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Chapter 1 Complex Plane and Elementary
Function

1.1 Complex Numbers

Complex Number A complex number is an expression of the form z = z + iy, where
z and y are real numbers.

Real and Imaginary Parts The component z is called the real part of z and y is the
imaginary part of 2. Denote these by:

z = Rez y=Imz

Complex Plane The set of complex numbers form the complex plane. We denote it
by C. The correspondence z = z + iy < (z,y) is one-to-one between the complex
numbers and points in R?. The real numbers correspond to the r-axis. The purely
imaginary numbers correspond to the y-axis.

Modulus The modulus of a complex number z = z + iy is the length /22 + 32 of the

corresponding vector (z,¥):
|2] = /2% + 32

This abides by the following properties:

|z +wl <zl +w] |z ~w|2]z| = |w|

Complex Conjugate The complex conjugate of a complex number z = z + 2y is
defined to be Z = z — iy. Geometrically this is the reflection of z across the z-axis.

Properties of Z

ztw=:+w Zw=:iw |z|=]Z |2|? = 2z
Rez=z+z Imz=2&.z
P
1 T — 1y z
|zw| = |2||w] o + 1 . 22
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Complex Polynomial of Degree n = 0 A function of the form

p(z) = apz® + an12" 1+ o+ a2 + ap.

Theorem 1.1.1 (Fundamental Theorem of Algebra). Every copmlex polynomial p(z) of
degree n = 1 has a factorization

plz) =clz—2z)™ ... (2 — z)™

where the z;'s are distinct and m; = 1. This factorization is unique up to permutation
of the factors.

The points z) are called the roots of p(z).

1.2 Polar Representation
Polar Coordinates For a point 2z = z + iy — (x,y) # (0,0) in the complex plane:

r=+/22+ 3% = |2] z=rcosf y=rsind 2=z + 1y =r(cosf + isinf

Argument The argument of z # 0 is the angle 8, write:
0 =argz

The argument is a multivalued function, defined for z # 0.

The principal value of argz, Arg z is specifed to be the value of § such that —7 <
¢ < m. Thus:
argz = {Argz + 2rk|k = £1,£2,...}
Polar Representation Since e? = cos@ +isin#, we get that the polar representation
of zeCis

z=re r=|z|, f=argz

Note, since sine and cosine are 27 periodic, different choices of arg z yicld the same
value for e”.

Properties of Polar Representation
|e:0| i 1 P —— i e g 10 ei(G-!-:p) — et‘ﬂeizp

These correspond to:

argz = —argz arg (1/z) = —argz arg z)z; = arg z; + arg 2,
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nth Root of Unity A complex number z is an nth root of w if 2® = w. If w = pe',
then ok
e

(reiﬂ)n — rnem'ﬂ — pei(,a = r = pl.-"n 9= _(E, + T

The nth roos of unity are the nth roots of 1 given explicitely by:
we =" 0gk<n—1

Thus, for any complex number w # 0, the kth nth root of w can be written

Zr = ZoWg = pllneup,f'ne2wik,.'n

1.3 Stereographic Projection

Extended Complex Plane The extended complex plane is the complex plane to-
gether with the point at infinity. C* = C = {oo}.

Stereographic Projection The stereographic projection of a point P = (X,Y, Z)
on the unit sphere from the north pole of the unit sphere N = (0,0,1) is the point
z =z + iy ~ {(z,y,0) where the straight line meets the coordinate plane Z = 0.
Explicitly:
X =2z/{|z]* + 1)
Y =2y/(|21* +1)
Z=1-1/t= (2> - 1)/(|z]* + 1)

Theorem 1.3.1. Under the stereographic projection, circles on the sphere correspond to
circles nad straight lines in the plane.

1.4 The Square and Square Root Functions

Slit / Branch Cut A way to define the inverse function of w = z%. Since w = z% wraps

around the plane twice, in order to define an inverse function we must limit it’s domain.
To do so we make a branch cut, commonly along (—o0, 0].

Slit Plane This yields the slit plane, C\(-0,0]. Every value w in the slit plane corre-
sponds to exactly two z-values. (That is, when we square z we get the same value for
two different z-values, one where Rez > 0 and one where Rez < 0.)

Branch As there are two possibilities for the inverse image on the slit plane, the determi-
nation of the inverse function is called a branch of the inverse.

Principal Branch The function f;(w) (which maps to values of z such that Re z > 0} is
called the principal branch of \/w. It is expressed in terms of he principal branch
of the argument function as

Hw) = |w|1/2ei(A"‘"’)/2, w e C\(—,0]
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Riemannian Surface The surface construced to represent the unverse function by glu-
ing together the edges where the functions f;(w) and f,;(w) coincide. The surface is
essentially a sphere with two punctures corresponding to 0 and co.

1.5 The Exponential Function

Exponential Function We extend the definitino of the exponential function to all com-
plex numbers z by defining:

=+w z LW

e* = e*cosy+ie siny = eTe? le*| = €* arge” =y e*™" = gfe — =g

Periodic The complex number A is a period of the function f(z) if f(z + A) = f(z) for
all z for which f(z) and f(z + A} are defined. The function is called periodic if it has
a nonzero period.

The exponential function is periodic with a period 2xik since £**2™ = ¢*,

1.6 The Logarithm Function

Logarithm Function For z # 0 we define log 2z to be the multivalued function:
log z = log|z| + targ z = log |z| + i Arg z + 2mim
Precisely the complex numbers w such that e* = 2.
Principal Value of Log The principal value of logz is

Logz = log|z| + iArgz

1.7 Power Functions and Phase Factors

Power Function Let a be an arbitrary complex number. The power function 2® is the
multiviued function

o o log 2

2% — o aflog|z|+i Arg z+2mim] _ ecr[..ogz 2riam

= g [

Note, if o is not an integer, we cannot define z* continuously on the entire complex
plane, so we myst make a branch cut.

Phase Factor If 2* = r%¢*? then ¢*? is the phase factor and comes from the branch
cut we made.

Theorem 1.7.1 (Phase Change Lemma). Let f(z) be a (single-valued) function that is
defined and continuous near zg. For any continuously varying branch of (z — zp)* the
function f(z) = (z — z0)*g(z) is multiplied by the phase factor e?*** when z traverses
a complete circle about 2y in the positive direction.
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1.8

Trigonometric Functions Since for real

eiB + e—i9

g =
COSs 2

Trigonometric and Hyperbolic Functions

we can extend this to the complex numbers:

eiz 4+ e—iz
cosz = ————
2
which are 27 periodic.
sin z
tanz =
CoS z

Properties of Trig Functions
cos(—z) = cos(z)
cos(z 4+ w) = coszcosw — sin zsinw

Hyperbolic Functions

et + e

coshz =

which are 27i periodic.
Propertires of Hyperbolic Functions
cosh(iz) = cos z cos(tz) = cosh z
cosh(z+w) = cosh z cosh w—sinh z sinh w

Cartesian Representation For z = z + iy,

sinz = sinzcoshy + icoszsinhy

Trig Moduli
|sin z|? = sin? z + sinh®y

Inverse Trig

sin™!z = —ilog (iz +41— 22)

cos™}

eiﬂ _ e—tﬂ
sinfl = ———
2
iz —iz
) —e
sinfl = ————,
21
sinh z
tanh z =
cosh z
sin(—z) = —sin(z)

sin(z + w) = sin zcos w + cos zsinw

The hyperbolic extension to the complex plane is:

e —e

2

—-Z

sinhz =

sinh(iz) = isinz sin(¢z) = isinh z

sinh{z+w) = sinh z cosh w+cosh zsinh w

cosz = coszcoshy — isinzsinhy

| cos z|* = cos® z + sinh® y

= —ilog (z’z + \/;2——7) !

tan~
i

z=%log

(

1+1iz
1—1iz
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Chapter 2 Analytic Functions

2.1 Review of Basic Analysis

Converges A scquence of complex numbers {s,} converges to s if for any ¢ > 0, there
is an integer N = 1 such that |s, —s| <eforalln = N.

Theorem 2.1.1. A convergenet sequence is bounded. Further, if {s,} and {t,} are se-
quences of complex numbers such that s, — s and ¢, — ¢, then
a. Sp,+t,—s+t
b. sty — st

C. Sp/tn — s/t

Theorem 2.1.2. Ifr, <s, <i,, and if r, — L and {, — L then s, — L.

Monotone A sequence of real numbers {s,} is said to be monotone increasing if s, =
s, for all n, monotone decreasing if s,,4+; < s, for all n, and monotone if it is either
monotone increasing or decreasing.

Theorem 2.1.3. A bounded monotone sequence of real numbers converges.

Theorem 2.1.4 (Complex Convergence). A sequence {s;} of complex numbers converges
if and only if the corresponding sequences of real and imaginary parts of the si’s
converge.

Cauchy Sequence A sequence of complex numbers {s,} is a Cauchy sequence if for
every € > 0 there exists an N > 1 such that |s, — s,| <eif m,n2 N.

Theorem 2.1.5 (Completeness Axiom Equivalent). A sequence of complex numbers con-
verges if and only if it is a Cauchy sequence.

Functional Complex Limit A complex-valued function f(z) has limit L as z tend to
zp if for any € > 0 there is a § > 0 such that |f(z) — L| < & whenever |z — z| < 4.
That is lim,_.,, f(2) = L, or f(z} — L as z — 2.

Lemma 2.1.1. The complex-valued function f(z) has limit L as z — 2 if and only if
f(z,) — L for any sequence {z,} in the domain of f(z) such that z, # z, and 2z, — zo.

11
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Theorem 2.1.6. If a function has a limit at zg, then the function is bounded near z.
Further, if f(z) — L and g(z) — M as z — 2, then 2 — z; we have

a. f(z)+g(z)>L+M
b. f(2)g(z) — LM
c. f(2)/g(z) — L/M, provided that M # 0

Continuous We say that f(z) is continuous at z if f(z) — f(z) as z — 2. A
continuous function is a function that is continuous at each point of its domain.

Open A subset U of the complex plane is open if whenever z € U, there is a disk centered
at z that is contained in U.

Domain A subset D of the complex plane is a domain if D is open and if any two points
of D can be connected by a broken line segment in D.

Theorem 2.1.7. If h{z,y) is a continuously differentiable function on a domain D such
that Vi = 0 on D, then h is constant.

Convex A set is convex if whenever two points belong to the set, then the straight line
segment joining the two points is contained in the set. ( A punctured disk is a domain,
but is not convex.)

Star-shaped A set is star-shaped with respect to zy if whenever a point belongs to
the set, then the straight line segment joining zy to the point is contained in the set.

A star-shaped domain is a domain that is star-shaped with respect to one of its
points. (e.g. C\(—c0,0])

Boundary The boundary of a set £ consists of points z such that every disk centered
at z contains both points in £ and points not in E.

Compact A subset of the complex plane that is closed and bounded is said to be compact.
Theorem 2.1.8. A continuous real-valued function on a compact set attains its maximum.

Euler’s Constant Consider the sequence

1 1 1
n=1 — - T ——p— =1.
b +2+3+ +n logn n

This sequence decreases to limit « such that § <y < 2 while a,, = b, — 71—1 increases to
4. The limit + is called Euler’s constant.
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2.2 Analytic Functions
Differentiable A complex-valued function f(z) is differentiable at z, if the differnece

quotients
f(2) = f(20)
Z =2y

have limits at z — 2p. The limit is denoted by f'(z), or by %(zo), and we refer to it
as the complex derivative of f(z) at zp. Thus

) = ) = lim L= C)

dz 2=z Z=—2
Theorem 2.2.1. If f(z) if differentiable at z, then f(z)} is continuous at z.

Rules a. (¢)=0

b. (2™) =mzm!

c. (efY(z0) = cf'(z)

d. (f+9)(20) = f'(20) + 9(z0)’

e.  (f9)'(20) = f20)9'(z0) + f'(20)9(20)
£ ,5;) 9(=o)f'((23()201)')(zu)0'(=0)

g (fog) (~ ) = f'(9(20))9'(20)
Homework 2 Findings Let f be differentiable at z,.

a. U(z) =12 (—-[ —1-—-[)

0z o oy
af = 1{af 4 ;of

b.  3(20) = 3 (a: '”ay)
dz _ 9% _

C. 7 = 0 % 1
oz __ =m—1

d - =mz2

o ) _of | 2

) J% oF R

Hfg) _ @ a
0z _973%'*'1(3%

Analytic A function f(z) is analytic on the open set U if f(z) is (complex) differen-
tiable at each point of U and the copmlex derivative f'(z) is continuous on U.

2.3 The Cauchy-Riemann Equations

Cauchy-Riemann Equations Suppose f = u + iv and z = z + ty. Taking derivatives

we see that o 6 P 5
: v v _0u
fi(z) = (-'v y) + i +—(z,y) = ay(ﬂay) tay(w,y)
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Equating real and imaginary parts we get the Cauchy-Riemann equations for u
and v:

@_QE @——@ equivalentl =y U, = —
dr  dy dy Oz q Y B = v

Theorem 2.3.1 (Analytic & CR). Let f = u + iv be defined on a domain D in the
complex plane, where u and v are real-valued. Then f(z) is analytic on D if and only
if u(z,y) and v(z,y) have continuous first-order partial derivatives that satisfy the
Cauchy-Remann equations.

Theorem 2.3.2. If f(z) is analytic on a domain D, and if f'(z) = 0 on D, then f(z) is
constant.

Theorem 2.3.3. If f(z) is analytic and real-valued on a domain D, then f(z) is constant.

2.4 Inverse Mappings and the Jacobian

Jacobian Matrix Let f = u + iv be analytic on a domain D. The Jacobian Matrix of

this map is
du du
_ | dr ¢
Jr= (@ @y)
dr oy

Theorem 2.4.1. If f(x) is analytic then it’s Jacobian matrix J; has a determinant
det Jy(2) = |f'(2)|*

Theorem 2.4.2. Suppose f(z) is analytic on a domain D, z € D, and f'(z) # 0. Then
there is a (small) disk U < D containing zp such that f(z) is one-to-one on U, the
image V = f(U) of U is open and the inverse function f~! : V — U is analytic and
satisfies

(FY(f(2)) zelU

1
f(z)

Proof. All of the assertions of this theorem are consequences of the inverse function theorem,

except for the assertions concerning the analyticity of f~'. To check this, write g = f~! on

U and differentiate by hand. Fix w,w; € U with w # wy, set z = g(w), z1 = g(w;). Then
z # 7, f(2) = w, f(z) = w, and we have:

glw) —glw) _ z-—2 1
w— w f(z) = f(=) (f(zzz:ﬁzl))

As w tends to wy, z tends to 2z;, and the right-hand side tends to 1/f'(z;). Thus g is differen-
tiable at wy, and ¢'(w;) = 1/f/(21), which required by the thereom. Since ﬁ-’-‘—) is continuous,

(f') is continuous, and thus f~' is analytic.

If we write w = g(z), the identity becomes j—; = F}M: O
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Dirichlet form For smooth functions g and h defined on a bounded domain U, we define
the Dirichlet form Dy(g, h) by

399k  dgTh
Dula,h) Hbﬁxan“®

2.5 Harmonic Functions

Laplacian The operator

i 3
A= —coem ... 4
o0z,2 0T,2
is called the Laplacian. The equation
d*u u
A = = 00D + — 0
t 0x1? * 0x,2
is called Laplace’s equation.
Hamonic Functions Smooth functions u(z,, ..., z,) that satisfy Laplace’s equation, Au =

0, are called harmonic functions.

We say a function u(z,y) is harmonic if all its first- and second-order partial deriva-
tives exist and are continuous and satisfy Laplace’s equation.

Theorem 2.5.1. If f = u + iv is analytics and the functions u and v have continuous
second-order partial derivatives, then u and v are harmonic.

Note. We will show in Chapter 4 that an analytic function has continuous partial
derivatives of all orders. Thus, we only nced analyticity.

Harmonic Conjugate If u is harmonic on a domain D, and v is a harmonic function
such that v + iv is analytic, we say v is the harmonic conjugate of u. This conjugate
is unique up to adding a constant.

Since f is analytic, we know that g—z = %’. Thus

_ J PEY) 4~ Uz, y) + hiz)

or
Then: 5 5
v u ,
= e

Solve this equation for A'(z) up to a constant.

Theorem 2.5.2. Let D be an open disk, or an open rectangle with sides parallel to the
axes, andlet «(z,y) be a harmonic function on D. Then there is a harmonic function
v(z,y) on D such that u + iv is analytic on . The harmonic conjugate v is unique,
up to adding a constant.
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2.6 Conformal Mappings

Tangent Vector and Angle Between Curves Let y(t) = z(¢) +iy(t),0 <t <1, bea
smooth parameterized curve terminating at zg = (0). We refer to

t) — (0
as the tangent vector. We define the angle between two curves at z; to be the

angle between their tangent vectors at zg.

Theorem 2.6.1. If v(t), 0 < t < 1, is a smooth parameterized curve terminating at
zp = ¥(0), and f(z) is analytic at 2o, then the tangent to the curve f((t)) terminating
at f(z) is

(f o 7)(0) = f'(20)7'(0)

Conformal A function is conformal if it preserves angles. More precisely, we say that
a smooth complex-valued function g(z) is conformal at z, if whenever 4, and 7, are
two curves terminating at zy with nonzero tangents, then the curves go -y, and go v
have nonzero tangents at g{zy) and the angle from (g o 75)'(20) to (g © 71)'(20) is the
same as the angle from ~{(z0) to v3(z0).

Conformal Mapping A conformal mapping of one domain D onto another V is a
continuously differentiable function that is conformal at each point of D and that
maps D one-to-one onto V.

Examples
a. f(z)=z+b
b. g(z) =azfora#0
c. w = 22 maps {Rez > 0} onto C\(—o0,0].
d. Fix 6,0 <6y <7 If0 < a < /8, the function z* maps the sector {| arg z| < tly}

conformally onto the sector {| arg z| < afy}.

e. & is conformal at every z. However C — C\( is not conformal, however {|Im z| <
7} — C\(—00,0] is.
f.  Principal branch Log z is conformal C\(—o0,0] onto {|Imw| < 7}

Theorem 2.6.2. If f(z) is analytic at zp and f'(z) # 0, then f(2) is conformal at z.

2.7 Fractional Linear Transformations

A fractional linear transformation is a function of the form
az+b
’u) E z ——
f(z) cz+d

where a, b, ¢, and d are complex constants satisfying ad — be # 0. Fractional linear
transformations are also called Mobius transformations.




CHAPTER 2. ANALYTIC FUNCTIONS 17

Affine Transformation A function of the form f(z) = az + b, where a # 0, is called an
affine transformation. These are the factional linear transformations of the above
form with ¢ = 0. Special cases are translations and dialations.

Inversion The factional linear transformation f(z) = 1 is called an inversion.

Theorem 2.7.1. Given any three distinct points zg, z;, 2o in the extended complex plane,
and given any three distinct values wy, w;, w2 in the extended complex plane, there is
a unique fractional linear transformation w = w(z) such that w(zy) = wy, w(z) = wy,
and w(z;) = ws.

Example Find the fraction linear transformation mapping —1 to 0, 0 to 1, and i to 0.

Since w(i) = oo place z — i in the denominator. Since w(—1) = 0 place z + 1 in the
numerator. To obtain w(z) = 5(;_#2 Since w(z) — 1 as z — o, we obtain a = 1.
Therefore w(z) = (z + 1)/(z — ).

Theorem 2.7.2. Every fractional linear transformation is a composition of dilations, trans-
lations, and inversions.

Theorem 2.7.3. A fractional linear transformation maps circles in the extended complex
plane to circles.

Note This section involved a lot of sketching. Go back through the homework to see how
this works.
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Chapter 3 Line Integrals and Harmonic Func-
tions

3.1 Line Integrals and Green’s Theorem

Path A path in the plane from A to B is a continuous function ¢ — (t) on some
parameter interval a < £ < b such that v(a) = A and 4(b) = B.

Simple The path is simple if y(s) # ¥(t) when s # ¢.
Closed The path is closed if it starts and ends at the same point, that is y(a) = v(b).

Simple Closed Path A simple closed path is a closed path -y such that y(s) # ¥(¢)
fora<s<t<b

Reparametrization If v(t), a <t < b, is a path from A to B, and if ¢(s), a € s < 8,
is a strictly increasing continuous function satisfying ¢(a) = a and (8) = b, then the
composition ¥(p(s)) is also a path from A to B. The composition y o ¢ is a called
reparametrizatino of vy and preserves orientation.

Note, we usually regard v and any of it reparametrizations as being the same path,
though it is technically an equivalence class of paths.

Trace The trace of the path « is its image v([a, ]), which is a subset of the plane.

Smooth Path A smooth path is a path that can be represented in the form ~(t) =
(z(t),y(t)), a <t < b, where the functions z(¢} and y(t) are smooth, that is they have
as many derivatives as necessary for whatever is being asserted to be true.

Piecewise Smooth Path A piecewise smmooth path is a concatenationof smooth paths.
Curve A curve is a smooth or piecewise smooth path.

Line Integral Let v be a path in the plane from A to B, and let P(z,y) and Q(z,y) be
continuous complex-valued functions on y. Consider (z;, y;) successive points on the
pat and form the sum

Z P(z;,y;)(Tj41 — ;) + ZQ(m,-, i) (Tj41 — ;)

15
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If these sums have a limit as th distances between successive points on v tend to 0, we
define the limit to be the line integral of Pdz + Q) dy along ~ and we denote it by

b b
f Pdz +Qdy = f P(z(t),y(t))‘;—fduj Qa(t), () Lt

For a curve parameterized by ¢t — (z(t),y(t)).

Theorem 3.1.1 (Green’s Theorem). Let D be a bounded domain in the plane whose
boundary JD consists of a finite number of disjoint piecewise smooth closed curves.
Let P and @ be continuously differentiable functions on D v dD. Then

f Pda:+Qdy-JI( ay) dz dy

3.2 Independence of Path
Antiderivative F(t) is an antiderivative for f(¢) if its derivative is f, that is F' = f.

Theorem 3.2.1 (Fundamental Theorem of Calculus). Part I. If F(¢) is an antiderivative
for the continuous function f(t), then

Jf@&=Fm—F@

Part II. If f(#) is a continuous function on [a,b], then the indcfinite integral

FEt)uJ‘Lf(s)ds, ast<b

is an antiderivative for f(t). Further, each antiderivative for f(t) differs from F(t) by
a constant.

Differential If A{z,y) is a continuously differentiable complex-alued function, we define
the differential dh of i by

ch oh
dh = a—da: -a-—cly

Exact We say that a differential Pdz + Qdy is exact if Pdz + Qdy = dh for some
function h.

Theorem 3.2.2 (Part I}). If v is a piecewise smooth curve from A to B, and if h(z,y) is
continuously differentiable on +y, then

fdh=Mm—hM)
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Lemma 3.2.1. Let P and ) be continuous complex-valued functions on a domain D. Then
{ Pdz + Qdy is independent of path in D if and only if Pdz + Qdy is exact, that
is, there is a continuously differentiable function A{z,y) such that dh = Pdz + Q dy.
Moreoverm the function h is unique, up to adding a constant.

Closed Let P and @ be continuously differentiable complex-valued functions on a domain
D. We say that Pdz + @ dy is closed on D if %—5 = %.

By Green’s Theorem §,, Pdz + Qdy =0

Lemma 3.2.2. Exact differentials are closed.

Theorem 3.2.3 (Part II). Let P and @ be continuously differentiable complex-valued
functions on a domain D. Suppose

a. D is a star-shaped domain (as a disk or rectangle), and
b. the differential Pdz + Q dy is closed on D.

Then Pdz + Q) dy is exact on D.

Theorem 3.2.4. Let D be a domain, and let v5(t) and 7, {¢), a € ¢t € b, be two paths in D
from A to B. Suppose that 7o can be continuously deformed to -;, in the sense that
for 0 < s < 1 there are paths 7,(t), e <t < b, from A to B such that ,(¢) depends
continuously on sand t for 0 < s<1,a <t < b. Then

j Pda:+Qdy=f Pdz + Qdy
Yo

il

for any closed differential Pdz + Q dy on D.

Theorem 3.2.5. Let D be a domain, and let yy(t) and v(t), a < t < b, be two closed
paths in D. Suppose that g can be continuously deformed to 7, in the sense that
0 € s < 1 there are closed paths v,(t), a < ¢ < b, such that v,(t) depends continuously
onsandtfor0<s<1l,a<it<b Then

f Pdz + Qdy = J Pdz + Qdy
Y0 M

for any closed differential P dz + @ dy on D.
Summary

independent of path <> exact = closed

For a star-shaped domain:
independent of path < exact < closed

And that if Pdz + Qdy is a closed differential, then a deformation in the path from
A to B does not change the value of the integral of Pdz + Q dy along the path.
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3.3 Harmonic Conjugates

Lemma 3.3.1. If u(z,y) is harmoic, then the differential

is closed.

