3}) = (a, k_{3})(a_{2}, k_{3}, a_{3}, k_{3}, k_{3})$$

$$\Rightarrow Ansocatuly.$$

$$(b_{1}, k_{3}) = b_{new} \quad (b_{nek})$$

$$= (a_{1}, k_{1})(k_{1}) = (a_{1}, k_{1}) = (a_{1}, k_{1})(a_{2}, k_{3}, a_{3}, k_{3}, k_{3})$$

$$O(2) \quad ave \quad olear$$

$$(a_{1}, k_{2})(a_{1})(a_{1}, k_{3}) = (a_{1}, k_{1})(a_{2}, k_{3}) = (b_{n}, k_{3})$$

$$O(2) \quad ave \quad olear$$

$$(a_{1}, k_{2})(a_{1})(a_{1}, k_{3}) = (a_{1}, k_{1})(a_{2}, k_{3})$$

$$G(a_{1}, k_{2})(a_{1})(a_{1}, k_{3}) = (a_{1}, k_{1})(a_{2})$$

$$(a_{1}, k_{2})(a_{1})(a_{1})(a_{2}) = (b_{1}, k_{3})$$

$$G(a_{1}, k_{2})(a_{1})(a_{2})(a_{2}) = (b_{2}, k_{3})$$

$$G(a_{1}, k_{2})(a_{2})(a_{2}) = (b_{2}, k_{3})$$

$$G(a_{1}, k_{2})(a_{2})(a_{2})(a_{3}) = (b_{2}, k_{3})$$

$$G(a_{1}, k_{2})(a_{2})(a_{2})(a_{3})$$

Prof. () If HK = G w/ H a G then [H,K] = H. (2) If HaG, KaG, then [H,K] = H n K. (3) If HK a G with H nK=1, then H × K = HK = G. why? $\square [h,k] = hkh^{-1}k^{-1} = h(kh^{-1}h^{-1}) \in H = \sum [H,k] \leq H.$ еH (2) Similarly $[H,K] \leq K$ if K = G. (3) $[H,K] \leq H \cap K = I = > H \leq C_G(K)$ = HK = KH = Gand $H \times K \longrightarrow HK$ $(h,k) \longmapsto (h,k)$ is a group iso. Note: G'= [G,G]

Galois

Wednesday, December 5, 2018 9:40 AM

 $f(x) \in Q[x]$ In C roots ~, ..., X, F= Q[x, , x_] is the splitting field $d_{imp}F < 00$ Galos group is $Gal(F_Q) = \frac{7}{3} \cdot F \rightarrow F | \sigma(q) = q \forall q \in R$ $\frac{\pi}{3} \cdot \frac{\pi}{4} \cdot \frac$ is a finite group. · Why? or is determined by o(x;), i=1,..., n $f(\alpha_i) = \alpha_n \alpha_i^n + \dots + \alpha_n$ $\sigma(f(x_i)) = a_n \sigma(x_i) + \dots + a_6$ =) $\sigma(a_i)$ is a root of f(x)=> or permutes Ex, ..., x, 3 $f = a_2 \times a_1 \times a_2 = a_1 \pm Ja_1^2 - a_2 a_2 = a_1 \pm Ja_2^2 - a_2 a_2 = a_1 + Ja_2 + a_2 + a_2$ Galois F is solverble by radicals iff Gal (F/Q) is solveable <u>Exi</u> $\exists f$ of degree 5 st. $Gal(F/Q) \equiv A_5$ $\exists A$ a solution to $f \equiv 0$ where $\deg f \equiv 5$ using radicals. I a simple group s.t. |G|=168. PSL(27) is the 2nd smallest · 18 inf. families (A, n25), (Cp, pprime) + 26 sporadic group's · Last found was the "Monster Group" = M 654 digits in its order

Exi IA G is abelian and dIGI then EH=G sit |H|=d Why? Use complete induction on IGI. Assume true for graups of order less than IGI. If d=1 H=1 works. If d+1, choose pld p prime ∃xeG s.f. |x|=p=<x> dG $= |G_{\langle X \rangle}| = |G_{\rangle}/\rho < |G_{\rangle}|$ => = a subgroup H/xx7 = G/xx7 of order d/p since $\frac{d}{p} \left| \frac{|G|}{p} \right|$ and $|G|_{(X)} < |G|$ => H=G and |H|=d Recall Tor goup G, then $G^{(1)} = [G, G]$ $G^{(2)} = [G^{(1)}, G^{(1)}]$ $G^{(i\mu)} = \left[G^{(i)}, G^{(i)}\right]$ $G^{-}, G^{(0)} \ge G^{(1)} \supseteq G^{(2)} \ge \dots$ Each G⁽ⁱ⁾ is a char. subgroup Hi 2 G is solveable : f G = 1 for some n. Thm: (P. Hall) If G is finite and solv. and d/IGI then $\exists H \in G \text{ s.t. } |H| = d.$ Furthermore, all such subgroups are conjugate. Def: 11 is called a Hall subgroup. Thm: (Feit Thompson)

If IGI is add, then G is solv. Ex. (Not everything is trivial) There is no simple group of order 5265 Pf: ('on could use F-T, G() is a proper normal subgroup) 5265 - 5.1053 - 3.5.35 = 3².5.117 = 3°. 5. 13.9 = 34.5.13 n3 = 1 (nod 3) and divides 5-13 => 1, = 1 or 13 If n3 = 1 the inique Sylow 3-sub is normal = G hot simple. If n3 = 13 and G is simple that we get $\phi: G \longrightarrow S_x \cong S_{13}$ is injective where $X = Sy|_3(G)$ WOLG G=S13 G contains an element of order 13, a 13-cycle o. $P = \langle \sigma \rangle \in Sy|_{13}(G)$ $\mathcal{N}_{s}(P) = P$ $= \frac{1}{\sqrt{p}} = P$ So $|Sy|_{3}(G)| = [G: N_{G}(P)] = [G; P] = |G|_{13} = 3^{4} \cdot 5$ => G has 34.5 (13-1) elements of order 13 => G has 34.5= 405 elements not of order 13. Now Q not simple so NSEL (mod 5) and divide 34.13 = $7n_5 = 3^{\prime} = 8l_1$ (not I size C not simple) => G has A 81. (5-1) = 324 elements of order 5 => There are at most (105-324 = 8) elements not of order 13 or 5 => n3 = => QESyl,3(G) is a nontrivial normal subgroup. 1