Theorem 3.3.1. Any harmonic function u(z, y) on a star-shaped domain D (as a disk or
rectangle) has a harmonic conjugate function v(z,y) on D.

3.4 The Mean Value Property

Average Value Let h(z) be a continuous real-valued function on a domain D. Let z € D,
and suppose D contains the disk {|z — z| < p}. We define the average value of (z)
on the circle {|z — z| = r} to be

2

A(r) = h(zo + 1'"1‘3"9)E D<r<p
0 27

Theorem 3.4.1. If u(z) is a harmonic function on a domain D, and if the disk {|z—2y| < p}
is contained in D, then

27 . do
u(zp) = f u(zg + re“’)g, O<r<p
0

In other words, the average value of a harmonic function of the boundary circle of any
disk contained in D is its value at the center of he disk.

Mean Value Property A continuous function h(z) on a domain D has he mean value
property if for each point z € D, h(z;) is the average of its values over any small
circle centered at z;. More formally, for any z5 € D, there is an € > 0 such that

: B 2n . do
1(z9) = h(zg + re )Q;’ D<r<e
0

In other words harmonic functions have the mean valuc property.

Mean Value Property Affine Functions A function f(t) on an interval / = (a,b) has
the mean value property if

f (s;rt) _f(s) ;r f(t)

The any affine function f(t) = At + B has the mean value property. Furhter, any
continuous function on I with the mean value property is affine.



CHAPTER 3. LINE INTEGRALS AND HARMONIC FUNCTIONS 23

3.5 The Maximum Principle

Theorem 3.5.1 (Strict Maximum Principle (Real Version)}. Let u(z) be a real-valued
harmonic function on a domain D such that u(z) < Af for all z € D. If u(z) = M for
some zg € D, then u(z) = M for all e D.

Theorem 3.5.2 (Strict Maximum Principle (Complex Version)). Let i be a bounded
complex-valued harmonic function on a domain D. If |h(z)] € M for all z € D,
and |h(zp)| = M for some z5 € D, then h(z) is constant on D.

Theorem 3.5.3 (Maximum Principle). Let h(z) be a complex-valued harmonic function
on a bounded domain D such that h(z) extends continuously to the boundary ¢D of
D. If |h(z)| € M for all z € 8D, then |h(z)| € M for all ze D.
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Chapter 4 Complex Integraion and Analyt-
icity

4.1 Complex Line Integrals

This section begins with a number of examples.

Theorem 4.1.1 (M L-estimate). Suppose 7 is a piecewise smooth curve. If A(z) is a
continuous function on «, then

f =)z < [ (=)l dz]
oy
Further, if 4 has length L, and |h(z)| < M on v, then
J h(z)dz| < ML

Sharp Estimate If equality holds on the estimate, then the estimate is a sharp estimate

4.2 Fundamental Theorem of Calculus for Analytic Func-

tions

(Complex) Primitive Let f(z) be a continuous function on a domain D. A function

F(z) on D is a (complex) primitive for f(z) if F(z) is analytic and F'(z) = f(z)
Theorem 4.2.1 (Part I). If f(z) is continuous on a domain D, and if F(z) is a primitive
for f(z) then

B
L f(z)dz = F(B) — F(4)

where the integral can be taken over any path in D from A to B.

Theorem 4.2.2 (Part II). Let D be a star-shaped domain, and let f(z) be analytic on D

THen f(z) has a primitive on D, and the primitive is unique up to adding a constant
A primitive for f(z) is given explicitly by

=f fQ)d¢, zeD

where zp is any fixed point of D, and where the integral can be taken along any path
in D from z to z.

25
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4.3 Cauchy’s Theorem

Theorem 4.3.1. A continuously differentiable function f(z) on D is analytic if and only
if the differential f(z)dz is closed.

Theorem 4.3.2 (Cauchy’s Theorem). Let D be a bounded domain with piecewise smooth
boundar. If f(z) is an analytic function on D that extends smoothly to D, then

f(z)dz =0
oD

4.4 The Cauchy Integral Formula

Theorem 4.4.1 (Cauchy Integral Formula). Let D be a bounded domain with piecewise
smooth boundary. If f(z) is analytic on D, and f(z) extends smoothly to the boundary
of D, then

1 W)

. ), zeD
21t Jap w— 2

f(z) =
Theorem 4.4.2. Let D be a bounded domain with piecewise smooth boundary. If f(z) is

)
an analytic function on D that extends smoothly to the boundary of D, then f(z) has
complex derivatives of all orders on [, which are given by:

f(m)(z)=iif —'ﬁiy-)-—dw zeD, m=0
a

o7 Jop (w — 2y

Theorem 4.4.3. If f(z) is analytic on a domain D, then f(z) is infinitely differentiable,
and the successive complex derivatives f'(z), f*(z), ... are all analytic on D.

4.5 Liouville’s Theorem

Theorem 4.5.1 (Cauchy Estimates). Suppose f(z) is analytic for |z — z| < p. If | f(2)| <
M for |z — z| = p, then

1
|F™ (z0)| < %M m=0

Theorem 4.5.2 (Liouville’s Theorem). Let f(z) be an analytic function on the complex
plane. If f(z) is bounded, then f(z) is constant.

Entire Function An entire function is a function that is analytic on the entire complex
plane.

This transform’s Liouville’s Theorem: A bounded entire function is constant.
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4.6 Morera’s Theorem

Theorem 4.6.1 (Morera’s Theorem). Let f(z) be a continuous function on a domain D.
If §, f(z)dz = O for every closed rectangle R contained in D with sides parallel to
the coordinate axes, then f(z) is analytic on D.

Theorem 4.6.2. Suppose that h(t, z) is a continuous complex-valued function, defined for
a<t<band ze D. If for each fixed ¢, h(¢, z) is an analytic function of z € D, then

b
H(z)=J hit,z)dt zeD

is analytic on D.
Theorem 4.6.3. Suppose that f(z) is a continuous function on a domain D that js analytic

on D\R, that is, on the part of D not lying on the real axis. Then f(z) is analytic on
D.
4.7 Goursat’s Theorem

Theorem 4.7.1 (Goursat’s Theorem). If f(z) is a complex-valued function on a domain

D such that
o) = tim LEL =)

Z=2 Z = 2p
exists at each point z9 of D, then f(z) is analytic on D.

4.8 Complex Notation and Pompeiu’s Formula

Complex form of the Cauchy-Riemann Equations For f = v + iv:

of (1[ou_v], ifou ov
9z 2oz ody| 2|dx oy
The Cauchy-Riemann equations yield that
of
5 = 0.

This is referred to as the complex form of the Cauchy-Riemann equations.

Theorem 4.8.1 (Analytic %g = 0). Let f(z) be a continuously differentiabe function on a
domain D. Then f(z) is analytic if and only if f(z) satisfies the complex form of the
Cauchy-Riemann equation:

af
5= = 0.
If f(2) is analytic then the derivative of f(z) is given by
of

fz) =5
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Theorem 4.8.2. Let f(z) be a continuously differentiable function on a domain D. Sup-
pose that the gradient of f(z) does not vanish at any point of D, and that f(z) is
conformal. Then f(z) is analytic on D, and f'(z) # 0 on D.

Theorem 4.8.3. If D is a bounded domain in the complex plane with piecewise smooth
boundary, and if g(z) is a smooth function on D v dD, then

([
LD g{z)dz = 2i -U s dz dy
D

Theorem 4.8.4 (Pompeiu’s Formula). SUppose D is a bounded domain with piecewise
smooth boundary. If g(z)} is a smooth complex-valued function on D u @D, then

1
glw) = i aDZ— J]c?z’— Y, weD

This equation is also known as the Cauchy-Green formula.




Chapter 5 Power Series

5.1 Infinite Series

Converge A series Zf=n a;. of complex nubers is said to converge to S if the sequence
of partial sums {S;}, defined by S = ag + - - - + ay, converges to S.

Theorem 5.1.1 (Comparison Test). If 0 < a, < rp and if 7, converges, then ), ay
converges, and >, ay < X, T%.

Theorem 5.1.2. If } a; converges, then ax — 0 as k — oo,

Theorem 5.1.3. If >, a; converges absolutely, then ), a, converges, and

o]

Sa

k=0

w

< D) la
k=0

Cauchy Criterion for Series The series Y, ay converges if and only if Zf::‘n ay tends to
0 as m,n — 0.

5.2 Sequences and Series of Functions

Sequential Pointwise Convergence Let {f;} be a sequence of complex-valued functions
defined on some set E. We say that the sequence {f;} converges pointwise on £ if
for each point r € E the sequence of complex numbers {f;(z)} converges. The limit
f(z) of {f;(z)} is then a complex-valued function on E.

Sequential Uniform Convergence We say that the sequence {f;} of functions on £
converges uniformly to f on £ if |f;(z} — f(z)| < ¢; forall z € E, whereg; — 0 as
j — oo,

We can regard &; as a worst-case estimator for the difference f;(z) ~ f(z), and usually
we take €; to e the supremum of |f;(z) — f(z})| over z € E.

Theorem 5.2.1. Let {f;} be a sequence of complex-valued functions defined on a subset £
of the complex plane. If each f; is continuous on E, and of {f;} converges uniformly
to f on E, then f is continuous on E.

29
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Theorem 5.2.2. Let v be a piecewise smooth curve in the complex plane. If {f;} is a
sequence of continuous complex-valued functionb on v, and if {f;} converges uniformly
to f on +, then S fi(z) dz converges to S f(2)

Convergence of Series of Functions Let ) g;(z) be a series of complex valued func-
tions defined on a set E. The partial sums of the serics are the functions

Sn(z) = Zgg = go(z) + 1() + -+ + ga(2).

We say that the series converges pointwise on E if the sequence of partial sums
converges pointwise on E, and the series converges uniformly on E if the sequence
of partial sums converges uniformly on E.

Theorem 5.2.3 (Weierstrass M-Test). Suppose My = 0 and ) M, converges. If gi(z)
are complex-valued functions on a set E such that |gi(z)| < M, for all z € E, then
> gr(x) converges uniformly on F.

Theorem 5.2.4. If { fi.(z)} is a sequence of analytic functions on a domain D that converges
uniformly to f(z) on D, then f(z) is analytic on D.

Theorem 5.2.5. Suppose that fi(z) is analytic for |z — 25| < R, and suppose that the
sequence {fi(z)} converges uniformly to f(z) for |z — z| < R. Then for each r < R

and for each m = 1, the sequence of mth derivatives { f,sm)(z)} converges uniformly to
fimi()for |z —z| <7

Normal Convergence We say that a sequence {fr(z)} of analytic functions on a domain
D converges normally to the analytic function f(z) on D if it converges uniformly
to f(z) on each closed disk ocntained in D.

This occurs if and only if {fi(z)} converges to f(z) uniformly on each bounded subset
E of D at a strictly positive distance from the boundary of D.

Theorem 5.2.6. Suppose that {f.(2)} is a sequence of analytic functions on a domain D
that converges normally on D to the analytic function f(z). Then for cach m > 1,
the sequence of mth derivatives { f(" '(2)} converges normally to f™(z) on D.

5.3 Power Series

Power Series A power series (centered at zp) is a series of the form Y. ax(z — z)*.

By making a change of variable w = z — 2y we can always reduce to the case of the
power serics centered at 2z = 0.

Theorem 5.3.1. Let Y a,z* be a power series. Then there is R, 0 € R < +00, such taht
3 axz* converges absolutely if 2| < R, and Y a.z* does not converge if |2| > R. For
each fixed r satisfying r < R, the series Y ax2z* converges uniformly for |2| < 7.
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Radius of Convergence We call R the radius of convergence of the series Y, a;z*.

Theorem 5.3.2. Suppose Y, a;z" is a power series with radius of convergence R > 0. Then
the function

o
@)=Y &zt |zl <R
k=)

is analytic. The derivatives of f(z) are obtained by differentiating the series term by
term,

e a) o
f(2) Z kagz®!  f'(z) = Z k(k — 1)apz"2, |z] < R
k=1 k=2
amd similarly for the higher-order derivatives. The coefficients of the series are given
by
1
ax = — f*)(0), k=0
k!
Theorem 5.3.3 (Ratio Test). If |av/ak+1| has a limit as & — co, either finite of 400, then
the limit is the radius of convergence R of ¥, a;2*,

. Qg |
R = lim |[—|
k= | @y |

Theorem 5.3.4 (Root Test). I {/|ax] has a limit as k& — oo, cither finite of -+co, then the
radius of converence of Y a;z* is given by

R= 1
lim &/]ag|

More generally, we can use the Cauchy-Hadamard formula

po_ 1
lim sup {/]ay| ‘

5.4 Power Series Expansion of an Analytic Function

Theorem 5.4.1. Suppose that f(z) is analytic for |z — 25| < p. Then f(z) is represented
by the power series

o0
y F®M(z
f(2) ='§ak(z—zo)’°, |z — 20| < p ay = k(! n)’ k=0

and where the power series has radius of convergence R 2 p. For any fixed f, 0 <r <
p, we have

1 f(©)

;= — —— : >
= o ff =)ot 46 k=0
I¢=z0|=r

Further, if |f(z)] € M for |z — 2| = r, then

M
Iakl < r_“’ k=

A
!
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Corollary 5.4.2. Suppose that f(z) and g(z) are analytic for |z — z| < 7. If f®¥)(z) =
g"®)(z) for k = 0, then f(z) = g(z) for |z — z| < r.

Corollary 5.4.3. Suppose that f(z) is analytic at zp, with power series expansion f(z) =
Y ar{z — z)* centered at zp. Then the radius of convergence of the power series is the
largest number R such that f(z) extends to be analytic on the disk {|z — zy| < R}.

5.5 Power Series Expansion at Infinity

Analytic at Infinity We say that a function f(z) is analytic at z = oo if the function
g(w) = f(1/w) is analytic at w = 0.

We can make a change of variable w = 1/z and thus study f(z) at z = oo by studying
the behavior of g(w) at w = 0.

If f(z) is analytic at oo, then g(w) = f(1/w) has a power series expansion centered at
w =0, . -
o)=Y bt ul<p — fl&)=Y, =

k=0

k=0

|2| >

=

5.6 Manipulation of Power Series

Manipulation of Power Series Consider the following functions:

f(z)= Z axz® g(z) = Z bz*
k=0 k=0

€K
a. f(z)+9(z) = D (a + by)z
k=0
o
b. ¢f(z) = Z cayz*
k=0
o o]
c. f(2)g(z) = Z CrZi ¢k = agbp + ap_1by + -+ - + aghy
k=0

1 1 w o0 2 o 4
d. = =1- boz* | + bzt — bz®| +...
g(z) 1+Z:°=1bkzk (Lgl LZ) (LZ:; kZ) (; k )

5.7 The Zeros of an Analytic Function

Zero of Order N Let f(z) be analytic at zp and suppose that f(z9) = 0 but f(z) is not
identically zero. We say that f(z) has a zero of order N at z if f(20) = f'(20) =
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-+ = fWN(z) = 0, while fM(z9) # 0.

This occurs if and only if the power series exampsion of f(2) has the form:
f(z) =an(z - ZO)N +ays1(z — ZO)N+1 +o=(z- zo)Nh(z)

where h(z) is analytic at zp and h(z) = ay # 0

A zero of order one is called a simple zero, and a zero of order two is called a double
ZEro.

Zero of Order Infinity If f(z) is analytic at o and f(o0) = 0, we define the order of the
zero of f(z) at z = co in the usual way, by making the change of variable w = 1/z. We
say that f(z) has a zero at z = w0 of order N if g(w) = f(1/w) has a zero at w = 0
of order N.

Thus g(w) = byw" + by w™¥*! + ... and subsequently

by | by
f(z)=z—N+;ﬁ§}+.... lz] > R

Isolated Point We say that a point 25 € E is an isolated point of the set E' if there is
a p > 0 such that |z — zo| = p for all points z € E other than z,.

That is, zp is an isolated point of E if z; is a positive distance from E\{z}.

Theorem 5.7.1. If D is a domain, and f(z) is an analytic function on D that is not
identically zero, then the zeros of f(z) are isolated.

Theorem 5.7.2 (Unigueness Principle). If f(z) and g(z) are analytic on a domain D, and
if f(z) = g(z) for z belonging to a set that has a nonisolated point, then f(z) = g(z)
for all ze D.

Theorem 5.7.3. Let D be a domain, and let E be a subset of D that has a nonisolated
point. Let F(z,w) be a function defined for z,w € D such that F(z,w) is analytic in
z for each fixed w € D and analytic in w for each fixed z € D. If F(z,w) = 0 whenever
z and w both belong to E, then F(z,w) =0 for all z,we D.

Theorem 5.7.4 (Open Mapping Theorem for Analytic Functions). I f(z) is a nonconstant
analytic function on a domain D, then the image under f(z) of any open set is open.

5.8 Analytic Continuation

Lemma 5.8.1. Suppose D is a disk, f(z) is analytic on D, and R(z) is the radius of
convergence of the power series expansion of f(z) about a point z; € D. Then

|R(21) = R(z2)| < |21 — 22}, 21,20€ D
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Analytically Continuable Along We start with a power series Y, a,(z — 2zp)" that rep-
resents a function f(z) near zp. We are interested in the behavior of f(z) only near
zg, and we say that the power series represents the “germ” of f(z) at z. Let ~y(t),
a <t < b, be a path starting at zy = y(a).

We say that f(z) is analytically continuable along 7 if for each ¢ there is a conver-
gent power series

fue) = Y aa®)z — 1O Iz =20 <)

n=0)

such that f,(z) is the power series representing f(z) at zp, and such that when s is
near £, then f,(z) = fi(z) for z in the intersection of the disks of convergence.

By the uniqueness principle, the series f;(z) determines uniquely each of the series
fs(z) for s near ¢.

Analytic Continuation We refer to f,(2) as the analytic continuation of f(z) along
7, wehere we regard fi,(z) either as a power series or as an analytic function defined
near y(b).

Theorem 5.8.1. Suppose f(z) can be continued analytically along the path y(t), a <t < b.
Then the analytic continuation is unique. Further, for each n = 0 the coefficient a,(1)
of the series depends continuously on ¢, and the radius of convergence of the series
depends continucusly on ¢.

Lemma 5.8.2. Supposc f{z) is analytic at zy and suppose that ¥(t), @ <t < b, is a path
from zp = y(a) to z; = (b} along which f(z) has an analytic continuation f;(z). The
radius of convergence R(t) of the power series varies continuously with ¢. Hence there
is § > 0 such that R(t) = 6 for all ¢, a <t < b. If o(t) is another path from z; to z;
such that |o(t) — v(¢)| < 4, then there is an analytic continuation g;(z) of f;(z) along
o, and the terminal series g,(z) centered at o(b) = 2, coincides with f.

(See picture on Page 161 of text)

Theorem 5.8.2 (Monodromy Theorem). Let f(z) be analyticc at zg. Let vo(t) and v (f),
a <t < b, be two paths from 2z to 2; along which f(z) can be continued analytically.
Suppose 7o(t) can be deforemed continuously to y;(t) by paths v,(t), 0 < 5 < 1, from
zp to z; such that f(z) can be continued analytically along each path 7,. Then the
analytic continuations of f(z) along -, and along v, coincide at z;.



Chapter 6 Laurent Series and Isolated Sin-
gularities

6.1 The Laurent Decomposition

Theorem 6.1.1 (Laurent Decomposition). Suppose 0 < p < ¢ < +m, and suppose f(z)
is analytic for p < |z — zp| < 0. Then f{z) can be decomposed as a sum

f(z} = fo(2) + £i(2)

where fo(z) is analytic for |z — zy] < o, and fi(z) is analytic for [z — 25| > p and at
oo. If we normalize the decomposition so that fi{w) = 0, then the decomposition is
unique.

Laurent Series Expansion Suppose that f(z) = fo(z) + fi(z) is the Laurent decom-
positino for a function analytic for p < |z — 29| < 0. We can express fp(z) as a power
series in = — zq:

ax(z — z)*, |z— 2| < &

18

fo(2) =

k=0

where the series converges absolutely, and for any s < ¢ it converges uniformly for
|z — zg| < s. Further, we can also express fi(z) as a series of negative powers of z — zp,
with zero constant term, since f;{z) tends to 0 at oo,

-1
fi(z) = Z ar(z — z0)F, |z ~ zo| > Tho

k=—wm

This series converges absolutely, and for any r > p it converges uniformly for {z — z| =
r. If we add the two series, we obtain a two-tailed expansion for f(z),

@

fla)= ) alz—z)* p<lz-z|<o

k==w

that converges absolutely, and that converges uniformly for r < |z — 25| < 5. The last
series is called the Laurent series expansion of f(z) with respect to the annulus
p<|z— 2z <o.

35
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Theorem 6.1.2 (Laurent Series Expansion). Suppose 0 € p < ¢ < o, and suppose
f(2) is analytic for p < |z — 2| < ¢. Then f(z) has a Laurent expansion that
converges absolutely at each point of the annulus, and that converges uniformly on
each subannulus r € |z — 2| < 8, where p < r < s < g. The coeflicients are uniquely
determined by f(z), and they are given by

1 f(z)

n=— ———dz, -0 <N <D

n = om §; (z — zp)*t! "
|z—zul=r

for any fixed r, p <1 < 0.

6.2 Isolated Singularities of an Analytic Function

Isolated Singularity A point z is an isolated singularity of f(z) if f(2) is analytic in
some punctured disk {0 < |z — 2| < 7} centered at z.

Theorem 6.2.1. Suppose f(z) has an isolated singularity at zy. Then f(z) has a Laurent
serics cxpansion

f(z) = Z a(z—z)*. O<|z—z| <7

k=-—0

Removable Singularity The isolated singularity of f(z) at z, is defined to be a remov-
able singularity if a; = 0 for all £ < 0. IN this casc the Laurent scrics becomes a
power series

[# ]
f(z) = Zﬂwc(z:—zo)kT O<|z—z| <
k=0

If we define f(z9) = ay, the function f{z) becomes analytic on the entire disk {|z—zo| <

T}

Theorem 6.2.2 (Riemann’s Theorem on Removable Singularities). Let zy be an isolated
singularity of f(z). If f(z) is bounded near zj, then f(z) has a removable singularity
at 20

Pole The isolated singularity of f(z) at zy is defined to be a pole if there is N > 0 such
that a_n # 0 but ¢, = 0 for all k < —N.

The integer N is the order of the pole.

In this case the Laurent series becomes
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The sum of the negative powers

P(z) = 2 lax(z — z0)* = fi(2)

k==N

is called the principal part of f(z) at the pole zp. Then f(z) — P(z) is analytic at zp.

A pole of order one is called a simple pole, abd a pole of order two is called a double
pole.

Theorem 6.2.3. Let z be an isolated singularity of f(z). Then z, is a pole of f(z) of order
N if and only if f(z) = g(z)/(z — z)", where g(z) is analytic at zy and g{z;) # 0.

Theorem 6.2.4. Let zp be an isolated singularity of f(z). Then 2 is a pole of f(z) of
order N if and only if 1/f(z)is analytic at zp and has a zero of order N.

Meromorphic We say that a function f(z) is meromorphic on a domain D if f(z) is
analytic on D except possibly at isolated singularities, each of which is a pole.

Theorem 6.2.5. Let z be an isolated singularity of f(z). Then z, is a pole if and only if
[f(z)] — w0 as z — z.

Essential Singularity The isolated singularity of f(z) at zy is defined to be an essentail
singularity if a; # 0 for infinitely many & < 0.

An isolated singularity that is ncither removable nor a pole is declared to be cssential.

Theorem 6.2.6 (Casorati-Weierstrass Theorem). Suppose zp is an essential isolated sin-
gularity of f(z). Then for every complex number wy, there is a sequence 2, — zp such
that f(z,) — wp.

6.3 Isolated Singularity at Infinity

Isolated Singularity at Infinity We say that f(z) has an isolated singularity at o«
if f(z) is analytic outside some bounded set, that is, if there is R > 0 such that f(z)
is analytic for |z| > R. Thus f(z) has an isolated singularity at oo if and only if
g{w) = f(1/w) has an isolated singularity at w = 0.

Removable Singularity Suppose f(z) has a Laurent series expansion
v}
f@y= 3 b2*  |z|>R
k=—00

The singularity of f(z) at o is removable if b, = — for all £ > 0, in which case f(z)
is analytic at co.
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Essential Singularity Suppose f(z) has a Laurent series expansion

flz)= D) b2* |z >R

k==

The singularity of f(z) at co is essential if b, # 0 for infinitely many k > 0.

Pole Suppose f(z) has a Laurent series expansion

flz)= D b2*  Jz>R
k=—a0

For fixed N = 1, f(z) has a pole of order N at oo if by # 0 while by =0 for &k > N.

Principal Part of f(z) at Infinity Suppose f(z) has a pole of order N at co. The Lau-
rent series expansion of f(z) becomes

b
f(Z)=bNZN+bN_12N_]+"'+b()+—71+..., |Z|}R

where by 3 0. We define the principal part of f(z) at o to be the polynomial
P(z) = by2" + by_1z¥ "+ -+ bz + by

Then f(z) — P(z) is analytic at «o and vanishes there.

6.4 Partial Fractions Decomposition

Meromorphic A function f(z) is meromorphic on a ddomain D in the extended com-
plex plane C* if f(z) is analytic on D except possibly at isolated singularities, each of
which is a pole.

Theorem 6.4.1. A meromorphic function on the extended complex plane C* is rational.

Partial Fraction Decomposition Breaking f(z) = FPyp(z) + 2;.; Pj(2) is called the
partial fractions decomposition of the rational function f(z).

Theorem 6.4.2. Every rational function has a partial fractions decomposition, expressing
it as the sum of a polynomial in z and its principal parts at each of its poles in the
finite complex plane.



Chapter 7 The Residue Calculus

7.1 The Residue Theorem

Residue Suppose z; is an isolated singularity of f(z) and that f(z) has Laurent series

w

f@)= Y an(z—z)" O0<l|z—z| <p

n=—a

The residue of f(z) at z is the coefficient a_; of 1/(z — z), that is

Res[f(2), ] = a1 = 5 515 f(2)dz

|z=zo|=r
where r is any fixed radius satisfying 0 < r < p.

Theorem 7.1.1 (Residue Theorem). Let D be a bounded domain in the complex plane
with piecewise smooth boundary. Suppose that f(z) is analytic on D u 8D, except
for a finite number of isolated singularities 2y,..., 2, in D. Then

o f(z)dz = QTriZ Res[f(2), 2]

i=1
Rule 1 If f(z) has a simple pole at z, then
Res [f(2), ] = lim (z ~ 2)(2)

Rule 2 If f(z) has a double pole at z, then

Res[f(z), 20} = lim 4 [(z — 20)2f(2)]

z—2y dz

Rule 3 If f(z) and g(z) are analytic at zp and if g(2) has a simple zero at zp, then

e -

Rule 4 If g(z) is analytic and has a simple zero at zg, then
1 1
Res [—, z ] =
9(z)' "]~ ¢'(=0)
39
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7.2 Integrals Featuring Rational Functions

Main Method

e Locate poles or singularities

e Define an appropriate contour around those poles such that the poles are within
the countour (normally a disk of radius R)

e Calculate residucs

e Use Residue Theorem to calculate the integral of the whole contour

e Take the limit of the real component, v,, to get |

e Use the ML estimate to show that the line integral of top arc, 7.

o Usefy,=§ +§,

e Take limits carefully (This is not done well in the subsequent example.

Example: 7.2.4 Using residue theory, show that

Jw de _ w
T+l V2
Proof. Letl=1{" .

Consider f(z) = - where a > 0. Note that f(z) has simple poles at z = e gimifd

e5™iM T4 Let Dp be the upper half disk of radius R and let D = limpg_. Dp.
Calculuating the residues using Rule 3:

) 1 1 V2
. wifd —_ — =
Res ([, f](2), e™"] 423 e 4P 4(—1 4 1)
) 1 1 V2
3rifd — = =
Res [[1 f] (Z), € ] 423 edmifa 48"'“./‘l 4(1 + 1:)

Thus for all R, by the Residue Theorem,

LDH z4dj1 = 2m (4(—\1/§+ 5 4(£ i)) = 2m (%) = %

Examining 6D we see that we can break it into two pieces, 7, the piece along the z-axis
and 2 be the arc. Let v, g, 72, be the corresponding pieces of Dz Thus, for all R,

0Dg = MRY Y2,R-

Examining the integral over v;:

dz . dz . R dg ®  dz
1 = lim S = lim 3 = 1 = ]
w2+l Rowf 241 Row] pat4l ot +1
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Examining the integral over 7;, we see using the ML- estimate:

dz ) dz ) 1 . W
[l [ e] < b (e =) < o -0
Since 6D = 7 U va:
J' dz ___J‘ dz +J’ dz —T+0=1
pzt+1 ), #+1 j, 2 +1
Therefore [ = 7”5 O

7.3 Integrals of Trigonometric Functions

Main Method

e Use the unit circle as a contour

¢ Switch everything to 2:
On the unit circle |z} = 1 and z = €%.

22-1 2241
g cosé =
12 2z

sinf =

Further dz = ie¥ df = iz df and the integral is now over |z| = 1.
e Locate poles or singularities
o (Calculate residues
o Use Residue Theorem to calculate the integral of the whole contour

¢ Since we wanted the integral d# around the circle

Example: 7.3.2 Show using residue theory that

J% dd 2m o b>0
= a
o a+bsind a2 _—p

2w a4
0 a+bsing”

Proof. For a > b > 0, consider Since for all |z] =1 z = &:

. it — =0 1 ,2_
simnv = . = o .
24 21 21z

Notice that dz = ie*® df = iz df substituting these into the integral we see that:

J’m’ dé B f dz _ J dz
o a+bsind s1=112 (a + b32L) =1 22° + aiz — §

2iz
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Examining f(z) = 1,z2—+:;;-—;,-, we see that f has simple poles in |z|] < 1 at z =

=io+/P=g? =" Calculating the residues using Rule 3 we see that:

1 i 1
R 0 — ! . G Ty E
es [f(Z), ] bz + ai |z-—- -m+3,£bb‘—¢2 —ia + m +in
1 1
T AT
Therefore, using residue theory we see that:
J‘ > dd J’ dz c 1 2T
_— = T T - M = o
o a+bsing J, . 222+ aiz -1 iva? — b? a? — b?

7.4 Integrands with Branch Points

Main Method

e Locate poles or singularities

e Define an appropriate contour around those poles such that the poles are within
the countour (normally a keyhole contour around pole)

e (Calculate residucs

o Use Residue Theorem to calculate the integral of the whole contour
¢ Take the limit of the top real component, -, to get [

e Usc the ML estimate to show that the line integral of large arc, ;.

e Take the limit of the bottom real component, v;, to get ¢“] where w is some
multiple of i arg z.

e Use the ML estimate (or fractional residue in next section) to show that the line
integral of small arc, ;.

o Use SﬂD - S'Yi 5 S‘ri + S‘ra + S'M
e Take limits carefully (This is not done well in the subsequent example.

Example: 7.4.1 By integrating around the keyhole contour, show that

< —a
J Y dz= —,TF—, 0<a<l.
o 1+z sin (7a)
Proof. LetI = 0 1+
Consider . ) .
— z —ﬂe-'ﬂl‘lll' z
flz) = =

1+:z 1+2
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Note that f(z) has a simple pole at z = ~1 and a pole of order a at z = 0. Let Dy
keyhole contour of radius R (where R is the radius of the outer arc and ¢ is the radius
of the inner arc as is standard) and let D = limp_.o Dg. Calculuating the residues
using Rule 1:

Res [[, f] (Z), —1] = zl_i.n_ll |z|—ae—m‘a.rgz — ]"Gg=T _ gmaim

Thus for all R, by the Residue Theorem,

z—a
f dz = 2wie™™"
a0gr 142

Examining ¢D we sce that we can break it into four picces, 7, is the limit as € — 0
of the piece along the positive z-axis above the z-axis, 7, is the large outer arc, v; is
the limit as € — 0 of the piece along the positive z-axis below the z-axis, and ~, is the
small inner arc of radius . Let vy g, 2.8, V3,7, and 74, be the corresponding pieces of
0Dg. Thus, for all R, 0Dp =N r Y Yo Y V3R Y Vae-

Examining the integral over 7;:

—a —-a R, —-a o0 —-a
f 2 dz = lim il dz = lim z d:c=J. 11; dr =1
1

,1+z R~ |, 142 Rmw fy 1+x o 1tz

Examining the integral over 7,, we see using the ML-estimate:

2= ) P
J dz lim J dz
721+z R ), 1+2

Examining the integral over v;:

1+ R

Slim(R -27!‘R)-<..lim2—1r=0
R—0 Ra

»—0 ] =z —ae—m’ arg z
[(Eam g [ e,
] 1 +2z e fa.n +z
) 0 _,L.—ae—2m'a
= lim —_dx

Rmwofp l+=x

= g-2rin _ Jw " dr
0 1+z

= _e—QmGI

Examining the integral over «,, we see using the ML-estimate:

z—a
J dz
Yi.e 1 +z

! -1
lim
=0 M,z 1 + z

N . 2mele
dz| < lim <
e=0] 4+ ¢ ' e—0 14 ¢
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Since dD =y Uy VT3 UYL

z—a z—a z-—a :—ﬂ z—a
f dz=J dz+j dz+f dz+f —dz
pl+z b 1+ 2 pl+2 itz e Ao e

=[+0=—e"2™] 0

_ (1 _ e—?m’a) I
= 2ie e
_ o omi
TherEfore I= cﬂir;_’:;—ﬂ‘lﬂ- - sin’(r'rm)' .

7.5 Fractional Residues

Theorem 7.5.1 (Fractional Residue Theorem). If 2 is a simple pole of f(z), and C, is an
arc of the circle {|z — zy| = £} of angle «, then

lim | f(z)dz = aiRes[f(2), 20]
g—=0 Gi

Main Method

e Replace things using

inz

e'% = cosaz + isinaz 2% = eHloglzl+inrgz)

e Locate poles or singularities after switches were made

¢ Define an appropriate contour around those poles such that the poles are within
the countour (normally a keyhole contour around pole)

e Calculate residues
e Use Residue Theorem to calculate the integral of the whole contour

e Take integrals of picees carcfully using residues, ML-Theorem, Fractional residuc,
and tricks (see hw), combine them creastively

e May need to equate real and imaginary parts.

Example: 7.5.2 Show using residue theory that

®  sin(ax)
————dz = —e™" .
f_w 2@+ 1) z=m(l—-e?), a>0

Hint. Replace sin (az) by e**, and integrate around the boundary of a half-disk in-
dented at z = Q.



CHAPTER 7. THE RESIDUE CALCULUS 45

Proof. Let I=§"_ % dz.

Consider f(z) = 2(—2;;—1) = % Note that f(z) has singularities at z = 0, 1.
Let Dg upper half disk of radius R indented at 0 (where R is the radius of the outer
arc and € is the radius of the inner arc as is standard) and let D = limg_, Dg.

Calculuating the pertinent residues using Rule 1:

. eiaz ) eiaz 1
Res[[?f](z)?0]=l%2m=l%zz—-’-l=T=1
eiaz iaz e—d 1

Res [[Jf] (Z),'L] = lzli[}(z _?‘)m L llmﬁ = _—2 = _ﬁ
Thus for all R, by the Residue Theorem,

f = 271 (— la) = —1:1
obgr 2e [+

Examining 0D we see that we can break it into four pieces, 7, is the limit as € — 0 of
the piece along the positive z-axis, - is the large outer arc, 3 is the limit as € — 0 of
the piece along the negative z-axis, and ~, is the limit as £ — 0 of the small inner arc
of radius ¢ around 0. Let v, g, ¥2,r, V3.8, and 4. be the corresponding pieces of dDp.
Thus, for all R, 0Dg = "Wr Y Yo,r Y T3,R Y V4

Examining the integral over v, and vs:
eit:nz eiaz P eiaz
———dz+ | ———=dz=1li —dz + ——d=z
J;; z(z22 + 1) ‘ J:m 2(22 + 1) °7 Ao (-[n,n 2(22 + 1) z J:m.n 2(22 + 1) )

R eia:t: - eiaa:
= I —d ——d
Res, 0 (J. z(z? + 1) $+f-a z(2? + 1) m)
R eia::
= i e —d
}%1_120 _px(z?+1) *

© e
- J_m z(z? + 1) de
J‘” cos (ax) + isin (az)
- z(r? + 1)
_ J’m cos (az)

—o Z(z? + 1)

Examining the integral over -, we see using the ML- estimate:

J eiaz d " J eiaz d
——dz im ——d:
v 2(22+1) R—w ), - 2(2% + 1)

dz

dz + 11

. 1
< i (g +R)




46 CHAPTER 7. THE RESIDUE CALCULUS

Examining the integral over ~y,, we see using the fractional residue theorem:

eles elas
I R =1 —_ = {() — 3 P L taes
L ey i) st - @ - miRes( £ ()0 = -

Since D =y v Uy U
eiaz eiaz eiaz
—_—dz=| ———dz+ | ———=d
_[D z2(z2 + 1) ‘ Ll z(22 + 1) # J:m z(2+ 1) ¢

glaz e:'u.‘:

+ | ———=dz+ | ———=d=
-[m z(z22 + 1) z J:” z{z2+ 1)
Jm cos (ax)

o T(x? + 1)

— 7T

dx +1f+0— w1

E.Cl

Equating real and imaginary parts we see that:
—me ‘=l —7

Therefore [ = 7 — me™®. O

7.6 Principal Values

Absolutely Convergent An integral S:: f(z) dz absolutely convergent if the (proper
or imporoper) integral S: | f(z)| dz is finite.

Absolutely Divergent THe integral is absolutely divergent il _\':: |f{z)|dx = +o0.

Principal Value Supposc that f(z) is continuous for ¢ € « < 2o and for zo < z < b, We
define the principal value of the integral S:: f(z)dz to be

PV f f() de = lim ( f . f b +5) f(z) dz

This value coincides with the usual value of the integral if f(z) is absolutely integrable.

Main Method
e Use definition of PV

e Same tricks as before

Example: 7.6.3 By integrating around the boundary of an indented half-disk in the upper
half-plane, show that

PVfw ] d:n——w—a' —0w<a<w
o (@Z+ D)z —a) a2+l
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= =]

Proof. Let I ="

1
o '{m dz and so

i .Iel—I-ItlJ (J-_a: (22 + 1;(::: —a) dz + J::E (z2 + 1;(:1: - a) dz:) '

Consider f(z) = = +1§(Z_u). Note that f(z) has singularities at z = +i,a. Let Dp
upper half disk of radius R indented at a (where R is the radius of the outer arc and
£ is the radius of the inner arc as is standard) and let D = limg_., Dp. Calculuating
the pertinent residues using Rule 1:

. . 1
Res[f(2),7] = lim z+i)(z—a) 2i(i—a)

. 1 1
Res[f(2),a] = i Z+1 a+1

Since there is one singularities in Dg:

1-¢* , . o1 T
LDR e, clz-2mRes[f(z),z]—2m2i(i_a)—i_a

Examining dD we see that we can break it into four pieces, 7 is the limit as ¢ — 0 of
the piece along the positive z-axis, 7, is the large outer arc, -y; is the limit as € — 0 of
the piece along the negative z-axis, and -y, is the limit as € — 0 of the small inner arc
of radius € around a. Let v g, 72,r, 73,r, and 74 be the corresponding pieces of 0Dp.
Thus, for all R, 0Dg = y1.r VY2, YV Ta,r Y Vae-

Examining the integral over «; and -;:

1 1
. d d
J..ﬂ (22 +1)(z — a) 2+J:m (22+1)(z—a) z

- }%l_lbrgo (LI.R (22 + 1;(2 - a-) det Ls,n (22 + 1;(2 - a') dz)
R a—e
- R—-loiolg--n (_[,+E (=2 + 1;(9: - a) dm) * R-lgor,ré-o (J:R (z? + li(m —a) da:)

= lim (L; @+ 1;(::: —a) =t IT @+ 1;(-'6 —a) dx)
_pv

Examining the integral over 7;, we see using the ML- estimate:

1

L (22 +1)(z—a) dz

1
y
R Lm (Z+1)(z-a)

Spi ((R2 n 1;(12 = “R)

dz
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Examining the integral over -4, we see using the fractional residue theorem:

1 . 1
L Fr)e—a = L Fr0G-a
= (0 — m)iRes[[, f] (2), q]

= —Ti !
B a®+1
i
T a?+1
Since 0D =y U e U3 UYL
1 1 1
dz = dz + d
L @+ 1)(z—a) L @+D)(z-a) L @+ 1)z—0a)
1 1
+J dz+f dz
o (22 4 1)(z -a) (2 +1)(z—a)
i
—PV+0—az_|_1
oz
T i-a
Solving for PV:
-7 i mi—-mla+1i) —7a
PV = = -
a—i+a2+1 a?+1 a? +1

7.7 Jordan’s Lemma

Theorem 7.7.1 (Jordan’s Lemma). If ['p is the semicircular contour 2(#) = Re®, 0 < 0 <
7, in the upper half plane, then

f le||dz| < 7
Cr

Main Method
e We use Jordan's Lemma in a similar way as we've used the ML Theorem previ-
ously.

e Goal is to take absolute values, bound things above, pull things out so that we
get |e**||dz]

e Use Jordan's Lemma to bound everything

e Take limits and get things to go to zero.
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Example Show that

. Rginz T
lim —_—dr = =

To do this problem, they throw it to the indented half-disk. The pertinent part is:

2 an R

When we take the limit as i — o0, we see the integral is 0.

Above, the first inequality comes from the ML Theorem and the second comes from
Jordan’s Lemma.

e** 1 . T
f —dz g — le¥||dz| < =
Cn

7.8 Exterior Domains

Exterior Domain An exterior domain is a domain D in the complex plane that in-
cludes all large z, that is, D includes all z such that |z| = R for some R.

The residue theorem is valid also for exterior domains, though the residue formula
must take into account the point at co.

Theorem 7.8.1. Let D be an exterior domain with piecewise smooth boundary. Suppose
that f(z) is analytic on D v @D, except for a finite number of isolate singularitics
Z1,...,2m in D, and let a_; be the coeflicient of 1/z in the Laurent expansion f(z) =
Y aiz* that converges for |z[ > R. Then

f(z)dz = =2mia_, + 2mi Z Res[f(z), 2]
aD =
Residue of f(z) at Infinity Suppose f(z) is analytic for |z| 2 R, with Laurent expansion
[»a]
f(z) = Z a,z" |z| =R

R=—00

We define the residue of f(z) at o to be Res[f(z),©] = —a_;.

If Dp is the exterior domain {|z| > R}, this definition is equivalent to

(z)dz = 27iRes [f(z), o]
aDp

The orientation of the circle {|z] = R} with respect to Dpg is clockwise, and this
accounts for the minus sign. With this definition of residue at oo:

. f(2)dz = 2xiRes [f(2), 0] + 2t Z Res [f(z), 2]

i=1
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Chapter 8 Logarighmic Integral

8.1 The Argument Principle
Logarithmic Integral Suppose f(z) is analytic on a domain D. For a curve v in D such
that f(z) # 0 on v, we refer to
1 f'(2)
2mi ), f(2)
as the logarithmic integral of f(z) along 7.

1
dz = %L dlog f(z)

The logarithmic integral measures the change of log f(z) along the curve ~.

Theorem 8.1.1. Let D be a bounded domain with piecewise smooth boundary 0D, and
let f(z) be a meromorphic function on D that extends to be analytic on 8D, such that
f(z) #0on @D. Then

1)
ot Jop 1) & T Mo Moo

where N, is the number of zeros of f(z) in D and N, is the number of poles of f(z)
in D, counting multiplicities.

Increase in the Argument of f(z) Along v For any continuous path -« in D providing
there are no zeros or poles on the path, the quantity

j darg(f(2)) = arg f(v(5)) - arg f(1(a))

is referred to as the increase in the argument of f(z) along +.

Increase in the Argument of f(z) Around the Boundary of D We define the in-
crease in the argument of f(z) around the boundary of D to be the sum
of it’s increases around the closed curves in 0D.

Theorem 8.1.2. Let D be a bounded domain with piecewise smooth boundary ¢D, and
let f(z) be a meromorphic function on D that extends to be analytic on 4D, such that
f(z) # 0 on éD. Then the increase in the argument of f(z) around the boundary of
D is 2% times the number of zeros minus the number of poles of f{z) in D.

f darg(f(2)) = 27(No — Noo)
abD

ol
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8.2 Rouche’s Theorem

Theorem 8.2.1 (Rouche’s Theorem). Let D be a bounded domain with piecewise smooth
boundary éD. LEt f(z) and h(z) be analytic on DudD. If |h(z)| < |f(z)| for z € D,
then f(z) and f(z)+ h(z) have the same number of zeros in D, counting multiplicities.

Simple Example: 8.2.1 Show that 22% 4 6z — 1 has one root in the interval 0 < z < 1
and four roots in the annulus {1 < |z| < 2}.

Proof. Consider the polynomial p(z) = 22° + 6z — 1.

Inside |z] = 1, we see that we can split p(z) = fi(z) + g1(z) where f)(z) = 6z and
q(z)=22"-1.On|z| =1

|f1(2)| = |6z| = 6 lg1(z)] = [22° = 1| € 2Jz/° +1 =3

Since |fi(z)| > |g:1(2)| on |z| = 1 and f;(z) has one root in |z| = 1, we know by Roche’s
Theorem that p has one root in |z| = 1. Since any complex root comes in a conjugate
pair, we know that this root must be a real root. Further, we know that p(0) = —1 # 0.
Thus p(z) has one root in 0 < 2 < 1.

Inside |2] = 2 we see that we can split p(z) = fa(z) + g2(z) where fo(z) = z° and
g(z) =6z2—1. On |2| =2

fal2) = 1= 32 |ga(2)| = 162 — 1] < 6lz| +1 = 13

Since | fa(z)] > |g2(z)| on |z| = 2 and f(2) has five roots in [z| = 2, we know by Roche’s
Theorem that p has five roots in |z| = 2.

Since we know there is pne root in |2| = 1, we know four roots must live between
|z| =1 and |z| = 2. Thus p(z) has four roots in 1 < |z| < 2. O

8.3 Hurwitz’s Theorem

Theorem 8.3.1 (Hurwitz’s Theorem). Suppose {fi(z)} is a sequence of analytic functions
on a domain D that converges normally on D to f(z), and suppose that f(z) has a
zero of order N at z5. Then there exists p > 0 such that for k large, fi.(z) has exactly
N zeros in the disk {|z — 29| < p}, counting multiplicity, and these zeros converge to
zg as k — 0.

univalent We say that a function is univalent on a domain D if it is analytic and one-
to-one on D. That is, they are conformal maps of D to other domains.

Theorem 8.3.2. Suppose {f(2)} is a sequence of univalent functions on a domain D that
converges normally on D to a function f(z). Then either f(z) is univalent or f(z) is
constant.
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8.4 Open Mapping and Inverse Funcion Theorems

Attains a Value Let f(z) be a meromorphic function on a domain D. We say that f(z)
attains the value wy m times at zp if f(z) — wp has a zero of order m at z.

We make the usual modifications to cover the cases 2z = o0 and wp = 0, so that f(z)
attains a finite value wg m times at 25 = oo if f(1/2) — wy has a zero of order m at
z =0, and f(z) attains the values o0 m times at z; if z; is a pole of f(z) of order m.

Theorem 8.4.1 (Open Mapping Theorem for Analytic Functions). If f(z) is analytic on
a domain D, and f(z) is not constant, ten f(z) maps open sets to open sets, that is,
f(U) is open for each open subset U of D.

Theorem 8.4.2 (Inverse Function Theorem). Suppose f(z) is analytic for |z — zp) < p
and satisfies f(zg) = wy, f'(20) # 0, and f(z) # wy for 0 < |z — 2| < p. Let § > 0
be chosen such that |f(z} — wo| = § for |z — 29| = p. Then for each w such that
|w — wy| < 4, there is a unique z satisfying |z — zp] < p and f(z) = w. Writting
z = f~Yw), we have

V| ¢f'(€)
f 1(’10) = om msalms m d¢, |w — wol <0
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Chapter 9 The Schwarz Lemma and Hyper-
bolic Geometry

9.1 The Schwarz Lemma

Theorem 9.1.1 (Schwarz Lemma). Let f(2) be analytic for |z] < 1. Suppose |f(z) <1
for all |z|] < 1, and f{0) = 0. Then

IF@i< el 2l <1

Further, if equality holds at some point zy # 0, then f(z) = Az for some constant A
of unit modulus.

Theorem 9.1.2. Let f(z) be analytic for |z| < 1. If |f(2)| <1 for |z] < 1, and f(0) = 0,
then |f'(0)] < 1, with equality if and only if f(2) = Az for some constant A with
|A} = 1.

9.2 Conformal Self~-Maps of the Unit Disk

Conformal Self-Map of the Unit Disk A conformal self-map of the unit disk is
an analytic function from D to itself that is one-to-one and onto.

Lemma 9.2.1. If g(z) is a conformal self-map of the uni disk I such that g(0) = 0, then
g(z) is a rotation, that is, g(z) = €'*z for some fixed ¢, 0 < ¢ < 27.

Theorem 9.2.1. The conformal self-maps of the open unit disk D are precisely the frac-
tional linear transformations of the form

L Z—a

= i

ey =Tl <1
where a is complex, e} < 1, and 0 < ¢ < 27.

Theorem 9.2.2 (Pick’s Lemma). If f(z) is analytic and satisfies |f(z)| < 1 for |z| < 1,

)
then

1-|f(z)
1— |22

1F(2)] <

lz] <1

If f(z) is a conformal self-map of D, then equality holds, otherwise the inequality is
strict for all |2| < 1.

55
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Finite Blaschke Product A finite Blaschke product is a rational function of the form

- z—a z—-a,
B(z) = ¢¥
(z) =e (1_0,—12) (1—m)

where a;,...,a, € D and 0 < ¢ < 27.




Chapter 10 Harmonic Functions and the Re-
flection Principle

10.1 The Poisson Integral Formula

Poisson Kernel Function The Poisson kernel function is defined by:

w

P.(8) = Z rlklgiko

=—00
For cach fixed p < 1, this scrics converges uniformly for » < p and —7 < 8 < 7.
Simplifying this we obtain that:
1=z 1—r%
T 1=2z]2 1+47r2—2rcosf

P.(8) z=reeD

Poisson Integral The Poisson integral i(z) of h{e?®) to be the function on the open
unit disk B given by

I

iz) = [ mew)r(o— (,a)‘;—f, t=refeD

Theorem 10.1.1. Let h(e') be a continuous function on the nit circle. Then the Poisson
integral h(z) defined above is a harmonic function on te open unit disk that has
boundary values h(e®), that is h(z) tends to () as z € D tends to ¢ € ID.

Schwarz Formula Suppose that f(z) = u(z) + iv(z) is analytic for |z| < 1 and that u(z)
extends to be continuous on the closed disk {|z| < 1}. The formula

2 2 d
e ' E_+_‘E_(‘_D. } >
1) = | wen T @), <1

is the Schwarz formula, expressing an analytic function in terms of the boundary
values of its real part.

Radial Limit function f(z), z € D, is said to have radial limit L at { € dD if f(r{) — L

as r increases to 1.

We know that E(z) has a raidal limit at each { € D, equal to the average of the limits
of h(e) at ¢ from each side.

o7
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10.2 Characterization of Harmonic Functions

Theorem 10.2.1. Let h(z) be a continuous function on a domain D. Then h(z} is harmonic
on D if and only if h(z) has the mean value property on D.

10.3 The Schwarz Reflection Principle

Theorem 10.3.1. Let D be a domain that is symmetric with respect to the real axis, and
let D* = D n {Imz > 0} be the part of D in the open upper half-plane. Let u(z) be
a real-valued harmonic function on D* such that u(z) — 0 as z € D" tends to any
point of D nR. Then u(z) extends to be harmonic on D, and the extension satisfies
u(z) = —u(z).

Theorem 10.3.2. Let D be a domain that is symmetric with respect to the real axis,
and let D* = D~ {Imz > 0}. Let f(z) be an analytic function on D* such that
Im f(z) — 0 as z € D* tend to D nR. Then f(z) extends to be analytic on D, and
the extension satisfies f(z) = f(z2).

Analytic Curve We define a curve  to be an analytic curve if every point of v has
an open neighborhood U for which there is a conformal map ¢ — z(¢) of a disk D
centered on the real line R onto U, such that the image of D nR coincides with U n 1.
We also refer to such a v as an analytic arc.

Reflection Across ¥ The map { — ¢ interchanges the top half and bottom half of D\R,
which arc the two components of D\R, so the map 2z — z* interchanges the two
compponents of U\y. We refer to these two components as the neighborhoods of
the sides of v, and we refer to the map z — z* as the reflection across v

Theorem 10.3.3. Let D be a domain, and let 7 be a free analytic boundary arc of D.
Let f(z) be analytic on D. If |f(2)] — 1 as z € D tends to v, then f(z) extends to

be analytic in a neighborhood of 7, and the extension satisfies f(2*) = 1/f(z) in a
neighborhood of v, where z — 2* is the reflection across 1.

Modulus of an Annulus The modulus of an annulus {a < |z — 2| < b} is defined to
be (1/27) log (b/a).



Chapter 11 Conformal Mapping

11.1 Mappings to the Unit Disk and Upper Half-Plane

Conformal Map A conformal map of 2 domain D onto a domain V is a analytic
function ¢(z) from D to V that is one-to-one and onto.

Self Maps of the Open Unit Disk From Section 9.2 that the conformal sclf-maps of
the open unit disk have the form:

z—a
g(z) = T zeD
for |a] < 1 and |A| = L.
Maps between Upper Half-Plane and Disk
=z—?? H—-D z-—-'i1+w D—-H
z+1 1—w

Sectors Any sector with vertex at 0 can be rotated by the map z — Az, |z| = 1, to a
sector of the form D = {0 < argz < a}, where a < 27.

(—1 ZMe
H—D = = — -
+i w=o(2) FLLE )

(=2"":8->H w=

-

Iy

Strips We can map any strip to a horizontal strip by rotation z —\ Az. The exponential
function e** maps horizontal strips to the half-plane. Another rotation by ¢ maps this
half-plane to the upper half-plane !

(=pe¥:5t—-H

Lunar Domains A lunar domain is a domain D with a boundary consisting of two
curves, each of which is an arc of a circle or a straight line segmen. Let 24 and z; be
the endpoints of the curves. We assum z; # z;. We can map a lunar domain to a
sector as follows:

Z—2Zp

:L— S

w=A
Z—2)

29
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11.2 The Reimann Mapping Theorem

Theorem 11.2.1 (Riemann Mapping Theorem). If D is a simply connected domain in the
complex plane, and D is mot the entire complex plane, then there is a conformal map
of D onto the open unit disk ID.

Conformally Equivalent We say that two domains are conformally equivalent if
there is a conformal map of one onto the other.

Thus the Riemann Mapping theorem asserts that any simply connected domain in the
complex plane C either coincides with C or is conformally equivalent to D.

Riemann Map We refer to a conformal map w = ¢(z) of D onto D as the Riemann
map of D onto . It is unique, up to postcomposing with a conformal selfmap of D.

Corollary 11.2.2. A simply connected domain in the Riemann sphere is either the en-
tire Riemann sphere, or it is conformally equivalent to the complex plane, or it is
conformally equivalent to the open unit disk.

Theorem 11.2.3. Let D be a simply connected domain in €, D # C. Then the Riemann
map (z) of D onto D extends analytically across any free analytic boundary arc 4
of D, and ¢(z) maps v one-to-one onto an arc of dD. The extended function satisfies
@'(z) # 0 for z € v, and @(2*) = 1/(2) for z in a neighborhood of -y, where z — z* is
a reflection across 7. Disjoint free analytic boundary arcs of D are mapped by ¢(z)

to disjoint arcs of JD.

11.3 Compactness of Families of Functions

Equicontinuous Let E be a subset of the complex plane C, and let & be a family of
complex-valued functions on E. We say that & is equicontinuous at a point zp € E
if for any € > 0, there is § > 0 such that if z € F satisfles |z — 29| < 4, then
|f(z) = f(20)] <€ forall fe .

Uniformly Bounded We say that the family .# is uniformly bounded on E if there
is a constant A > 0 such that |f{z)| < M for all z€ F and all f e &#.

Theorem 11.3.1 (Arzela- Ascoli Theorem). Let £ be a compact subset of C, and let &
be a family of continuous complex-valued functions on E that is uniformly bounded.
Then the following are equivalent.

1. The family .# is equicontinuous at each point of £

2. Each sequence of functions in % has a subsequence that converges uniformly on

E.
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Spherical Metric Let o(z,w) be the spherical metric, or the spherical distance from 2
to w aas in Section 9.3.

A sequence of functions {f,} on E converges uniformly to f in th spherical
metric if o(f,(z), fm(2)) tends to 0 uniformly for z € E as n,m — .

A family # is equicontinuous with respect to the spherical metric at 25 € E if
for any € > 0 there is § > 0 such that if z € E satisfies |2 —zg| < 6, then o(f(2), f(z0)) <
gforall fe F.

Theorem 11.3.2. Let D be a domain in the complex plane, and let % be a family of
continuous functions from D to the extended complex plane C* . Then the following
are equivalent.

1. Any sequence in % has a subsequence that converges uniformly on compact
subsets of D in the spherical metric.

2. The family & is cquicontinuous at each point of D, with respect to the spherical
metric.

Theorem 11.3.3. Suppose & is a family of analytic functions on a domain D such that
& is uniformly bounded on each compmact subset of D. Then every sequence in %
has a subsequence that converges normally on D, that is, uniformly on cach compact
subset of D.

Extremal Let D be a domain, and fix a point zp € D. Let & be the family of analytic
functions f(z) on D such that |f(z}| < 1 on D. The extremal problem is to maximize
|f'(20)| among all functions f € &#. The extremal value for the problem is

A = sup{|f'(z)| : [ € &)

Since the functions in & are uniformly bounded on D, their derivatives are uniformly
bounded at zp and A is finite. A function G € & such that |G'(z)| = A is an extremal
function for the problem. (Existence follows from Montel’s.)

Theorem 11.3.4. Let D be a domain in the complex plane on which there is a nonconstant
bounded analytic function, and let zp € D. Then there is an analytic function G(z)
on D such that |G(z2)| <1 for z € D, and |f'(z)| < |G'(20)] for any analytic function
f(z) on D satisfying {f(z)| € 1 on D. Further, G(z) = 0 and G'(z;) # 0.

Ahlfors Function The extremal function G(z) is called the Ahlfors function of D and
depends on zp.

The extremal value A = |G'(2p)| can be regarded as the best constant for which the
Schwarz lemma holds with respect to zg € D.
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11.4 Proof of the Riemann Mapping Theorem
Note I'm not going through the entire proof here, see book for that.

Lemma 11.4.1. Let D be a simply connected domain. Suppose a ¢ D, and let A(z) be
an analytc branch of v/z — a in D. Then h(z) is univalent on D, and further, h(D) is
disjoint from —h(D).

Lemma 11.4.2. Let D be a simply connected subdomain of D such that 0 e D. If D # D,
then there is a conformal map %(¢) of D onto a subdomain of I such that #(0) = 0
and ['(0)| > 1.



Cw’(»—ﬂ ’j ﬁha/()

MAT 712. Final Exam

May 8, 2012

NAME: Student ID:

Instructions: Write your answers and show all your work on this test. There are 4 problems on 4
pages, for a total of 80 points. To receive credit, you must justify your answers and show all details of
your work.

1.(20 points) Find a conformal map f from the domain D = {z € C: Rez > 0, Imz > 0} onto the
unit disk, so that f(1+:) =0.



2

2.(20 points) How many zeros, counted with multiplicity, does the function f(z) = z* + €* + 2 have in
the domain D ={z € C: Rez <0} ?



3.(20 points) Find all the entire functions f such that |f{z)| =1 for all z € C with |z| = 1.



4

cosx

ek

+o0
4.(20 points) Find /
0
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Due Friday May 1, 2009, at 2:00 PM (317 D Carnegie)
MAT 712, Final Exam
NAME:
Instructions: To receive credit, write your answers and show all your work on this test. There are

6 problems on 6 pages, for a total of 60 points. Notes or textbooks are not allowed.

1.(10 points) Find a conformal map from D = {z € C: 0 < Rez < 1} onto the unit disk.



2.(10 points) Let S # @ be a subset of the open unit disk. For-¢ € S, define the meromorphic function

1_
= g z €.

fc(z)/_z/-i- c’
Prove that the family of meromorphic functions F = {f,.: ¢ € S} is a normal family on C if and only
ifl1¢35.



3.(10 points) If A > 1, show that the equation z + e™* = A has exactly one solution with positive real
part.



4.(10 points) Let f : D — C, D C C open, be a harmonic function such that g(z) = zf(2) is also
harmonic. Prove that f is holomorphic.



5.(10 points) Let f : C — C be a function of class C? such that [, f(z) dz = 0 for every circle C. Prove
that f is entire.

5



6.(10 points) Let P(z) be a polynomial of degree n > 2, and let 2y, ..., 2 be the distinct zeros of P.

Prove that
es|—=,z;)=0.
i=1 P

6
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Measure Theory Terms and Theorems
Preparation for Analysis Qualifying Exam

Based on Real and Complez Analysis by Walter Rudin
and Measure and Integral by Richard L. Wheeden and Antoni Zygmund

Erin Griffin

July 12, 2019



Note to the Reader

I began creating this resources using both Rudin and Wheeden & Zygmund. I decided mid-
way through creating this document that my previous course of action was neither necessary
nor efficient. Thus, for the remaining sections I focused solely on Rudin’s book. To see
notes based on Wheeden & Zygmund refer to the course notes typed by Caleb McWhorter
on GitHub
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Chapter 1 o-algebras

1.1 o-algebras

Rudin
Topology A collection 7 of subsets of a set X is said to be a topology in X is 7 has the

following three properties:
a. Petand XerT
IfV,erfori=1,...,nthen VinVon..-AaV,er

c. If {V,} is an arbitrary collection of members of 7 (finite, countable, or uncount-
able) then | J, Vy e T.

Topological Space If 7 is a topology in X, then X is called a topological space, and the
members of 7 are called the open sets in X.

Continuous If X and Y are topological spaces and if f is a mapping of X into Y, then f
is said to be continuous provided that f~'(V) is an open set in X for every open set
VinY.

o-algebras A collection .# of subsets of a set X is said to be a o-algebra in X if .# has
the following properties:

a. Xe A
b. If Ae #, then A° e #, where A° is the complement of A relative to X
c. fA=J7 A,andif A, e.# forn=1,2,3,...,then Ae 4.

Also known as a countably additive family of sets.

Theorem (1.10). If % is any collection of subsets of X, there exists a smallest g-algebra
A* in X such that &# < M*

Wheeden & Zygmund

Theorem (WZ, 162). Immediate consequences of the definition. Let & be a o-algebra.
Then the following sets belong to L:
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1. The empty set &

2. NE:ifE e, k=12,....

3. limsup E; and liminf Ey, if each By e X
4, B, - Eyif Ey,E; e L.

Additive Set Function If ¥ is a g-algebra, then a real-valued function ¢(E), E€ L, is
called an additive set function on X if

a. (F) is finite for every £ € £, and
b. (U Ex) = Zip(Ey) for every countable family {Ey} of disjoint sets in .

Theorem. (10.1) If {E,} is a monotone sequence of sets in £ and ¢ is an additive set
function, then @(E) = limg . @(Ey).

Note There was a lot more in Wheeden and Zygmund on additive set functions. Page
163-165.



Chapter 2 Measures

2.1 Measures

Rudin

Positive Measure A positive measure is a function yu, defined on a o-algebra .# whose
range is in [0,c0] and which is countably additive. THis means that if {A;}is a
disjoint countable collection of members of .#, then

o0 o
H (U A:‘) = Z#(Ai)
i=1 i=1
To avoid trivialities, we shall also assume that p(A) < oo for at least on A € A

Frequently just called measure.

Measure Space A measure space is a measurable space which has a positive measure
defined on the o-algebra of its measurable sets.

Complex measure A complex measure is a copmlex-valued countably additive func-
tion defined on a o-algebra.

Theorem (1.19). Let i be a positive meausre on a g-algebra .#. Then

a. (@) =0

b. (finite additivity) p(A1u---UA,) = p(A1) +-- -+ p(A,) if Ay, ... A, arc pairwise
disjoint members of ..

c. {monotonicity) A € B implies p(A) < u(B)if Ae #, Be .#
d. pu(A,) > p(A)asn—>wif A= Ay, Ape A, ,and Ayc Ay Az ...

e. p{A,) = u(Ayasn - 0 if A= A, Ane#, Al DA D> A;D..., and
1{A;) is finite
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2.2 Outer Measures

Wheeden & Zygmund

Lesbegue Outer Measure

Lebesgue Outer Measure Consider an arbitrary subset £ of R", cover £ by a countable
collection S of I, and let
a(S) = Y. vol(kk)

e8S
The Lebesgue outer measure {or exterior measure) of £ denoted |El|,, is defined by

|El. = %0(S)
where the infimum is taken over all such covers S of E. Thus 0 € |E|. < +00.

Theorem (3.2). For an interval I, |I|. = vol(])
Theorem (3.3). If B, c E,, then |E|. < |Eql.
Theorem (3.4). If E = | E} is a countable union of sets, then |E|. < > |Exl.

Theorem. Any set consisting of a single point clearly has outer measure zero, it follows
that any countable subset of R™ has outer measure zero.

Cantor Set The subset of [0,1] which remains after infinitely iterating “removing the
inner third” is called the Cantor set C, this if C) denotes the union of the intervals
left at the kth stage, then

[+ ]
= ﬂ Ce
k=1

o C is closed (since cach Cy is closed)
e C, consists of 2* closed intervals, each of length 3%
¢ ( contains the enpoints of all the intervals

e Any point of C belongs to every C}, and is therefore a limit point of the endpoints
of the intervals. So C is perfect. That is, C is a closed set each of whose points
is a limit point of C. Further, C is a closed set which is dense in itself and also is
uncountable.

o |Cle < 2¥3°F thus |C|.

Cantor-Lebesgue Function Let Dy = [0,1])\Ck, which consists of 2¥ — 1 intervals I
removed in the first & stages of construction on the Cantor set. Let fi be the continuous
function on [0,1] which satisfies fi(0) = 0, fu(1) = 1, fi(z) = j27* for z € I},
§ =1,...,25 = 1, and which is linear on each interval of C;. Each f; is monotone
increasmg, fesr = feon I¥, j = 1,2,...,2 = 1, and |fi = fes1] < 2=k Hence
> (fi — fr+1) converges uniformly on [0, 1], and therefore, { fr.} converges uniformly on
[0,1]. Let f = limgoo fr. Then f(0) = 0, f(1) = 1, f is monotone increasing and
continuous on [0,1], and f is constant on every interval removed in constructing C'.
This f is called the Cantor Lebesgue function.
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Theorem (3.6). Let £ — R". Then given £ > 0, there exists an open set G such that
F c G and |G|, € |E|. + €. Hence |E|. = inf |G|., where the infimum is taken over
all open sets G containing E.

Theorem (3.8). IF E <« R", there exists a set H of type G5 such that £ < H and
|Ele = |H|e-
Theorem (3.10). |E[, = |E|. for every E < R™.

Chapter 11, pages 193-200
Outer Measure A function I' = I'(A) which is defined for every subset A of a space .4

is called an outer measure if it satisfies the following:
a. [(A)=20,T(z)=0.
c. D[(|JAk) € 2 I'(Ax) for any countable collection of sets {A}.
Theorem. Given an outer measure I' we say that a subset E of .# is I'-measurable, or

simply measurable, if

['(A) =T(An E) + T(A\E)
Equivalently, E is measurable if and only if

F(Al (. Az) = F(A]) + P(Ag)

whenever 4, ¢ E, A, € #\E.
Theorem (11.2). Let I' be an outer measure on the subsets of .#.

a. The family of I-measurable subsets of .# forms a o-algebra.

b. If {Ex} is a countable collection of disjoint measurable sets, then I'(|J Ex) =
2, T(E). More generally, for any A, measurable of not, F(An|J E) = Y T(An
Ep) and T(A) = Y T(An E) + T(A - |J Ey).

2.3 Borel Measures

Rudin

Borel Sets Let X be a topological space. There exists a smallest g-algebra & in X such
that every open set in X belongs to 4. The members of 4 are called the Borel sets
of X. (Open sets are normally noted with F.)

Since closed sets are complements of open sets, they are necessarily Borel. (Closed sets
are normally noted with G.)
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Let F, be the countable unions of all closed sets and G5 be the countable intersections
of open sets. (Unions and Intersections are normally noted with ¢ and & respectively.)

Since & is a o-algebra, (X, &) is a measureable space. If f : X — Y is continuous,
then f~}(V) & & for every open set V € Y. Thus, we get the following theorem.

Borel Measure A measure p defined on the o-algebra of all Borel sets in a locally compact
Hausdorff space X is called a Borel measure on X.

Regular If p is positive, a Borel set E — X is outer regular or inner regular, respec-
tively, if E has property (c) or (d) of the Riesz Representation Theorem. If every Borel
set in X is both outer and inner regular, y is called regular

g-compact A set F in a topological space is called o-compact if E is a countable union
of compact sets.

o-finite Measure A set £ in a measure space (with measure p) is said to have o-finite
measure if E is a countable union of sets E; with u(F;} < co.

In the situation presented in the RRT, every o-compact set has a o-finite measure.
Further, if E € # and E has a o-finite measure, then E is inner regular.

Theorem (2.17). Suppose X is a locally compact, o-compact Hausdorff space. If .# and
p are as described in the statement of the RRT, then .# and pu have the following
propertics:

a. If E € # and € > 0, there is a closed set F' and an open set V such that
FcEcVand p(V\F)<e

b. p is regular Borel measure on X
c. If E € #, there are sets A and B such that A isan F,, Bisa G5, Ac F < B,
and p(B\A) =0

Theorem (2.18). Let X be a locally compact Hausdorff space in which every open set is
o-compact. Let A be any positive Borel measure on X such that A(K) < o for every
compact set K. Then A is regular.



Chapter 3 Measurable Functions

3.1 Measurable Functions

Rudin

Measurable Function If X is a measurable space, Y is a topological space, and [ is
a mapping of X into Y, then f is said to be measurable provided that f~1(V)is a
measurable set in X for every openset Vin Y.

Measurable Space If .# is a o-algebra in X, then X is called a measurable space, and
the members of .# are called the measurable sets in X.

Theorem. Every continuous mapping is Borel measrable.

Theorem (1.12). Supposc .# is a g-algebra in X, and Y is a topological space. Let f
map X into Y.

a. If Q is te collection of all sets E < Y such that f~}(E) € ., then {2 is a o-algebra
inY.

b. If f is measurable and E is a Borel set in Y, then f~Y(E) e .#.
c. f Y =[—o0,00] and f~!((c, 0]) € A for every real a, then f is measurable.

d. If f is measurabl, if Z is a topological space, if ¢ : Y — Z is a Borel mapping,
and if h = go f, then h: X — Z is measurable,

Upper and Lower Limit If {a,} is a sequence in [—o0, oc] and let by, = sup{ay, axs1,---}

and 3 = inf{by,bo,...}, then § is the upper limit up {a,}, 8 = limsup,_,., a,. Lower
limit is defined analogously.

@©Q o os] o
limsup £y, = n U E, liminf B = U ﬂ E;

m=1 k=m m=l k=m

Theorem (1.14). If f, : X — [—o0,0] is measurable for n € N, and g = sup fa,
h = limsup f,, then g and h are measurable.

Note. Proof uses Thm 1.12.

11
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Corollary.

a. The limit of every pointwise convergent sequence of complex measurable functions
is measurable.

b. If f and ¢ are measurable (with range in [—o0,0]), then so are max f, g and
min f, g.

Positive and Negative Parts Define the following functions:

f+=ma.x{f,0} f_=—mll'l{f10}

Furthermore, notice that:
Ifl=5"+f"  f=f"-f
Proposition. If f =g—h,g=0,and h 20, then f* <gand f~ < h.

Simple Function A complex function s on a measurable space X whose range consists
of only finitely many points will be called a simple function. Among these are the
nonnegative simple functions, whose range is a finite subset of [0,00). Note that we
explicitly exclude oo from the values of a simple function.

If ay,...,a, are the distinct values of a simple function s, and if we set 4, = {z :
s(z) = o}, then clearly
L
§ = ZaiXA,.
i=1

wijere x4, is the characteristic function of A;.

Theorem (1.17). Let f : X — [0,00] be measurable. There exist simple measurable
functions s, on X such that:
a.0<s<s2€--=f
b. s,(z) — f(z) as n — oo for every z € X.

Semicontinuous Let f be a real (or extended-real) function on a topological space. If
{z : f(z) > «} is open for every real a, f is said to be lower semicontinuous

If {z: f(z) < «} is open for every real e, f is said to be upper semicontinuous.

Theorem (2.8). a. Characteristic functions of open sets are lower semicontinuous
b. Characteristic functions of closed sets are upper semicontinuous

c. The supremum of any collection of lower semicontinuous functions is lower semi-
continuous. The infimum of any collection of upper semicontinuous functions is
upper semicontinuous.
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Support The support of a complex function f on a topological space X is the closure of
the set {z : f(z) # 0}.

Compact Support C.(X) The collection of all continuous complex functions on X whose
support is compact is denoted by C.(X).

Notation The notation
K<f
will mean that K is a compact subset of X, that f e C,(X), that 0 < f(z) <1 for all
z € X, and that f(z) = 1 for all z € K. The notation
f=<V

will mean that V' is open, that f € C.(X), 0 £ f <€ 1, and that the support of f lies in
V. The notation
K< f<V

will mean that both hold.

Theorem (Urysohn’s Lemma). Suppose X is locally compact Hausdorff space, V is
openin X, K < V, and K is copmact. Then there exists an f € C.(X) such taht

K< f<V

Note. The conclusion asserts the existence of a continuous function f which satisfies

the inequalities xx < f < xv. Note that it is easy to find sermicontinuous functions
which do this.

Theorem (2.13). Suppose Vj,...,V, are open subsets of a locally compact Hausdorff
space X, K is compact, and
KcWiu---ulV,

Then there exist functions h; < V; such that
h(z) +- +ho(z) =1
The collection {h,...,h,} is called a partition of unity on K, subordinate to the

cover {V1,..., Vi}.
Theorem (Riesz Representation Theorem). Let X be a locally compact Hausdorff

space, and let A be a positive linear functional on C,(X). Then there exists a o-algebra
# in X which contains all Borel sets in X, and there exists a unique positive measure
i on .# which represents A in the sense that

a. Af =1, fdu for every f e C.(X)

b. p(K) < o for every compact set K < X

¢. (Outer Regularity) For every E € .#, we have

W(E) = j {u(V) : E<V, V open)
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d. (Inner Regularity) The relation
p(E) = sup{u(K) : K c E, K compact}

holds for every open set E, and for every E € .4 with pu(FE) <
e. f Ee#,Ac E, and u(E) =0, then Ae .#

Theorem (Lusin’s Theorem). Suppose f is a complex measurable function on X,
u(A) < o, f(z) = 0if z ¢ A, and € > 0. Then there exists a g € C.(X)
such that p({z : f(z) # g(z)}) < e. Furthermore, we may arrange it so that
SuP.ex [9(F)| < sup.ex | f(2)|.

Corollary. Assume that the hypotheses of Lusin’s theorem are satisfied and that |f| < 1.
Then there is a sequence {g,} such that g, € C.(X), lgx| < 1, and f(z) = lim,_.c gn(x)
a.e.

Corollary (Vitali- Caratheodory Theorem). Suppose f € L*(u(, f is real-valued, and
¢ > 0. Then there exist functions « and v on X such that v < f < v, u is upper
semicontinuous and bounded above, v is lower semicontinuous and bounded below,
and

J:\_(y —u)dp <¢

Wheeden & Zygmund

Theorem. (WZ 10.13)
a. If f and g are measurable on a set E € &, then so are f + g, cf for real ¢, ¢(f)
if ¢ is continuous on R, f*, f~, |fIPforp> 0, fg, and 1/f if f # 0 in E.

b. If {f.} are mecasurablc on £ € I, then so are supy fi, infy fi, limsup,_,q, fr,
lim infy . fi, and if it exists, limy_. fi.

c. If f is a simple function taking values v, ...,vx on disjoint sets Ey,..., En, es-
pectively, then f is measurable if and only if each E} is measurable. In particular,
x £ is measurable if and only if E is.

d. If f is nonnegative and measurable on E € I, then there exists nonnegative,
sitnple measurable f, / f on E.

3.2 Measure Zero

Rudin

Almost Everywhere If i is a measure on a o-algebra .# and if E € .#, the statement
“P holds almost everywhere on E” means that there exists an N € .# such that
(N} =0, N = E, and P holds at every point of E|setminusN.
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If f and g are measureable functions and if

p{{z : f(z) # g(z)}) =0

we say that f = g a.e. [p] on X and we may write f ~ g. (Which is an equivalence
relation)

If f ~ g, then, for every E€ . #

fEfd# - J.Egd,u

Theorem (1.36). Let (X, .# .1) be a measure space, let .#™ be the collection of all E = X
for which there exist sets A and B € .# such that A € F < B and p(B\A) = 0, and
define p(E) = p(A) in this situation. Then .#™* is a o-algebra and p is a measure on
M

Complete The aforementioned extended measure p is called complete, since all subsets
of sets of measure 0 are now measurable; the o-algebra .#™* is called the y-completion

of A .

Measurable A function f defined on a set E € .# measurable on X if p(E°) = 0 and
if f~Y(V)~ E is measurable for every open set V. (If we define f(z) = 0 for = € E°,
we obtain a measurable function on X, in the old sense.

Theorem (1.38). Suppose {f.} is a sequence of complex measurable functions defined
a.e. on X such that

®
Z 0x|faldp < 0

n=1

Then the series

f(@) =D falz)

converges for almost all z, f € L!(y), and

Lf@=§h@

Theorem (1.39). a. Suppose f : X — [0, 0] is measurable, E e .#, and {; fdu = 0.
Then f =0 a.e. on E.

b. Suppose f € L'(u) and SEfd,u =0 for every E€ #. Then f =0 a.e. on X.

c. Suppose f € L'(u) and
f fdu =J |f]dp
x e

Then there is a constant a such that af = |f| a.e. on X.
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Theorem (1.40). Suppose u(X) < <o, f € L(p), S is a closed set in the complex plane,
and the averages

i
Ap(f) = —= J d
lie in S for every E € .# with p(E) > 0, Then f(z) € S for almost all z € X.
Theorem (1.41). Let {E;} be a sequence of measurable sets in X, such that

Q0

> Ey) < o

k=1

Then almost all z € X lie in at most finitely many of the sets Ej.



Chapter 4 Lebesgue

4.1 Lebesgue Integration in Abstract Measure Spaces

Rudin

Lebesgue Integral If s: X — [0,00) is a measurable simple function, of the form

n
s = Za:‘XAi
i=1

where ay,...,q, are the distinct values of s and if £ € .#, we define
[ sau= Y cuntain )
E i=1
Then convention 0 - c0 = 0 is use here; it may happen the a; = 0 for some ¢ and that

(A n E) = o0.

If f: X — [0,00] is measurable, and E € .#, we define

j fdu =supJ- sdu
E E

the supremum being taken over all simple measurable functinos s such that 0 < s < f.

The left member of the above equality is called the Lebesgue intgral of f over FE
with respect to the measure p. It is a number [0, 2].

Lemma (1.24). The following propositions are immediate consequences of the definitions.
The functions and sets occurring in them are assumed to be measurable:

a. f0< f<g then {Efdp<§ gdu
b. f Ac Band f>0,then §, fdp < g fdp

c. If f 20 and ¢ is a constant 0 < ¢ < o, then

foroee] o

17
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d. If f(z) =0 for all z € E, then §, fdu = 0, even if u(E) = o
e. If u(E) =0, then § fdu =0, even if f(z) = forevery z € £
£ If f20,then § fdu=1§, xgfdp.

Lemma (1.25). Let s and ¢ be nonnegative measurable simple functions on X. For

E e #, define
o(E) = | sau

E

Then ¢ is a measure on 4. Also

f(s+t)d,u=J sd,u+J‘Xtdu
X X

Theorem (Lebesgue’s Monotone Convergence Theorem). Let {f,} be a sequence
of measurable functions on X, and suppose that

a. 0< fi(z) < fo(z) < S woforevery re X

b. fu(z) — f(z) asn — o, for every z € X

Then [ is measurable, and
[ fdi=| rau n-a
X X
Theorem (1.27). If f, : X — [0,00] is measurable, for n = 1,2,3,..., and

f(@) =) falz) (zeX)
n=1

then

L_fd#=éjxfndn

Corollary. Ifa;; 20foriandj=1,2,3,..., then
o @ e8]
)T
i=1j=1 j=1

J::

18

G,,J'

1

J
-

Theorem (Fatou’s Lemma). If f, : X — [0, 0] is measurable, for each positive integer
N, then

L (hgrl inf fn) dp < lim inf L fudp
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Theorem (1.29). Suppose f: X — [0, ] is measurable, and

o(E) = Lfdu (E e A)

Then ¢ is a measure on .# and

Lgdtp = Lgfdn

for every measurable g on X with range in [0, oo].

Lesbegue Integrable We define L!'(u) to be the collection of all complex measurable
functions f on X for which

Llfldu<00

Note that the measurability of f implies that of |f|. The members of L!(u) are called
Lebesgue integrable functions {with respect to x) or summable functions.

Complex Integration If f = u + iv where ¢ and v are real measurable functions on X,
and if f € L'(1), we define

f fd,u=f u"‘d,u—-J~ u_du-i-z'J.U"'dp—ifv_d,u
E E E

for every measurable set E.

Theorem (1.32). Suppose f and g € L'(u) and o, 8 € C. Then af + 8¢ € Lt (), and
| @repodu=a| rauss| gau
X X b's

Theorem (1.33). If fe L'(u), then

Lfdu’ < L |l dp

Theorem (Lebesgue’s Dominated Convergence Theorem). Suppose {f,} is a se-
quence of complex measurable function on X such that

fla) = lim fu(z)
exists for every z € X. If there is a function g € L!(u) such that

| falz)| < g(z)
then f e L*(u),

IimJ. |fo— fldu=0 and lim fndp=J limfndu=j fdu
X X ¢ N X

n—s0 n—o
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Wheeden & Zygmund

Theorem. If |E|=0orif f=0a.e. in E, then {; f = 0.

Theorem (Bounded Convergence Theorem). Let {fi} be a sequence of measurable
function on E such that fp — f almost everywhere in E. If |E| < 4+ and there is a
finite constant M such that |fi| < M a.e. in E, then {_ fy — { f.

Theorem (Egorov’s Theorem). Suppose that { fi} is a sequence of measurable functions
which converges almost everywhere in a set E of finite measure to a finite limit f. Then
£ > 0, there is a closed subset F of E such that |E\F| < ¢ and { fx} converges uniformly
to fon F.

4.2 Lebesgue Integration in R

Rudin

Theorem (3.15). If the distance between two continuous functions f and g, with compact
supports in R, is defined to be

[INCRECE:

— a0

the completion of the resulting metric space consists precisely of the Lebesgue inte-
grable function on R!, provided we identify any two that are equal almost everywhere.

Wheeden & Zygmund

Riemann-Stieltjes vs. Lebesgue Integral Consider the function
w(e) = wrp(a) = {ze E: f(z) > o}

where f is a measurable function on E and ~o < a < +0. We call wy,i the distri-
bution function of f on F.

If we assume that f is finite a.e. in £, then by (3.26 ii)

Jim, (@) =0

unless w(a) = +o. Similarly
1i1£1ww(a) = |E|

Assuming |E| < +|infty, w is bounded, the first equality holds, and w is of bounded
variation on (—o0, +00) with variation equal to |E|.

Lemma (5.38). If o < B, then |{a < f < B}| = w(a) — w(B).
Lemma (5.39). Let w(a+) = lim. gw(a + €} and w(a—) = lim~pw(a — €). Then:
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a. w(a+) = w(a); that is w is continuous from the right
b. w(a-) = |{f = o}

Corollary (5.40). a. w(a—) —w(a) = |{f = a}|; in particular, w is continuous at « if
and only if |[{f = a}| =0

b. w is constant in an open interval (a, 8) if and only if [{a < f < 8}| = 0, that is,
if and only if f takes almost no values between « and j.

Theorem (5.41). Ifa < f(z) < b for z € E, then

Lf = —Lbadw(a)

Theorem (5.42). Let f be any measurable function F, andlet E,, = {r€ E:a < f(z) <
b}. Then

f=- J-badw{a)

Eab a

Theorem (5.43). If either {_ f of Sf'm a dw(a) is finite, then the other exists and is finite,

and o
J;f = —j_madw(a)

Equimeasurable Two measurable functions f and g defined on £ are said to be equimea-
surable, or equidistributed, if

wre(a) =wsela) Yo
We might think of these functions as rearrangements.

Corollary (5.44). If f and g are equivimeasurable on E and f € L{E), then g € L(E) and

Jor= s

4.3 Lebesgue Measure

Rudin

Theorem (Lebesgue Measure). There exists a positive complete measure m defined on
a g-algebra .# in R*, with the following properties:

a. m(W) = vol (W) for every k-cell W.

b. .# contains all Borel sets in R*, more precisely, E € .# if and only if there
are sets A and B < R*¥ such that A €« E < B, Aisan F,, B is a G5, and
m(B\A) = 0. Also m is regular.
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¢. m is translation-invariant, i.e. m(E + z) = m(FE) for every £ € .# and every
z € Rk,

d. If 12 is any positive translation-invariant Borel measure on R* such that p(K) < c©
for every compact set K, then there is a constant ¢ such that u(E) = cm(E) for
all Borel sets E c R*.

c. To every lincar transformation T of R* into R* corresponds a real number A(T)
such that
m(T(E)) = A(T)m(E)

for every E € .#. In particular, m{T(E)) = m(E) when T is a rotation.

The members of .# are the Lebesgue measurable set in R*; m is the Lebesgue
measure on R*.
Theorem. If A c R! and every subset of A is Lebesgue measurable then m{A) = 0

Corollary. Every set of positive measure has nonmeasurable subsets

Wheeden & Zygmund

Lebesgue Measureable A subset £ of R" is said to bc Lebesgue Measurable, or
simply measurable,, if given £ > 0, there exists an open set G such that

FcG and IG\E|, <€

Lebesgue Measure I F is measurable, its outer mecasure is called its Lebesgue mea-
sure or simple its measure, and denoted |E| where |E| = |E|. for measurable E.

Corollary. An interval [ is measurable, and |[I| = v([).

Lemma (3.22). A set F in R" is measurable if and only if given € > 0, there exists a
closed set F = E such that |[E\F|. <.

Theorem (Caratheodory). E is measurable if and only if for every set A,

|Ale = [A n E|. + |A\E|



Chapter 5 L” Spaces

5.1 LP Spaces

Rudin

LP-norm If0 < p < oo andif f si a copmlex measurable function on X, define

l/p
£ = { [ 1P}

and let LP(p) consist of all f for which ||f|}, < co. We call ||f||; the LP-norm of f.

Essential Supremum Suppose g : X — [0, o0[ is measurable. Let S be the set of all real
« such that

(g™ ((a,0])) = 0
fS=g,put =00 If §# &, put 8 =infS. Since

97H((B,0]) = gg“ ((ﬁ + %00])

and since the union of a countable collection of sets of measure 0 has measure 0, we
see that 8 € §. We call 8 the essential supremum of g.

Essentially Bounded If f is a complex measurable function on X, we define ||f]|js to
be the essential supremum of |f|, and we let L®(u) consist of all f for which ||f||o <
w. The members of L®(u) are sometimes called essentially bounded measurable
functions on X.

Lemma. It follows from this definition that the inequality |f(z)| < A holds for almost all
z if and only if A 2 || f]|eo

[ Conjugate Exponents] If p and ¢ are positive real numbers such that p + ¢ = pg or

equivalently

1 1
S4-=1
P q

then we call p and ¢ a pair of conjugate exponents.

Asp— 1, g — o, so 1 and 0 are also regarded as a pair of conjugate exponents.

23
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Theorem (3.8). If p and g are conjugate exponents, 1 < plegoo and if f € LP(n) and
g € L9(u), then fge L'(u)
Theorem (3.9). Suppose 1 < p < o, and f € LP(u), g € LP(u),Then f + g € LP(u), and

”f"'gllp < ”f”p . ||9-|P

Lemma (3.10). Flxp, 1 < p< . If f € LP(u) and a is a complex number it is clear
that af € LP(p). In fact,

[leefllp = ledll Flle

Thus, LP(1) is a complex vector space.
Lemma. Suppose f, g, and h are in L”(p). Then

tf = h“p <|f=9glls +llg = &l

Thus, we can regard L?(u) as a metric space. (It is in fact a complete metric space.)

Convergence in LP(u) If {f,}is asequence in LP(y), if f € LP(p), and if imy 0 || fo = fllp =
0, we say that {f,} converges to f in L?(p) (or that {f,} converges to f in the mean
of order p, or that {f,} is LP-convergent to f).

Cauchy in L”(u) Iftoevery € > 0 there corresponds an integer N such that || fu — fullp <
¢ as soon as n,m > N, we call {f,} a Cauchy sequence in L”()

Theorem (3.11). LP(u) is a complete metric space, for 1 < p < o and for every positive
measure ji.

Theorem (3.12). If 1 € p < o and if {f,} is a Cauchy sequence in LP(y), with limit f,
then {f,} has a subsequence which converges pointwise almost everywhere to f(z).

Theorem (3.13). Let S be the class of all complex, measurable, simple functions on X
such that

pl{z:s(z) #0}) <o
If 1 < p < o0, then S is dense in LP(y).

5.2 Holder’s and Minkowski’s Inequalities

Rudin

Convex A real function ¢ defined on a segment (a,b), where —o0 < a < b < 00, is called
convex if the inequality

(1= Nz + Ay) < (1= Ne(z) + Mp(y)

holds whenever a <z < b,a<y<b,and0< A< L
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Graphically, the condition is that if z < t < y, then the point (¢, p(¢)) should lie below
or on the line connecting the points (z, ¢(z)) and (y, ¢(y)) in the plane. Also,

ot) ~ pls) o) = v(t)
t—s u—1i

whenevera < s <t <u<b.

Lemma. A real differentiable function ¢ is convex in (a,b) if and only ifa < s <t < b
implies ¢'(s) < ¢/(t), i.e., if and only if the derivative ¢’ is a monotonically increasing
function.

Theorem (3.2). If ¢ is convex on (a,b) then ¢ is continuous on (a, b).

Theorem (Jensen’s Inequality). Let g be a positive measure on a o-algebra .# in a
set §2, so that u(Q) = 1. If f is a real function in L'(u), ifa < f(z) < b for all z € 0,
and if ¢ is convex on (e, b), then

w(Lfdu) < fn(wOf)du

Theorem (Holder’s Inequality). Let p and q be conjugate exponents, 1 < p < co. Let
X be a measure space, with measure u. Let f and g be measurable function on X,
with range in [0, ©]. Then

1/p i/q
[ s9am < sttt = { [ f”dn} { [ g"d#}

Note. If p = ¢ = 2 this is called Schwarz inequality.

Theorem (Minkowski’s Inequality). Let p and g be conjugate exponents, 1 < p < oc.
Let X be a measure space, with measure p. Let f and g be measurable function on
X, with range in [0,00]. Then

I1f + gllz < || fllpllg!lp

{L(f i du}w B {L 4 d“}lfp + {.[\ gy dﬂ}”p

5.3 Approximation by Continuous Functions

That is:

Rudin

Theorem (3.14). For 1 < p < o0, C(X) is dense in LP(u)

Lemma. For every p € {1,©] we have a metric on C.(R*), the distance between f and g
is ”f = ||p'
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Theorem. If two continuous functions on R* are not identical, then they differ on some
nonempty open set V, and m(V) > 0, since V contains a k-cell. Thus if two members
of C,(R*) are equal a.e., they are equal.

Lemma. In C.(R*) the esential supremum is the same as the actual supremum: for f €
Cc(R¥)
|1flee = sup |f(z)]

reRE

Theorem. LP(R*) is the completion of the metric space which is obtained by endowing
C.(R*) with the LP-metric.

Theorem. (Casc of p = 1) If the distance between two continuous functions f and g, with
compact supports in R, is defined to be

o

[f(t) — g(t)| dt

=0

the completion of the resulting metric space consists precisely of the Lebesgue inte-
grable function on R?, provided we identify any two that arc cqual almost everywhere.

Lemma. Every metric space S has a completion S* whose elements may be viewed ab-
stractly as equivalence classes of Cauchy sequences

Theorem. The L®- complction of C.(R*) is not L®(R*), but is Cy{R¥), the space of all
continuous functions of R* which “vanish at infinity”.

Vanish at Infinity A complex function f on a locally compact Hausdorff space X is said
to vanish at infinity if to every £ > 0 there exists a copmact set K < X such that
{f(z)| < € for all  not in K.

Co(X) The class of all continuous f on X which vanish at infinity is called Co(X).

Clearly C.(X) < Cy(X), and the two classes coincide if X is compact. In that case we
write C(X) for either of them.

Theorem (3.17). If X is a locally compact Hausdorff space, then Cy(X) is the completion
of C.(X), relative to the metric defined by the supremum norm

|| £Il = sup |/ (z)]
e X

5.4 Duality of L? and LY

Wheeden & Zygmund

Linear Functional If B s a Banach space over the real numbers, a real-valued linear
functional { on B is by definition a real-valued function I{(f), f € B, which satisties:

Wi+ f2) = () +1(fe)  Uaf) =al(f), —0<a<w
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Bounded A linear functional ! is said to be bounded if tehre is a constant ¢ such that
lL(F)| < ¢c||f]] for all f e B. A bounded linear untional ! is continuous with respect to
the norm in B, by which we mean that if ||f — fi|| — 0 as k — oo, then I(f;) — (),

since [[{f) — I(fi)l = I(f — fo)l < cllf = fil| = 0.

Norm The norm ||!|| of a bounded linear functional { is defined as
|l = sup [i(f)|
ItAl<1

since f/||f|| has norm 1 for any f s 0, and since ! is linear, we have ||{|| = sup |I{ f)|/|{f|].

Dual Space The collection of all bounded linear functionals on B is called the dual space
B’ of B. We shall consider the case when B = L? = LP(E, du) = L?(u). The goal is
to show that if 1 < p < o0 and p is o-finite, then (L) = L¥ (= L9).

Theorem {10.43). Let 1< p <o, 1/p+1/g = 1. If g e LI(u), then the formula

tm=me

defines a bounded linear functional ! € [L?(r)]’. Moreover ||!|| < ||g]l4

Theorem (10.44). Let 1 < p < o0, p,q be conjugate exponents, g be o-finite. If [ €
(LP(n))', there is a unique g € L9(u) such that

tm=me

Moreover, ||!|| = ||gllq, so that the correspondence between ! and g defines an isometry
between (LP(p))" and LI(u).
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Chapter 6 Miscellaneous

6.1 Radon-Nikodym Theorem

Rudin

Theorem (Lebesgue- Radon-Nikodym). Let p be a positive g-finite measure on a
o-algebra .# in a set X, and let A be a complex measure on ..

a. There is a unique pair of complex measures A, and A, on .# such that
A=A+ A, A & Ay Lo

If A is positive and finite, then so are A, and A,.
b. (Radon-Nikodym Theorem.) There is a unique h € L'(x) such that

Mo(E) = | ey

E

for every set E € /.

Lebesgue Decomposition The pair (Ag, A,) is called the Lebesgue decomposition of
A relative to u. The uniqueness of the decomposition is easily seen, for if (A}, A;) is
another pair which satisfies the first clause of the previous theorem, then

A= da == A
Al = As « pand A, — A, L p, hence both sides must be 0.

Radon- Nikodym Derivative The function & is the previous theorem is calleb the Radon-
Nikodym derivative of A, with respect to p. We may then express (b) in the form
dA, = hdp or even h = d),/dp.

Lemma. Let pu be Lebesgue measure on (0,1), and let A be the counting measure on
the o-algebra of all Lebesgue measurable sets in (0,1). Then A has no Lebesgue
decomposition relative to p, and although g « A and g is bounded, there is no
he LY(A) such that du = hdA.

Theorem (6.11). Suppose u and A are measures on a g-algebra .#, p is positive and A
is complex. Then the following two conditions are equivalent:

29
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a A«

b. To every € > 0 corresponds a § > 0 such that |A(E}| < € for all E € .# with
u(E) <.

Property (b) is sometimes used as the definition of the absolute continuity. However,
(a} does not imply (b) if A is a positive unbounded measure.

Theorem (6.12). Let u be a complex measure on a o- algebra .# in X. Then there is a
measurable function h such that |h(z)| = 1 for all £ € X and such that

dp = hd|]

(This is sometimes referred to as the polar representation of p.)
Theorem (6.13). Suppose x is a positive measure on .#, g € L'(p), and

A(E) = “rEgdu (E € )

Then

) = [ lalaw (B ea)

o

Theorem (Hahn Decomposition Theorem). Let u be a real measure on a o-algebra
A in a set X. Then tehre exist sets A and Be .# suchthat AUB =X, AnB =,
and such that the positive and negative variations ™ and p~ of p satisfy

ut(E) = WAnE), w(E)=0uBAE) (Ee.)

IN other words, X is the union of two disjoint measurable sets A and B, such that A
carries all the positive mass of u and B carrics all the negative mass of p.

Corollary. If u = A — Xz, where A\; and A are positive measure, then A, 2 p* and
Ay = pu7.

6.2 Lebesgue Points

Rudin

Lebesgue Points If f € L}(R*), any z € R* for which it is true that

lim !

r~0 (B, fB(z,rJ \f(y) = f(z)|dm(y) =0

is called a Lebesgue point of f.

Theorem (7.7). If f € L'(R¥), then almost every z € R* is a Lebesgue point of f.
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Theorem (7.8). Suppose 4 is a complex Borel measure on R¥, and y « m. Let f be the
Radon-Nikodym derivative of u with respect to m. Then Dy — f a.e.[m], and

u(E) = L(Du) dm

for all Borel sets E < R*.

Nicely Shrinking Sets Suppose z € R¥. A sequence {E;} of Borel sets in R* is said to
shrink to z nicely if there is a number a > 0 with the following property. There is
a sequence of balls B(z,r;), with limr; = 0, such that E; < B(z,r;) and

m(E,) N m(B(:E, T{))

Theorem (7.10). Associate to each z € R* a sequence {E;(z)} that shrinks to z nicely,
and let f € L'(R*). Then

1
flz) = lim ————= fdm
(@) i~ M(Ei(1)) Jg
at every Lebesgue point of f, hence a.e.[m].
Theorem. If fe L'(R') and
F(z) = fdm (~o<z<®)

=a0

then F'(z) = f(z) at every Lebesgue point of f, hence a.e.[m].

6.3 Absolutely Continuous Functions (General)

Rudin

Absolutely Continuous Let u be a positive measure on a o-algebra ., and let A be an
arbitrary measure on .#; A may be positive or complex. We say that A is absolutely
continuous with respect to y, and write

AL p
if M(E) = 0 for every E € # for which u(E) = 0.
Concentrated on A If there is a set A € .# such that A(E} = A(An E for every E e . #,
we say that A is concentrated on A.
This is equivalent to the hypothesis that A(£) = 0 whenever En A = .

Mutually Singular Suppose A, and A, are measures on .4, and suppose there exists a
pair of disjoint sets A and B such that A; and A; are mutually singular, and write
A1 L A
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Lemma (6.8). Suppose u, A, A, Ay are measures on a o-algebra .#, and u is positive.

If X is concentrated on A, so is |Al|

If Ay L Ao, then [Ay| L [Aq

If Ay Lp, then Ay + A L

If My « pand Ag « , then Ay + do <

Ao o

e. If X «p,then Al « p
f. If /\1 <<[J.B.Ild )\QJ_,U., then )\1 LA
g lf A« pand ALy, then A = 0.

Lemma (6.9). If p is a positive o-finite measure on a c-algebra .# in a set X, then there
is a unction w € L'(x) such that 0 < w(z) < 1 for every z € X.

6.4 Functions of Bounded Variation (General)

Rudin

Partition Let .# be a g-algebra in a set X. Call a countable collection {E;} of members
of .# a partition of E if E; n E; = J whenever i # 7, and if E = E;

Lemma (6.1). For a complex measure g on ., 1 is then a complex function on .# such
that

WE) = Y u(E)

for every partition {E;} of E. Note, this series is absolutely convergent by Theorem
3.56 and since E;’s arc pairwise disjoint.

Total Variation We can define a set function sl on . by
v e)
L|(E) = sup ) |w(B)|  (Ee )
i=1
the supremum being taken over all partitions {E;} of E.
Note |u|(E) 2 |u(E)|, but the two are generally unequal.

The set function || is called the total variation of u, or sometimes, to avoid misun-
derstanding, the total variation measure.

Lemma. If u is a positive measure, then |p| = 4.

Bounded Variation If the range of p lies in the cmoplex plane, then it actually lies
in some disc of finite radius. This property (proved in Theorem 6.4) is sometimes
expressed by saying that p is of bounded variation.
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Theorem (6.2). The total variation |u| of a complex measure p on .# is a positive measure
on .

Lemma (6.3). If z,..., 2y are complex numbers then there is a subset S of {1,...,N}

for which
D% Z 2]

keS
Theorem (6.4). If u is a complex measure on X, then

|1l (X) < o0
Lemma (6.5). If g and A\ are complex measures on the same o-algebra .#, we defined
g+ A and cu by:
(1 + A)(E) = u(E) + ME) (cp)(E) = cpu(E) Eed

for any scalar ¢, in the usual maner. Further, these are complex measures. Lastly, if
we put [|g|] = |#|(X), it is easy to verify that all axioms of a normed linear spae are
satisfied.

Positive and Negative Variation Consider a real measure y on a o-algebra .#. Suc
measures are frequently called signed measures. Define || as before, and define

1 _ 1
= 5(lul +p) 1= 5lul=n)
Then both p* and u~ are positive measures on .# and they are bounded. Also:
p=pt—p luf = p* +p”
The measures gt and u~ are called the positive and negative variations of u

respectively.

Jordan Decomposition of o The representation p = p+ — p~ is known as the Jordan
decomposition of u.

6.5 Fundamental Theorem of Calculus

Rudin

Absolutely Continuous A complex function f defined on an interval I = [a,b], is said
to be absolutely continuous on I (briefly, f is AC on I) if there corresponds to every
£>0ad>0so that

Zlfﬁ, - fla)l <e

for any n and any disjoint collectlon of segments (a;, 31), ..., (an, Bs) in I whose lengths
satisfy

SiB—a <5

=1
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Theorem (7.18). Let I = [a,b], let f: I — R! be continuous and nondecreassing. Each
of the following three statements about f implies the other two:

a. fisACon /[
b. f maps sets of measure 0 to sets of measure 0.

c. f is differentiable a.e. on I, f' € L!, and
f@-1@=[ roE  @<s<b

Theorem (7.19). Suppose f: I — R! is AC, I = [a,b]. Define

N
F(z) =sup ), |f(t:) = f(tis)] (e <z <b)
i=1

where te supremum is taken over all N and over all choices of {t;} such that a = {; <
h<---<iy=m.

The functions I, F + f, F — f are then nondecreasing and AC on /.

Bounded Variation F is called the total variation functino of f. If f is any (complex)
functino on I, AC or not, and F(b) < co, then f is said to have bounded variation
on I, and F(b) the total variation of f on J.

Theorem (Fundamental Theorem of Calculus). If f is a copmlex function that is
AC on I = [a,b], then f is differentiable at almost all points of I, f' € L*(m)}, and

f(z) = fla) = ff’(t)dt (a<z<b)

Theorem (7.21). If f : [a,b] — R! is differentiable at every point of [a,b] and f' e L! on
[a,b], then

f@)- 1@ - | F)dt (a<z<b)

Note. This differs from the previous theorem in that we require differentiability holds
at every point of [a, b].

6.6 Product Measures

Rudin

Cartesian Product If X and Y are two sets, their cartesian product X x Y is the set
of all ordered pairs (z,y), withze X andye Y. f Ac X and B c Y/, it follows that
Ax Bc X xY. We call any set of the form A x B a rectangle in X x Y.
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Measurable Rectangle Suppose now that {X,.%) and (Y, ) are measurable spaces.
(Recall, this simply means that .% is a o-algebra in X and . is a g-algebra in Y.

A measurable rectangle is any set of the form A x B where Ae % and Be J.

Elementary Sets If @ = R, v --- v R,, where each R, is a measurable rectangle and
R, R; = I for i # j, we say Q) € &, the class of all elementary sets.

Lemma. Note % x & is defined to be the smallest o-algebra in X x Y which contains
every measurable rectangle.

Monotone Class A monotone class .# is a collection of sets with the following prop-
erties: If A, e #, Bie M, A, Ajpy, Bi 2 Biyy, fori=1,2,3,..., and if

w o
A=A, B =[5

i=1 im]
then Ae .# and Be /.
z-Section and y-Section If Fc X xY,ze X, yeY, we define
E,={y:(z,y) e E} EY = {z:(z,y) € E}

We call £, and E¥ the z-section and y-section, respectively, of . Notethat B, c Y,
Evc X.

Theorem (8.2). If Fe ¥ x ,then E. € J and Ve ¥, foreveryze X and ye Y.

Theorem (8.3). % x  is the smallest monotone class which contians all elementary
sets.

Function With each function f on X x ¥ and with each z € X, we associate a function
fx defined on Y by f:r(y) = f(.‘I,‘, y)'

Similarly, if y € Y, f¥ is the function defined on X by f¥(z) = f(z,y).

Since we are now dealing with three o-algebras, %, 7, and % x &, we shall, for
the sake of clarity, indicate in the sequel to which of these three o-algebras the word
“measurable” refers.

Theorem (8.5). Let f be an (& x J)-measurable functions on X x Y. Then

a. For cach z € X, f. is a Z-measurable function

b. For each y € Y, f¥ is an ¥-measurable function
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Theorem (8.6). Let (X,.%,p) and (Y, &, ) be o-finite measure spaces. Suppose @) €
I xT. I

p(z) = MQ:) P(y) = m(QY)
for every z € X and y € Y, then ¢ is $-measurable, 1 is 7 -measurable, and

Lgod,u - L@bd)\

Product of Measures If (X,.%, u) and (Y, Z, A) are as in the previous Theorem, and if
Qe & x T, we define

(1 x N)(Q) = L A(Q:) du(z) = f w(Q") dA().

The equality of the integrals is the content of the previous theorem. We call p x A the
product of the measures ¢ and A. That p x A is really a measure follows immediately
from Theorem 1.27.

6.7 Fubini’s theorem

Rudin

Theorem (Fubini’s Theorem). Let (X,.%,u) and (Y, 7, A) be o-finte measure spaces,
and let f be an (% x Z)-measurable fuhction on X x Y.

a. f0< f <o, and if

o(z) = jy LA\ p() = L fldp (zeXyeY)

then @ is ¥-measurable, 1 is & -measurable, and

fxpdu - nyfd(“ A= JY¢dA

b. If f is complex and if

o*(z) = I+Y;f|, dA and j o dy <o
X

then f e L'(u x A).

c. If fe L' (u x A), then f; € L1()) for almost all z € X, f¥ e L!(y) for almost
all y € Y; the functions ¢ amd ¢, defined by the first equation in (a) a.e., are in
LY(y) and L'()), respectively and the consequence of (a) holds.

Corollary. We can rewrite the consequence of (a) in the more usual form of iterated
integrals:

| @) | srenare - [ oo [ e due
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Corollary. The combination of (b) and (c) give the following result. If f is (&% x J)-
measurable and if

f duu(z) f (@ 3) dA) < o0
X Y

then the two iterated integrals are finite and equal.

Summary All this to say, the order of integration may be reversed for (% x & )-measurable
functions f whenever f > 0 and also whenever one of the iterated integrals of | f] is
finite.

See Rudin page 166 for Counterexamples.

Miscellaneous

Theorem (Tonelli’s Theorem). (6.10 WZ) Let f(z,y) be nonnegative and measurable
on an interval I = I} x I of R™*™. Then, for almost every z € I;, f(x,y) is a measurable
function of y on J;. Moreover, as a function of z, SI__, f(z,y)dy is measurable on [;,

. [f [(z,y) dzdy = L [ S dy] de

Theorem (Bernoulli’s Inequality).
(1+z)"21+rz
Forr20and z 2 -2

Nonmeasurable (Zermelo’s Axioms) Consider a family of arbitrary nonempty disjoint
sets indexed by a set A, {E, : @ € A}. Then there exists a set consisting of exactly one
element from each E,, a € A.

Lemma (WZ 3.37). Let E be a measurable subset of R! with {E| > 0. Then the set of
diffecences {d: d =z — y,z € E,y € E} contained an interval centered at the origin.

Theorem (Vitali’s). There exist nonmeasurable sets.

Corollary (WZ 3.39). Any set in R! with positive outer measure contains a non-measurable
set.

Theorem (Borel-Cantelli Lemma}. (Royden p.46) Let {Ex}{., be a countable collec-

tion of measurable sets for which 3.2 | m(FEx) < 0. Then almost all z € R belong to
at most finitely many of the E’s.

Rational Equivalence Relation For z ~ y if z,y € Q. This was used on a problem on
a qual at some point. (Look up later)

Theorem (Theorem 10.33). a. If ¢ is both absolutely continuous and singular on £
with respect to u , then ¢(A) = 0 for every measurable A c E.
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b. If both ¢ and ¢ are absolutely contihuous (singular) on E with respect to u, then
so are ¥ + ¢ and cyp, where c is any real constant.

c. y is absolutely continuous (singular) on E with respect to u if and only if its
variations V and V are, or, equivalently, if and only if its total variation is.

d. If {px} is a sequence of addititve set functions which are absolutely continuous
(singular) on E with respect to p, and if p(A) = lime_. pr{A) exists for every
measurable A < E, then ¢ is absolutely continuous (singular) on E with respect
to u.

Convolutions If f and g are measurable in R", their convolution (f * g)(z) is defined
by

(F+0)a) = | fa-vgtat
Things to note:

o frg=g+f
* SR" |f = gldfl; "<‘- (ER" |fll dm) (SRH |g| dm)
o If f, g are nonnegative and measurable R", then

s ot (fg0e) (foo)

Fat Cantor Set The fat Cantor set is an example of a set of points on the real line R
that is nowhere densc (contains no intervals), yet has positive measure.

This set is made by starting with [0,1] and removing the middle quarters (like one
would do with the Cantor set).
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MAT 701 HW 3.1: LEBESGUE OUTER MEASURE

Due Wednesday 08/29/18 by the end of the day

Problem 1. Prove that for every set £ C R"™ and every € > 0, the

Lebesgue outer measure |E|. is equal to

inf {Z v(lp): EC U I, and Vkdiam I}, < 5}

k=1
(This is the same infimum as in the definition of |E|. but with the

additional requirement diam I}, < ¢ for all &.)

Proof. Let S; be the set of all sums ) v(fi) where {I;} is any count-
able cover of E by intervals I;. Also let S; be the set of all sums
> v(I,) where {I;} is a countable cover of E by intervals [, which
satisfy diam Iy < ¢ for all k. By definition, |F|. = inf Sy. The goal is

to show that
|E|e = inf S;

This will be achieved by proving that S; = 5;.

That S, C 5] is immediate from the definitions of both sets. Let us
take some element z € S;. By the definition of S, there exists a count-
able collection of intervals {I.} such that E € |J, I and }_, v(I}) = 2.

For each k, let Ly be the maximal sidelength of I, that is max;=s,. »(b;—
a;). Let Nj be a large enough integer so that L, /N < £/+/n. Dividing
each edge [a;,b;] in Ni equal 1-dimensional subintervals results in N}
equal n-dimensional subintervals of I; which cover Ij. Since each side-
length was reduced by the factor of Ny, their product, i.e., the volume

of each piece, is v(I;)/N;. This means the sum of volumes of the parts
1
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is equal to v(l;). Each part has diameter at most

n

Z((bj - aj)/Nk)2 < Z(Lk/‘Nk)z < \/H(E/ﬁ) =g

i=1 =1
So, the collection of all subintervals obtained after applying the above
process to each & is a countable cover of E, and the sum of their volumes

is exactly z. This completes the proof that S, = 5. O

Problem 2. Suppose that the sets Ey C R" are such that the series

(==}
Z | Ex|e converges. Prove that the outer measure of the set
k=1

o0 o0
A= U B
m=1l k=m
is zero. (Remark: the set A is often denoted limsup Ey.)

k00
o0 o0

Proof. Since E |Ey|e converges, the tail sums E | Ex|. tend to zero
k=1 k=m

as m — oo. Given £ > 0, pick m such that Z |Bkle < €. By the

k=m
definition of A,
o0
Ac | &
k=
The monotonicity and countable subadditivity of outer measure imply
[»+] o0
Al < [U Bl €Y 1B <
k=m e k=m

Since € was arbitrary, it follows that |A|. < 0. The outer measure
cannot be negative, hence |4|. = 0.

(Remark: as mentioned in class, Problem 2 can be solved purely
on the basis of the 3 fundamental properties of outer measure. Two
of them were mentioned above. The remaining one is |B|. = 0: this

property implies the outer mcasure cannot be negative, since @ C A
holds for every A.) a
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MAT 701 HW 3.2A: MEASURABLE SETS

Due Friday 08/31/18 by the end of the day

Problem 1. Given an arbitrary set A C R and a number ¢ > 0, let
B = {ca: a € A}. Prove that |B|, = c|A|..

Proof. Given £ > 0, let {[s«,t|} be a countable cover of A such that

> (b — ) < Al +e

&
The intervals [csg, ctx] cover B, since every point of B is of the form ca
where a € A is covered by some interval sy, tx]. Therefore,

1Ble < D (et —csi) = e (te = s) S clAle+e
k

k
Since £ > 0 was arbitrary, it follows that |B|. < ¢|A.|.

It remains to observe that A = ¢~!B, which by the above implies

|Ale < ¢7B),, ie., |Ble = c|Ale. Thus, |B|. = c|4|.. n

Problem 2. Suppose that a set A C R is measurable. Prove that for

every ¢ > 0 the set B = {ca: a € A} is also measurable.

Proof. Given € > 0, let G be an open set that contains A and satisfies
|G \ Ale < e/c. Since the function f(z) = z/c is continuous, the
preimage of G under this function is also open. This preimage f~}(G)
is ¢G. Since A C G, it follows that B C ¢G. Moreover, by the previous

exercise
HeG)\ Ble = |c(G\ A)|. = c|G\ Al <&
__Since £ was arbitrary, this proves that B is measurable. O

?






MAT 701 HW 3.2B: MEASURABLE SETS

Due Wednesday 09/05/18 by the end of the day

Problem 1. Given a sequence of continuous functions fr.: R = R, let
B be the set of all points £ € R such that the sequence {fi(z)} is
bounded. Prove that B is a measurable set.

Hint: try to consiruct B from the sets {z: |fe(z)] < M} by using

countable unions and intersections.
Proof. For k,m € N lct y kew
b ]
A(k,m) = {z e R: |fi(z)| £ m{= fe ([=m,m))

Being the preimage of a closed set under a continuous function, A(k, m)
is closed and in particularmeasurable. Let

A=) AK,m)

m=] k=1

which is also measurable, being obtained from measurable sets by
countable set operations. I claim that A = B.

If £ € A, then there exists m € N such that |fi(z)| < m for all
k € N, which shows the sequence {fi(z)} is bounded.

Conversely, if the sequence {fi(z)} is bounded, then there exists
m € N such that all elements of the sequence are at most m in absolute

value. This means | fr(z)| < m for all k, hence z € A. O

Problem 2. Given a sequence of continuous functions f;: R = R, let
C be the set of all points x € R such that k]im fi(z) = 0. Prove that
Y

C is a measurable sct.
1
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Proof. For k,m € N let
A(k,m) = {z € R: [fulz)| < 1/m} = f'((-1/m, 1/m))

Being the preimage of an open set under a continuous function, A(k,m}

is open and in particular measurable. Let

oo 00 oo

A= U N Atk.m)

m=1N=1k=N
This set is also measurable, being obtained from measurable sets by

countable set operations. I claim that A = C.

Suppose z € A. Given € > 0, pick m € N such that 1/m < e. Since
z € U= Niey Alk,m), there exists N such that z € (o A(k, m),
which means |fi(z)| < 1/m for all £ > N. Thus, |fi(z)| < € for all
k = N, which proves limy_, fi(z} = 0.

Conversely, suppose z € C. Given m € N, use the definition of the
limit limy 00 fr(z) = 0to find N such that |fr(z)| < 1/mforallk > N.
The latter means z € [,y A(k,m). Therefore, for every m € N the

inclusion z € UJy_, Neep A(k,m) holds. This means z € A. a



MAT 701 HW 3.3: PROPERTIES OF LEBESGUE
MEASURE

Due Friday 09/07/18 by the end of the day

Problem 1. Prove that the set
A= {z € R: 3k € N such that {27 - 2*| < 1}

is measurable and |A4| < oo.
(Note that N = {1, 2,...}, not including 0.)

Proof. For each k € N, the inequality |2* — 2¥| < 1 is equivalent to
log,(2¥—1) < = < log,(2¥+1). Thus A = |Jp2, I where I;, = [log, (25—
1),log,(2% + 1)]. Each I is measurable, being an interval. Hence A is

measurable. By countable subadditivity of measure, |A| < >°07, |1kl
1t remains to show the series 3 p., |/i| converges. This can be done by
the comparison test, limit comparison test, or the ratio test. I'll use

the Limit Comparison Test with ) 4., 2% as a reference series:

el log, (2¥ + 1) — log, (2% — 1)

ek 9~k
k4 logy(1427%) — (k +logy(1 — 27F))
= 55
_ logy(1+27%) —log,(1 — 27%)
= 55
1 f[log(l+27%) N log(1 —27%) _ 2
" log?2 2=k ~2-k k—oo log?2
Here the last step is based on 1% lﬂg_(_1$+_:r) = 1. Since > ;o ,27F

converges, so does y -, |4kl El
1
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Problem 2. Prove that the set
A={z€0,1]: Vg € N Ip € N such that |z — p/q| < 1/4°}

is measurable and |A| = 0.
a 1 p 1
Proof. Let A, = U E(p,q) where E(p,q) = [E - = P4 —;.[ N [0,1].
et 79 ¢'q ¢
This is a countable union of measurable sets E(p, g) (which are inter-
vals, possibly empty), so it is measurable. Then the set A = [ gen Aq
is measurable too.
We have |E(p,q)] < 2/¢* by construction of E(p,q). Also, when
p > g+ 1, we have 5 - q—lg >1+ -(1; - 51" > 1, which implies F(p, q) = 0.

By subadditivity,
g+l

a 2 2q+2
|Aq|sZIE(p,q}ISZ;= qqz

p=1 p=1
By monotonicity, |A| < |A,| for each ¢. Since |A;] —— 0, it follows

=00

that |A| = 0. O



MAT 701 HW 3.4: PROPERTIES OF LEBESGUE
MEASURE

Due Monday 09/10/18 by the end of the day

Problem 1. Suppose E and Z are sets in R™ such that F U Z is

measurable and |Z| = 0. Prove that E is measurable.

Proof. Since Z \ £ C Z, the monotonicity of outer measure implies
|Z \ El. =0, hence Z \ E is measurable. And then

E=(BUZ)\(Z\E)

is measurable, being the difference of two measurable scts.
(This could be done with Carathéodory theorem or with the “Gj

minus a null set” theorem, but it’s easier without.) a

Problem 2. Given a continuous function f: R* — R", define M =
{E CR": f~Y(E) is Borel}.

(a) Prove that M is a g-algebra.

(b) Prove that if E is Borel, then f~!(E) is Borel. Hint: use (a).

Proof. (a) Does not involve f being continuous; the argument works
for any map f. Taking preimages commutes with any set operations:

for example,
JTHE) = {z: f(z) € E} = {z: f(z) ¢ E} = (fTUE))S
and
= (UE,) ={z: 3 f(z) E E;} = Uf"l(E,-)

So, if E € M, then f~}(E°) = f~Y(E)* is the complement of a Borel

set, hence is Borel, hence E° € M. Also, if E;, € M for each kK € N,
1
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then
e (U Ek) =Jr (&)
is the countablc union of Boj;el scts, heflce is Borel, hence |J, Er € M.

The definition of a g-algebra in the book also requires us to check
that M is nonempty: to do this, it suffices to notice that f~1(f) = 0
is Borel, hence d e M. O

(b) Since f is continuous, the preimage of any open set under f is
open, hence Borel. This means M contains all open sets. By definition,
the Borel o-algebra B is the smallest o-algebra that contains all open
sets. Thus B C M, which by definition of M means that f~'(E) is
Borel whenever £ is Borel.

(It is tempting to approach statement (b) by “writing a Borel set E
in terms of open/closed sets” and concluding that f~!(E) can also be
written in this way. But there is no such structural formula for Borel
sets: one can only get the proper subclasses like Gs, Giso, Gias, and so

on. The whole story is complicated: see Borel hierarchy on Wikipedia)

O



MAT 701 HW 3.5: LIPSCHITZ TRANSFORMATIONS

Due Wednesday 09/12/18 by the end of the day

Problem 1. Supposc f: R = R is a function with a continuous de-
rivative. Prove that for every measurable set E, the set f(E) is also
measurable.

Hint: although f need not be Lipschitz, its restriction to any bounded

interval 1s.

Proof. For cach j € N, the st E; = E N [—j, 7] is measurable, as the
intersection of two measurable sets. Since E = |J, E;, it follows that
f(E) = U, f(E;). So it suffices to prove f(E;) is measurable for every
;.

The derivative f’, being continuous, is bounded on the interval [—j, j|.
By the mean value theorem, f is Lipschitz on [—7,7]: indeed, |f(a) —
fb)| < |la — blsup_;; [f|. A technical detail arises: we only proved
the measurability of images for Lipschitz functions on all of R". To get

around this, define

flz),  zel-41]
film) = f(=3), =z<-j
f), z>j

Such extended function f; is Lipschitz continuous on all of R. Indeed,
in each of three closed interval (—oo, —jl, [—7, ], [, c0) the Lipschitz
condition holds by construction. For arbitrary a < b, partition the
interval [a,b] by the points {—j,j} should they lie there, apply the
Lipschitz continuity to each interval, and use the triangle inequality.
Conclusion: f;(E;), which is the same as f(E;), is measurable, and

the proof is complete. a



2 MAT 701 HW 3.5: LIPSCHITZ TRANSFORMATIONS

Note: in fact, for every set £ C R", any Lipschitz function f: E —
IR™ can be extended to a Lipschitz function F': R* — R". Therefore,
when discussing the measurability of f(E) it suffices to check that f is
Lipschitz on the set E.

Sketch of proof. It suffices to extend a real-valued Lipschitz function
f: E = R, because the vector-valued case follows by extending each
component. Let L be the Lipschitz constant of f, and define, for every
r e R?,

F(z) = inf(f(a) + LIz )
It is an exercise with the definition of inf to prove that F is Lipschitz
with constant L, and that F(z) = f(z) whenz € A. 0O

Remark: extending a map f: E — R" in the above fashion, one
finds the Lipschitz constant of the extension is < Li/n where L is the
Lipschitz constant of the original map. There is a deeper extension
theorem (due to Kirszbraun) according to which an extension with the

same Lipschitz constant L exists.

Problem 2. Given a set E C [0, 00), define a function f: [0,00) —
[0,00) by f(z) = [E N[0, z]le.

(a) Prove that f is Lipschitz continuous.

(b) Prove that for every number b with 0 < b < |E|, there exists a
set F C E such that |F|, = b.

Proof. (a) I claim that 0 < f(b) — f(a) < b — a for any a, bin|0, 00)
such that @ < b; this yields the Lipschitz continuity with constant
1. On one hand, f(b) = f(e) by the monotonicity of outer measure:
EnN|0,a] € ENJ0,8. On the other, EN[0,b] C (EN[0,a])V [a,b]
which implies

F(b) < [(EN0,a]) Ula, bl < |E N[0, alle + |[a,b]| = fla) + (b~ a)

by the subadditivity.
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(b) By Theorem 3.27 in the textbook, the outer measure is contin-

uous under nested unions even if the sets are not measurable. Since
E =Uen(E N[0, K]), it follows that

Bl = Jim |EA[0, ]l = lim 7(k)
Since b < | El,, by the definition of limit there exists k such that f(k) >
b. Also, f(0) = |EN{0}} = 0. Applying the intermediate value theorem
to f on the interval [0, k] (which is possible since f is continuous by

part (a)), we conclude that there exists z € (0, k) such that f(z) = b.
Then the set F' = |E N [0, z]| meets the requirements. O






MAT 701 HW 3.6: NONMEASURABLE SETS

Due Friday 09/14/18 by the end of the day

Problem 1. Show that there exists a nested sequence of sets E; D
E; D - such that |Ey|. < oo and (o, Ex = @ but limyoe |Ekle > 0.
That is, outer measure is not continuous under nested intersections.

(Hint: use the translates of the Vitali set.)

Proof. Let V' C [0,1] be the Vitali set described in class: recall that
|V]e > 0 and that the sets V' + ¢ are disjoint for all ¢ € Q. Let
)
B = U (V + 1)
ik J
Then E; C V +[0,1] C [0,2], hence |E,|. < 2 < oo.
Suppose = € (\yo, £x. This means that for each & € N there exists
J > k such that £ € V + 1/4. In particular, z € V + 1/5 for infinitcly
many distinct values of j. But this is impossible as the sets V + 1/j
are disjoint. This contradiction proves that [}, Ex is empty.
The sets Ej, arc nested by construction, hence | Ey|. is a nonincreasing

sequence. It is bounded from below by |V/|. because each Ej contains

a translated copy of V. Thus, limy_e0 |Ek]e = |V]e > 0. O

Problem 2. Show that for the standard middle-third Cantor set C C
[0,1], the difference set C — C contains a neighborhood of 0.

(Hint: C is the intersection of nested sets C,, where Cy = [0,1] and
Cns1 = 3Cu U (3C, + 2). Find C, — C, using induction.)

Remark: this shows that having |E| > 0 is not necessary for E— E

to contain a neighborhood of 0.
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Proof. Recall that A— B = {a —b: a € A,b € B}. This definition
implies that
2

(1) (A1UA)) — (ByUBy) = | J (4 - B))

ij=1

Furthermore, for any ¢t € R we have (A +t) — B = (A + B) + ¢,

A—(B+t)=(A—-B)—t,and tA — tB = t(A — B); all these follow

directly from the definition.

The equality Cy—Cy = [—1, 1] holds because on one hand, |[z—y| <1
when z,y € [0,1] while on the other, Cy — Co 2 [0,1] — {0,1} =
[0,1]u{~1,0] = [-1,1].

Assume C, — C, = [~1,1]. Use the relation Cn1 = §C, U (3Cn + 2)
and distribute the difference according to (??) and other properties
stated at the beginning:

Crst — Crst = (%cn - %c) U (%C’n ~3Co+ %) U (%c,, - %c,, - %)
= [-1/3,1/3]u([-1/3,1/3) + 2/3) U ({-1/3,1/3] — 2/3)
= [-1/3,1/3) U [1/3,1) U [-1,-1/3] = [-1,1]

The set (},C’n + %) - (%Cn - %) is not included above because it is the

same as (%Cn — %C'n).

By induction, C, = C,, = [—1,1] for all n.

Since C C C, for every n, it follows that C — C € [-1,1]. To prove
the reverse inclusion, fix e € [—1,1]. For each n, there exist z,, ¥, € C,
such that x, — 3, = a. Since all these numbers are contained in [0, 1],
we can pick a convergent subsequence {z,, }. So, z,, — z and since
Iy, — Yn, = @, We also have y,,, — y where y is such that z — y = a.

It remains to prove that x,y € C. For each m € N we have z,,, , ¥, €

Cp, for k > m by construction. Since C,, is compact, it follows that

z,y € Cp. And since this holds for every m € N, wehavez,y € C. O
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Due Monday 09/17/18 by the end of the day

Problem 1. Suppose that f: R®* — R is a function such that f(R")
is countable and f~!(t) is measurable for every t € R. Prove that f is

measurable.
Proof. Let B = f(R"), a countable subset of R. For any a € R we have
{f>a}= |J F'®
beB, b>a

which is a countable union of measurable sets, hence measurable. The

domain of f, which is R", is also measurable. Thus f is measurable. O

Problem 2. Prove that without the assumption “f{IR") is countable”

the statement in Problem 1 would not be true.

Proof. The statement in Problem 1 is made for any n. To disprove it,
it suffices to show it fails for some n, for example n = 1. Let V C {0, 1]
be a Vitali set, and define f: R — R by

T+ 1, zeV;
SIS {—m, gV,

By construction {f > 0} = V, which is nonmeasurable. Thus f is
nonmeasurable. On the other hand, for every ¢ € R the set f~!(¢) is
finite and therefore measurable. Indeed, if ¢ is negative, f(z) = t holds
for at most two values of z; and when ¢t > 0, there is at most one such

value. O
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Remark: If we wanted to construct such an example on R" for every

7, one way is to let

f(iCl,...,.'Bn)={

Then {f > 0} = V™ which is nonmeasurable, because on one hand,
V™ + Q" = R" forces |V*|. > 0; on the other, V" + (QN[0,1])" is a

bounded set containing infinitely many copies of V*, which makes it

zy+ 1, Viz; eV,
—|xz4, otherwise.

impossible to have |V"| > 0.

For every t € R, the preimage f~!(t) consists at most two hyper-
planes of the form {z} x R*"!. So it is covered by countably many sets
of the form {z} x [—4,7]*"%, 7 € N. Here |{z} x [~7, 7]*"!| = 0 becausc
this set is contained in a box of dimensions (¢, 27, ..., 2j) whose volume
can be arbitrarily small. In conclusion, |f~!(t)| = O for every t. Thus

f is measurable.
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Due Wednesday 09/19/18 by the end of the day

Problem 1. Suppose that f: R — R is measurable, and g: R =+ R is
continuously differentiable with g’ > 0 everywhere. Prove that fo g is

measurable.

Proof. By the Mean Value Theorem, g is strictly increasing, therefore it
has an inverse h = g~!. By the Inverse Function Theorem, the inversce
function h is also continuously differentiable.

Given a € R, consider the set A = {z: f(g(z)) > a}. It can be
written as {z: g(x) € B} where B = {f > a} is measurable. That is,
A = h(B). By #1 in Homework 3.5, the image of a measurable set
under a continuously differentiable function is measurable. Thus A4 is

measurable. O

Problem 2. (a) Suppose f: R* — R is a continuous function such
that f2 is mecasurable. Prove that f is measurable.
(b) Prove that the statement in (a) is false if f is not assumed con-

tinuous.

Proof. {a) Since f is continuous, it is measurable.

(b) Let n = 1, let V be a Vitali set, and define f(z) = 1 when
€V and f(z) = —1 when z ¢ V. Then f? = 1 is measurable, being
continuous. But {f > 0} = V is not a measurable set, so f is not

measurable. O






MAT 701 HW 4.2: SEMICONTINUOUS FUNCTIONS
(+2.1 BOUNDED VARIATION)

Due Friday 09/21/18 by the end of the day

Problem 1. (a) Let £ C R" be a sct. Consider a sequence of lsc
functions fi: E — R such that f; < fo» < f3 < .... Prove that
limg o0 fi is also an lsc function. (Note: the limit here is understood
in the sense of the extended real line R, so it is assured to exist by
monotonicity. )

(b) Give an example that shows (a) fails with “ls¢” replaced by “usc”.

Proof. (a) Recall the limit comparison property: if all terms of a se-
quence are < M, then its limit (if it exists) is also < M. Apply the
contrapositive of this statement to f(z) = limy, . fi{z) and conclude
that if f(z) > M, then there cxists &k such that fi(z) > M. Thus,
{f > M} C Uien{f > M}. The reverse inclusion is true as well,
because for each k, {fi. > M} C {f > M} by virtue of f < f. In
conclusion, {f > M} = | Jien{fr > M}. Each set on the right is open
in E because f; is Isc; therefore the set on the left is also open. Since
M is arbitrary, this shows f is Isc.

(b) Let fr = X[/ke0); the domain being R. This function is usc
because any set of the form {f, < a} is either R, @, or (—oc0,1/n),
and all these sets are open in R. Also, fi < fi+1 because {1/k,c0) C
[1/(k + 1),00). But the limit f = X(0,00) is NOt usc, since the set
{f <1} = (—0o0,0] is not open. O
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Problem 2. Fix a > 0 and define f: [0,1] — R so that f(1/k) = 1/k°
for k € N, and f(z) = 0 for all other z. Prove that f is of bounded
variation on [0, 1] when a > 1, and is not of bounded variation on [0, 1]

when 0 <a < 1.

Proof. Suppose a > 1. Let 0 = z9 < 7 < --- < z, = 1 be a partition
of [0,1]. By the triangle inequality,

D1 (w) = flain)l < D (U@l + 1 mm)) 23 17 (@)l

(the second inequality holds because each value |f(z;)| is repeated at
most twice). Ignoring any terms with f(z;) = 0, we get a sum of the
form

1
221:;, where B=NN{l/z;:i=1,...,n}
keB
Since a > 1, the sum S = ¥, .y 1/k* is finite. From 2)°, ;& < 25

it follows that V(f;0,1) < 25, hence f is BV.
Now suppose 0 < a < 1. For n € N consider the partition

1 1 1 1 1
-PTI: 1 T ) ’ ;"':_,1
{Onn—1/2 n—1n-3/2 3/2 }

which can be described as P, = {0}U{1/(n—k/2}: k=0,...,2n—2}.
The values of f at the points of P, are
1 1 1
—,0,———,0,...,0, —
01nu? :(n_l)gi ¥ ) ’1"’

Summing the absolute values of the differences of consecutive terms

here, we obtain
= 1
V{f;0,b1)=1+2 —
(f ) ; ka

As n — oo, the right hand side tends to infinity because the series
S ven 1/k® diverges. Thus V(f;0,1) = co. 0



MAT 701 HW 4.3: EGOROV AND LUSIN

Due Monday 09/24/18 by the end of the day

Problem 1. Suppose that f: £ — R is a measurable function, where
E C R" is measurable.

(a) Prove that there exists a Borel set H C E such that the restric-
tion fiy is Borel measurable and |E \ H| = 0.

(b) If, in addition, F is a Borel set, prove that there exists a Borel
measurable function g: £ — R such that f = g a.e.

Hint: for part (a), take a countable union of closed sets obtained

from Lusin’s theorem.

Proof. (a) By Lusin’s theorem, for every k € N there exists a closed
set |E, C E such that |E'\ Ei| < 1/k and the restriction of f to Ej
is continuous. Let H = | Jon Bx. Then H is Borel, being a countable
union of closed sets. Also, |E\ H| < |E\ Ei| < 1/k for every k, which
implies |[E'\ H| = 0.

For every a € R and every k € N the set Ay = {z € E;: f(x) > a}
is open in Ej because f)g, is continuous. Thus, Ay = Ex NGy, for some
open set G}, in R™. Since both E} and G;, are Borel, it follows that A,
is Borel. Then {z € H: f(x) > a} = |Jien Ax is Borel, which proves
that fiy is Borel measurable.

(b) Let g(z) = f(x) for z € H {with H as above) and g(z) = 0 for
z € E\ H. Then f = g a.e. because |[E\ H| = 0. If a > 0, then the
set {z € E:/f(z) > a} is equal to {z € H: f(z) > a} which is Borel
by (a). If a < 0; then

{:xEE:f(:r,)>a}={w$H:f(:r.)>a}U(E\H)
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which is Borel as the union of two Borel sets. Thus, g is a Borel

measurable function on E. O

Problem 2. Suppose ¢: [0, 00) — [0, 00) is a function such that ¢(t) —
0 as t = 00. Consider a sequence of measurable functions fi: R* = R
such that |fi(z)| < ¢(|z|) for every k, and fr — f a.e. Prove that
the conclusion of Egorov’s theorem holds in this situation: that is, for
every € > 0 there exists a closed set E{e) C R” such that |[R*\ E(e)| < ¢
and fi — f uniformly on E(e).

Hint: Follow the proof of Egorov’s theorem

Proof. The proof of Egorov’s theorem consists of two parts. Part 1 does
not need the assumption |E| < oo and is included here unchanged, for
the sake of completencss.

Part 1: It suffices to find, for each j € N, a measurable set E;
such that |Ef| < ¢/27 and supg, |fs — fl < 1/j for all sufficiently
large k. Indeed, if we can do this then the set F = [ E; satisfies
|Fl < 3jeme/ 27 = ¢. On this set, fi converge uniformly to f since for
every j, the inequality | fi = f| < 1/7 holds on F for all sufficiently large
k. Since F' is measurable, it contains a closed subset F’ where |F\ F'|
can be as small as we wish. So we can choose F' so that [(F')¢| < € as
well.

Part 2: To find E; as above, fix j and consider the sets G, =
{z: |f(z) — f(z)] < 1/j Yk > m}. By construction, the set [,,.y G5,
consists of points where fi(z) # f(z), and thus has measure zero. We
would like to conclude that |G¢,| < €/2? for some m, which provides
the desired set E; = G,,. In general this does not work because the
continuity of measure for nested intersections requires finite |G§|. But
here we have help from the function ¢.

Since ¢(x) — 0 as |z| = oo, there exists R such that ¢(z) < 1/(25)
on the sct Ap = {z: |z| > R}. Hence |fx| < 1/(25) on A for cvery k,
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and consequently |f| € 1/(27) a.e. on Ag. It follows that |fr— f] < 1/5
a.e. on Ap, which implies |G{ N Ag| = 0. Hence G§ < |{z: |z| <
R}| < co. This allows us to apply the continuity of measure for nested
intersections, and conclude that |G5| — 0 as m — oo; in particular

there exists m such that |G¢| < €/27. O

Remark: the function ¢ plays the role of a “dominating function”
for this sequence, which can be informally described as a function that
mitigates the effects of “escaping to infinity”. We will see more of this

idea in Chapter 5.






MAT 701 HW 5.1: INTEGRAL OF NONNEGATIVE
FUNCTIONS

Due Friday 09/28/18 by the end of the day

Problem 1. Suppose that f: E — [0,00) is a measurable function,
where E C R”. Prove that [ f is finite if and only if the series

o

Y. Y|z € E: f(z) > ¥}

j=—o0

CONVerges.

o

Note: the convergence of a doubly-infinite series ZjE_w

c; means
that both 3 72, c; and 3572 c—; converge. In case of nonnegative terms
the convergence is equivalent to partial sums Z;\;_ n Cj being bounded.

Hint: consider the sets By, = {2¥ < f < 2¥%'} and the function

g(z) =3 2%xg,. Compare [ g to the sum of series, and also to [ f.

Proof. Let E, and g be as above. By construction, f = 0 iff g = 0,
and g < f < 2g on each set Ej, which together cover {f > 0}. Thus,
g < f < 2g. Since g has countable range, its integral is computed
(using countable additivity over the domain) as [ g =3 5o _ 25| Exl.
2¥+1|Ey|. (Note that although
it’s true that [ 2¢g = 2 [ g for general measurable g, we don’t need this

For the same reason, [p2g9 = Y 00 .
fact from 5.2 here.) These facts together with inequalities g < f < 29
yield that [ f < oo if and only if 327 2F|Ey| < oo,

Let F, = {z € E: f(z) > 2F}. It remains to prove that

co

(1) > 2R <0 = Y 2|E|< o0
k=—o0 k=—o0

1
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To this end, note that Fi = |7, E;, which is a disjoint union. Hence

o0 =]

=]
STHRI= Y0 D 2ME

hk=-00 k=—00 j=k

00 J
=Y 3 2ME

j=—0k=-00
00
- i o
= Y 2% Ey|
j=—x

which proves (1). 0

Problem 2. Let B = {z € R*: |z| < 1}.
(a) Prove that [ |z|™"dz is finite when 0 < p < n and infinite when
p2n.
(b) Prove that [ |z|™?dz is finite when p > n and infinite when
0<p<n

Note: these integrals are Lebesgue integrals, and we don’t yet have
anything like the Fundamental Theorem of Calculus for such integrals.
Use #1. You can also use the fact that the measure of a ball of radius

R is C,R" for some constant C,, that depends on n.

Proof. Let f = |z|™ and F, = {z € R™: f(z) > 2¥}. Note that
Fp = {x: |x| < 2757}, so |Fy| = C,27%/7,

(a) By #1, [,f < 00 <= i 25BN F| < co. When
k < 0, we have B C F}, hence |B N Fy| = |B|. The geometric series
2 k<o 2%|B| = 2|B| converges regardless of p. For k > 1, F;, C B, so
|B N Fy| = |Fy|, hence

00 0
Y FBNF| =C, ) 2t/
k=1 k=1

which is a geometric series that converges if and only if 1 — n/p < 0.

This proves (a).
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(b) By #1, [5.f <00 <= Y i2_2¥|B°N Fi| < oco. As noted
above, F;, C B when k& > 1, which implies B°N F;, = . When
k < 0, we have B C Fy, hence |B° N Fy| = |F| — | B}. Since the sum

2 k<o 2%| B| = 2| B| converges regardless of p, it remains to consider the

convergence of 37, <o 2°|Fi|. Writing j = —k, we arrive at
= o

Z 2k[Fk| = Z 2‘an2j"/” =C, Z 9i(nfp-1)
k<0 =0 3=0

which is a geometric series that converges if and only if n/p— 1 < 0.

This proves (b). O






MAT 701 HW 5.2: PROPERTIES OF THE INTEGRAL
OF NONNEGATIVE FUNCTIONS 1

Due Monday 10/01/18 by the end of the day

Problem 1. (a) Suppose that fi: E — [0,00| (where E C R") are
measurable functions such that | gfr = 0as k — oo. Prove that
fr = 0.

(b) Give an example where f; — 0 but i) g fi 7 0.

Proof. (a) For any € > 0, Chebyshev’s inequality yields
1
>l [ R0
€JE

which means fi = 0.

(b) Either of fi = kX(0,1/%) OF gx = k™'x(x) works. (Or even hy =
1/k). Indeed, {fx # 0} — 0, and g, hy converge to zero uniformly
(which is stronger than convergence in measure). Yet [ fy =1, [ox =
1, and [ hy = 0. O

Problem 2. For k£ € N define f;: [0,1] —= [0,00] by

k ‘ _
. 7 1 5 1
fe(z) = E X1k, Wwhere I(j, k)= [E i+ E]

=1

Let f =Y 1o, fe. Prove that flﬂ,ll f < oo

Proof. Note that [, xr = |E N F| by the formula for the integral of a
simple function. Applying this (and the additivity of the integral) to
fr yields

k k k 2 2
[ a=Gmnnbus S IG0 =3 5 =5
[0,1] j=1 j=1 j=1
1
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By the countable additivity over nonnegative functions (Theorem 5.16),

00 o 9
= f fi<) m <
0,1} g {0.1] g k*

(One can also say that partial sums converge to f in an increasing way,

but this argument was already made in the proof of Theorem 5.16). O



MAT 701 HW 5.2B: PROPERTIES OF THE INTEGRAL
OF NONNEGATIVE FUNCTIONS 2

Due Wednesday 10/03/18 by the end of the day

Problem 1. Suppose that f: R" — [0,00) is a measurable function
such that [,. f < co. Also suppose {E;} is a sequence of measurable
sets B, C R™. Let A =limsup Ey and B = li'{ninf E. Prove that

:— oo

k—o0

and

Hint: [, f = Jon xef

Proof. The second incquality follows from Fatou’s lemma, using the

fact (discussed in class) that yp = liminf; . X£,:

[1=] xaf=[ tmintxe.s
B n Rn R0
<liminf | xg f=Ilminf [ f
k=00 R k=—roo Ei
To prove the inequality for [ 4 [, note that f —xg, f = 0, and apply

Fatou’s lemma to this sequence:

[ tmin(7 = xguf) < timint [ (7 = x5.1)

k=roo Rn
Expand both sides, recalling that lim inf(—a;) = — limsup ax, and us-
ing the assumption that fg. f is finite.
/ f- limsup xg, f < f- limsup/ XE. S
n er.

R k—roo R" k—ro0
1
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Canceling [, f, we get

limsup xg, f 2 limsup f xe S
R k—oo k=+o0 n
which is precisely [, f > limsupy_,o [z, f- O

Problem 2. Suppose that f: R* — [0,00) is a measurable function
such that [g. f < oo. Prove that [p, e ¥l f(z) — 0 as k — oo.

Proof. For all z # 0 we have e *lf(z) — 0 as k — oo; thus, the
functions converge a.e. to 0. Also, f is a dominating function here,
since its integral is finite and e *=l f{z) < f(z) for all z and all k. By

the Dominated Convergence Theorem,

/ e*f@)y— [ 0=0 O

Rﬂ



MAT 701 HW 5.3A: INTEGRAL OF MEASURABLE
FUNCTIONS 1

Due Friday 10/05/18 by the end of the day

Problem 1. Prove that under the assumptions of the Lebesgue Dom-

inated Convergence Theorem we have [ |fi — f| — 0 as k — 0.

Proof. By assumption, there is an integrable dominating function for
{f}, call it . By passing to the limit, |f] < ¢ (a.e.), which implies
|fi = ] £ Ifel + |f] € 2 a.e. Note that [ 2¢ =2 [, < co. Since
fr = f a.e., it follows that |fi, — f| = 0 a.e. By the DCT,

fElfk—fl—>/Eo=0 0

Problem 2. Let f € L'(E), where E C R* is a measurable set. Prove

that
lim & sm( ) ff
k—oo

Proof. By the Mean Value Theorem, sint = sint — sin0 = {cos §)¢ for
some £ between 0 and ¢. This implies two things:
(a) |sint| < |t] because |cos&| < 1;
(b) as t — 0, we have (sint)/t - 1 because cos§ — 1.
Applying (a) to sin (%), we find that

which means | f| is a dominating functlon for the sequence f, = ksin(f/k}.
Applying (b), we find that
P
£ Tk
By the DCT, [ fi = [¢ f- 0

—f=f, k=00
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MAT 701 HW 5.3B: INTEGRAL OF MEASURABLE
FUNCTIONS 2

Due Monday 10/08/18 by the end of the day

Problem 1. Let f: £ — R be a measurable function. Suppose that
|E| < oo and therc exists a number p > 1 such that

limsupaf|{z € E: |f(z)] > a}| < 0

a—oo

Prove that f € LY(E).

Proof. Let M = limsup,_, a”|{z € E: |f(z)| > a}|. By definition,

this means

M = lim sug Hz € E: |f(z)] > a}

B—roc a>
Thus, there exists 3 such that sup,,zo?|{z € E: |f(z)| > a}| £ M+1.

Choose an integer m such that 2™ > 8. Then for j > m we have

2j‘1{:r:€E: If(z)] > 2} < M +1

hence
[=5] . . o0 -M+1 o0
: — (M (1-p)
Z2J{a:eE, |f(m)|>2’}|sz2’ o _(M+1)Zz 2
J=m J=m i=m

which converges because 217 < 1.
Also,

m=1 m=1

> Yz eE:|f(z)) > 2} < D P|E|=2"E|< o0

j==—o0 j==00

by summing a geometricseries. Thus S oo ___27{z € E: |f(z)| > 2}

j==o0

which by Homework 5.1 #1 implies |f| € L(E), hence f € L} E). O

Hint: use an ezercise from Homework 5.1.
1



2 MAT 701 HW 5.3B: INTEGRAL OF MEASURABLE FUNCTIONS 2

Problem 2. Give an example of a sequence of integrable functions

fr: [0,1] — R such that fr — f a.e, lim / fi exists and is finite,
k—ro0 0‘1]

but f is not integrable on [0, 1.
Hint: approzimate 1/z by functions with integral 0.
Proof. We know that f[o 1 2 = oo from Homework 5.1 #2. Let Cy =

Jaky = Which is finite because the function is bounded by & on this

finite interval. Define

1
S = =kCixpam + ZXa/k

Then fj, is integrable (sum of two integrable functions) and f-‘o,l] fr =
—kCy|[0,1/k)| + C. = 0. On the other hand, for every = > 0 we have
fi(z) = 1/z for all k such that k£ > 1/z; thus, fi = 1/z ae. O



MAT 701 HW 5.4-5: LEBESGUE, RIEMANN,
RIEMANN-STIELTJES
e ANe e

Due Monday 10/15/18 by the end of the day

Problem 1. Determine the Lebesgue-Stieltjes' That was a typo; I
meant Riemann-Stieltjes)integral J ad{~wg(a)) corresponding to [ f
where £ = (0,3) and f(z) =z + |z]. You do not need to evaluate the

integral. Here |z] is the greatest integer not exceeding z.

Proof. Note that f(z) =z on (0,1), f(z) =z +1on[1,2) and f(z) =
z + 2 on [2,3). Hence, for any « € R, the set {z € E: f(z) > a} is

equal to
{ze(0,1):z>a}U{ze[,2)iz+1>a}U{z€(2,3):5+2>a}

The set (a, b) N (c,00) can be expressed as max(a,c) < = < b, so its

measure is (b — max(a,c))™. This makes it possible to write w;(a) as
ws(a) = (1 — max(a,0))* + (2 — max(a, 1))* + (3 — max(a, 2))*

Since the range of f is (0,5}, the desired Riemann-Stieltjes integral is
fOE' ad(—wy(a)) with wy given by the above formula. O

Note: one can rewritc wy in other ways, for example

(3—a, 0<a<1

2, 1<a<?
wil@)={4~a, 2<a<3
1, 3<ac<4

o~a, 4<a<?



2 MAT 701 HW 5.4-5: LEBESGUE, RIEMANN, RIEMANN-STIELTJES

Problem 2. Suppose E C [0, 1]. Prove that xg is Riemann integrable
on [0,1] if and only if |0F| = 0.

_.P_mof. More generally, I claim that for any set £ C X in a metric
space (X, d) the boundary @F coincides with the set of discontinuities
of the characteristic function xg. Indeed, for @ € X to be a point of
.continuity for yg we must have, for every ¢ > 0, some § > 0 such
that d(z,e) < § = |xe(z) — xe(a)] < e. By using this with
¢ = 1 and recalling that xg takes only the values 0, 1, we conclude that
a is a point of continuity for x g if and only if x5 is constant in some
neighborhood of a. The latter means exactly one of two things: xg =0
in a neighborhood of @ (so, @ is an interior point of £¢), or xg = lina
neighborhood of a (so, e is an interior point of F). It remains to recall
that OF is the set of all points that are neither interior for E nor for
EF;

Applying the above with X = R, we conclude that the set of dis-
continuities of xg on R is E. When xg is restricted to [0, 1], the
discontinuitics at 0 and 1 may disappear (e.g., the restriction on xg,1/7)
to [0, 1] is continuous at 0), but the two-point set has measure zero
anyway. In conclusion, |0E| = 0 if and only if the restriction of xg
to [0, 1] is continuous a.e.. Since xg is bounded, the latter property is
equivalent to Riemann integrability by Theorem 5.54.

O



MAT 701 HW 6.1-2: FUBINI AND TONELLI

Due Friday 10/19/18 by the end of the day

Problem 1. Prove that for any a > 0 the function f(z,y) = e *¥sinz
is in L(E) where E = {(z,y) € R?, >0, y > a}.

A remark on the relation of Riemann and Lebesgue integrals. We
proved in 5.5 that if a Riemann integral f: h{z) dz exists (with a,b
finite), then it is equal to the Lebesgue integral. This can be extended
to improper Riemann integrals in two ways.

First, if h = 0 and f: h(z) dx exists as an improper Riemann integral,
then it’s still equal to the Lebesgue integral, by the MCT (replace h
with min{h, k)x[-x, and let & —= c0.)

Second, if h € L'{(a, b)) and the improper Riemann integral f: h(z) dz
exists, then the two integrals are equal. Indeed, [ ¢ h(z)dz is equal to
the Lebesgue integral for any a < ¢ < d < b, by the above result from
5.5. Asc — a or d — b, we can pass to the limit in the Lebesgue
integral by the DCT (|A| is dominating), and in the Riemann integral,

by the definition of an improper Riemann integral.

Proof. The function f is continuous and therefore measurable on E.
Since |sinz| € z for z > 0, we have |f| < g where g(z,y) = ze ¥
is also continuous, hence measurable. It suffices to prove g € L}(E),

which can be done using Tonelli's theorem:

/9=/ (f me‘”dy)d:c=/ e"“dm=1<oo a
E 0 a . 0 a



2 MAT 701 HW 6.1-2: FUBINI AND TONELLI

Problem 2. Apply Fubini’s theorem to the function f in #1 to prove
that

o3 —ar o3
/ 2 T = tan~'(1/a)
0

M
Hint: integrate [ in two different ways. You don’t have lo do the

antiderivative [ ¢ sinz dr by hand; just look it up.

Food for thought (not a part of the homework): how to let a — 07

Proof. By #1, Fubini's theorem applies to f. On one hand,

ff=f (/ e‘mysinxdy) d:c=f LS-IP-—:Edz
E 0 a 0 T

On the other,

(s o] oo
/f =/ (f f"”sin:cda:) dy
E a 0
=f (f f:'“”sinmdx) dy
a 0
_ [ {(_ -zyysinz+cosz e P
]C; ( © y2 + 1 =0 Y

> 1
=/a y2+1dy=g—-tan—1a=tan“(1/a)

using the facts that e™™¥ — 0 as £ — oo (with y > 0), and that

tan"!z — 7/2 as z — oo. O



MAT 701 HW 6.1: FUBINI’'S THEOREM
Due Wednesday 10/17/18 by the end of the day

Problem 1. (a) Suppose E C R? is a Borel set. For z € R, let
E, = {y € R: (z,y) € E}. Prove that E, is a Borel set in R.

Hint: for a fized x, prove that {A C R?: A, is Borel in R} is a
o-algebra that contains all open subsets of R®.

(b) Suppose f: R? — R is a Borel measurable function. Prove that
for every = € R, the function g(y) = f(z,y) is Borel measurable on R.

(Note: in contrast with Fubini's theorem, this is no “a.e.” here.)

Proof. (a) Let M = {A C R?: A, is Borel in R}. Note that &, R? € M,
since their slices are # and R, respectively. For an arbitrary A € M we
have (A°), = (A;)%, and since the complement of a Borel set is Borel,
A¢ € M. Also, for any countable family A EA}U e Ak)z = U (Ak)z
is Borel, which means A € M. Thus, M is cr-algebrai“

For any open set A C R the intersection of A~with any set B is open
as a subset of B (MAT 601; one can also see this as the definition of
subspace topology in MAT 661). Therefore, A, is open in R for every
open set A C R?. This implies that M contains all open sets; and being

a o-algebra, it contains all Borel sets. In other words, £, is Borel in R

whenever E is Borel in R2.
(b) For any a € R the set {y € R: g{y) > a} is the z-slice of the set
{(u,v) € R?: f(u,v) > a}. The latter set is Borel, hence the former is

also Borel by part (a). This shows g is Borel measurable. O

A shorter proof of both (a) and (b) is to observe that, for a fixed

, the function h{y) = (z,y) is a continuous map from R into R?, and
1



2 MAT 701 HW 6.1: FUBINI'S THEOREM

therefore is Borel measurable {in the sense that the preimage of any
Borel set is Borel). In class we proved that the composition of Borel
measurable functions is Borel measurable. Therefore, if f: R2 = R is
Borel measurable, then the composition f o h is Borel measurable; this
composition is exactly g. This proves (b). Part (a) follows by applying
(b) to f = vg and noting that g = xg,.

Problem 2. Suppose f: [0,1] — R is a measurable function such
that the function g(z,y) = f(z) — f(y) is in L'([0,1]?). Prove that
f e LY{([0,1)).

Proof. By Fubini’s theorem, for almost every z € [0, 1] the slice-function
y +— g(z,y) is integrable. Fix such an z. Then f(z) is a finite con-
stant, hence integrable on [0, 1] as well (with respect to y). By linearity,
fy) = f(z) — g(z,y) is integrable on [0, 1]. O



MAT 701 HW 6.3A: APPLICATIONS OF FUBINI AND
TONELLI 1

Due Monday 10/22/18 by the end of the day

Problem 1. Suppose f € L([0,1]). Let g{z) = f[:n,l] @dt for z €
(0,1]. Prove that g € L}((0,1]) and fi, 9= f, f-

Proof. Let h(z,t) = f(¢)/tif 0 <z £t <1 and h(z,t) = 0 otherwise.

This is a measurable function on [0,1] % [0, 1], because:

e The function (z,t) — f(t) is measurable, as discussed in class:
level sets are products of the level sets of f with [0, 1];

e 1/t is continuous a.e., hence measurable.

e The characteristic function of the closed set {(z,#): 0 < = <

t < 1} is measurable.

Thus, Tonelli’s theorem applies to |k|. It yields

| £
. A,IIX{O.lll | /[0'1] /[0,4 2 * /[;.1] |f{t)|dt < oo

since f € L'([0,1]). Thus h € L}([0,1] x [0,1]), which means Fubini’s

theorem applies to h. Similar to (77?), we get

(2) / h=f -f—(?—)—d:cdt= flt)dt < o0
[0,1)x[0,1] o) /oy ¢ 0.1}

but the same integral is also equal to

(3) / h=f M—dtdz:[ g(z) dx
[0.1)x[0,1] 03 Jizy) ¢ 0,1]

From (?7) and (??) the result follows. O
1



2 MAT 701 HW 6.3A: APPLICATIONS OF FUBINI AND TONELLI 1

Problem 2. Prove that convolution is associative: that is, for f,g,h €
LY(R") we have (f ¥ g) x h = f x (g x h).

Note: we don’t yet have the full change of variables formula, but we
do have fR,, r—y)dr = f,!,_ z) dx as a consequence of the invariance

of measure under lranslation.

Proof. Since f,g,h € L!, the convolutions are in L! as well. Using the
commutativity of convolution, (f * g) * o = (g * f) * h which can be

written as (with all integrals over R™)

@ | [oen@-ouea= [ ([t ods) e

The convolution f*(g=#}can be written as (g * k) * f, which is

©  [orne-0r@a= [ ([oe-t-Ineds) s
In (?7?), relabel ¢t as s and s as ¢{ — this is not using any theorem,
just changing the labels. Then the desired equality of (??) and (?7)

becomes
(6)

f(/f(S)g(m—t—s)h(t) ds) dt;f(/f(s)g(z - "S)h(t)dt) i

The measurability of each of the functions (s,t) — f(s), (s,t) — g(z —
t — s}, (s,t) — h(t), follows as in the proof of the commutativity of
convolution (the composition of a measurable function with a linear
transformation is measurable).

Since the convolution (| f| *|g|)  |h| is in L', it is finite a.e. Let z be

such that (|f| = |g|) * || is finite at . This means that

/(/U(S)HQ(:E —t—s)Ilh(t)|ds) dt < oo

By Tonelli’s thcorem, the function (s,t) — f(s)g(z — t — s)h(l) is
in L'(R*"). Hence, Fubini’s theorem can be applied to the integrals
n (77), meaning they are equal. Thus, (f*g)*xh = f*(g*h)a.e. in
R D



MAT 701 HW 6.3A: APPLICATIONS OF FUBINI AND TONELLI 1 3

Note: It is not clear to me whether (f * g) * h = f % (g » h) holds
in the stricter sense of both convolutions having the same domain and
being identically equal on that domain. This is true when f,g,h > 0,

since then we can apply Tonelli’s theorem directly to (?77),






MAT 701 HW 6.3B: APPLICATIONS OF FUBINI AND
TONELLI 2

Due Wednesday 10/24/18 by the end of the day

Problem 1. Suppose that g: R — R is a Lipschitz function. Let Z =
{z: g(z) = 0} and suppose that R\ Z is bounded. Let f(z) = 1/z°

Prove that the convolution f * g is finite a.e. on Z.

Proof. Since f is continuous, Z is closed. Since R \ Z is bounded,
there exists b > 0 such that R\ Z C [—b,b]. Let B = (-b—1,b+1),
K = Zn B, and §(y) = dist(y, K). The Marcinkiewitz integral

R 1) B
M) = [,

is finite a.e. on K. Since g = 0 on K, the Lipschitz property implies

lg(¥)| < Lé(y). Also, since g = 0 on B¢, we have

g, _ [ _lo(w)] )
r (= y)? dy_./,;(:v—y)? dy < LM (z) < 00

for a.e. z € K. By the integral triangle inequality, f * g is finite a.e.
on K.

It remains to consider z € Z \ B. We have |z — y| > 1 for every
y € R\ Z sincey € [-b,b] and z ¢ (-b~ 1,b+1). Thus,

o)l
/R (z —y)? dy < /{_Ml lg(¥)| dy < oo

is finite, as an integral of a continuous function-over a bounded set. [0

Problem 2. Let C C [0,1] be the standard “middle third” Cantor set.
Let &(z) = dist(z, C). For which positive numbers p is the function §=7
in L({0, 1])?

Note: although Tonelli could be applied here, it's easier to use the

countable additivity of integral over the set of integration.
1



2 MAT 701 HW 6.3B: APPLICATIONS OF FUBINI AND TONELLI 2

Proof. The set [0,1] \ C is the union of intervals J; where for each
k € N we have 257! intervals of length 1/3*. Let’s say Ir; = (a,b);

then for z € (a,b) we have 8(z) = min(z — a,b — z). By symmetry and

] {b-a)/2
/ 0P = Qf tPdt
u 0

This immediately rules out p > 1, when the above integral diverges.

substitution,

For 0 < p < 1 it evaluates to

1-
L aSlc ’ = z |Ik -11_1’
1-p 2 1—p ™

Sum this over k, j, recalling that |I) ;| = 1/ 3% and that there are 2%~!

%

This is a geometric series with ratio 2/3'", so it converges if and only

such intervals:
P Zk_ 1

0P = ? (1-p)k
1-pR3°

In.;

if 2 < 3'~7, which is equivalent to p < 1 — log2/log 3. (]



MAT 701 HW 8.1: L? CLASSES

Due Friday 10/26/18 by the end of the day

Problem 1. Prove that for any g € (0, co|, there exist:

a) A function f: [2,00) = R such that f € L?([2,00)) < p > ¢;

b) A function f: [2,00) — R such that f € LP([2,00)) <= p>g¢.
Hint: use a suttable power of x, with a logarithmic factor if necessary.

Recall that for nonnegative functions, tmproper Riemann integral agrees
with the Lebesgue integral (Theorem 5.53).

Proof. (a) If ¢ = 0o, we need f such that f € LP([2,00)) <= p > 0.
Sinde p > oo/is false for all p, this means f ¢ LP([2,00)) for all p. This
is achieved by choosing f(z) = z, since this function tends to infinity
as T — 00, and so do all of its positive powers.

If0 < g < oo, let f(x) =z"%9, Then

o0 (=]
f |fIP = f pPla
2 2

which converges iff p/q > 1; that is, iff p > g. Here and below, we use
the fact (Theorem 5.53) that the convergence of an improper Riemann
integral of a nonnegative function implies its Lebesgue integrability.
(b) If ¢ = o0, let f(z) = 1. Then f € L™ but f? = 1 is never
integrable, so f € L? when p < oo.
If0 < g < 00, let f(x) = (zlog?z)~/%. When p > g,

/ IfIP = f T P/e log_z"/q:z: < log_g”/"2/ Pl < o
2 2 2

When p = g, the antiderivative of z~'log™*z is C — 1/ log z (check by
differentiation). Since the antiderivative has a finite limit as z — oo,

the integral converges.

7 dng an O for no vnlety
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When p < q, we have

M M M
/ IfIP = f P4 log'2"/"m > log_zp/"' Mrf Pl
2 2 2

M1-p/a _ 91-p/q

— 10g-21=/q M
1-p/q
€
L'Hospital’s rule implies lim 2L = oo for every £ > 0. Therefore,
z—sc0 log

(log M)~2/4p' =P/ — 00 as M — oo, and the integral diverges. O

One can avoid logarithms in all these examples by using piecewise

constant functions such as

f(;r) = Zj_qu_jm)qzlj?"‘}

jEN
Indeed, f5°|f17 is
flz) = Zj—2lfﬂf2—jm’q2j — Zj—'-’p.fqglil ~p/u)i

JEN JEN
which quickly shows convergence for p > g and divergence for p < q.
When p # q, the ratio test yields this result; when p = ¢q, the sum is

> 77 < oo.
A similar example works for #2, using intervals (2777, 277] instead.

Problem 2. Prove that for any ¢ € (0, o0|, there exist:

a) A function f: (0,1) — R such that f € L?((0,1)) < p< ¢,

b) A function f: (0,1) — R such that f € L*((0,1)) < p<q.
Using this and #1, show that for any interval J C (0, oo] there exists
a function f on some set F C R such that f € LP(E) <= p€ J.

Proof. (a) If ¢ = o0, let f(z) = logz. Then f ¢ L*((0,1)}) but for
every p € (0,00) we have lim,_o(log z)/z?/? = 0 by L'Hospital, hence
(log £)/zP/* is bounded on (0,1). This means |logz|? < C/z'/? for

some constant C, and since [ C/z'/? < 0o, we have logz € LP((0, 1)).



MAT 701 HW 8.1: L? CLASSES 3

If0 < q< oo, let f(z) =z~9. Then

1 1
f | flp — / Pl
0 0

which converges iff p/g < 1; that is, iff p < q.

(b) If g = oo, let f(z) =1, which is in L” for all p € (0, o).

If0 < g < oo, let f(z) = (zlog® I)_I/QX(U‘I/Q) where the cut-off
function x(o,1/2) is needed to avoid a problem with logz =+ 0 asz — 1.
When p < g,

1 1/2 v
f IfIP = / :;;‘P/‘I|log$|—2p/q < log‘z”/" 2/ P11 < oo
0 0 o

When p = g, the antiderivative of z='log™* x is C — 1/ log z {check by
differcntiation). Since the antiderivative has a finite limit as z — 0,
the integral converges.

When p > g, we have

1/2 1/2 1/2
/ IfIP = / m—qu| 10g$|_2'"/" > log—2p/q(1/5)f x~Pla
s ] &
(1/2)1—11/@ - ot-vle
1-p/q

€

= log™**/4(1/8)

L'Hospital’s rule implies lim = oo for every € > 0. Therefore,

z—oo log T
(1/8)P/9~ Y log=%/7(1/6) — oo as § — 0, and the intcgral diverges. O
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MAT 701 HW 8.2: HOLDER AND MINKOWSKI

Due Monday 10/29/18 by the end of the day

Problem 1. Fix r € (0,1).

(a) Suppose f € L*(]2,00)) where 1 < p < 1/(1 —r). Prove that
jo o]
[T gy o
2 z"
(b) Show that the statement in (a) fails with p = 1/(1 — r). Hint:

[= =]
[ == dz = oo.
2 zxlogz

Proof. (a) Let g(z) = 1/z" and p’ = p/(p — 1). By Hélder’s inequality
L2 1fal < 1 fllsllgllp so it remains to show {|glly < co. If p = 1, then
7= oo and |g]|.{ =1 < oo. Otherwise, 1 < p < 1/(1 - r) implies
1-r<1/p<1, hencel <1/p’ <r. Then [[7|g]" = [[Pz™™ < o0
because rp’ >

1

/ —lf(:c)ld:c=/ ————-—-1 dr = 0o
9 Al 9 .’Blogm

(Using again the fact that improper Riemann integral of a nonnegative
function is equal to its Lebesgue integral.) On the other hand, f € L*
with p=1/(1 —r):

oo o0 1
Pdy = —
-/; | f(z)|? dz /2 :clog”:cdx<oo
because p > 1. O

Problem 2. Given any sequence {z, Ts, ... } of real numbers, define

= 1

flz) = :A; PO

Prove that f € LP([0,1]) for 0 < p < 2.
1
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Proof. Lemma: for 0 < p < 2 there exists a number C, € (0, co) such
that .

f |z — a|P?dz < C,
for all a € R. Assume thg lemma for now; its proof appears below.

When 1 < p < 2, Minkowski's inequality for infinite series yiclds

) 1 1 1/p ’ oo 1
1< Y- ([ mmeps) <GP <w
p kz=1 o kZplx — mklp/Z r = k2

proving that f € LP([0,1]). For 0 < p < 1 use the relation between L?
spaces on a set of finite measure: f € L([0,1]) = f € LP([0,1]) for
any p € (0,1). O

Proof of Lemma, version 1. If a € [0,1], then by translation

1 l-a 1
(1) / |m—a]_“/2dm=/ |:n|"’/2da:sf |lz| /% dz
0 =]

-a 1

so we can use C, = [, |z|7#/2 dz which is finite because p/2 < 1. If

a < 0, then |[z—a| = z—a > z forall z € [0,1], hence ful |zr—a| " dz <

fola:”"/zdx <Cpby (77). Ifa>1,then |z —a|=a—-x > 1—z forall

z € [0,1], hence [ |z —a|™"?dz < [ |z —1|"2dz < C, by (?2). O
Proof of Lemma, version 2. Let ] = [—a,1 —a] and J =

(—1/2,1/2]. 1t suffices to prove that

/|$|_p/2d$§f]m|'p/2dm
! J

because then Cp, = [, |z|™"/2 dx works. Note that
(2) |z| 7% > 27/% on J, and |z|7?/* < 2"* on J°

By canceling out the integral over I N J (which may be empty) and

using (7?7} we get

/|$'i””'f2d$—f|x|"’*"2d:c=f |:r|"’f2d9:—/ |z| P2 dx
J ! N nJ

> f /2 o — f 2P/2
JNT nNJ

=2PH(|I\NI| = |I\J]) =0
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where the last step follows from |I| = |J|. 0
The second proof is longer, but it gives the best possible bound C,,

and this idea generalizes to other sets and functions.






MAT 701 HW 8.3: SEQUENCE CLASSES ¢

Due Wednesday 10/31/18 by the end of the day

Problem 1. Suppose 1 < p < oo and f € LP([1,00)). Define a
sequence a by a; = :’H f, k € N. Prove that a € ¢°.

Proof. Case p= 0o. By the definition of L™, there exists M € R such
that |f| < M a.e. on [1,00). Hence

k+1 k+1
Imgﬁ s [ M=n

for every &, which yields ||aljo < M < 0.
Case 1 < p < co. Note that |[xk+1yll,x = 1 for any & and any p”:
for p’ < oo this is because _[:H 1 =1, and for p’ = co this is clear from

the definition of the norm. By Hoélder’s inequality,

k+1 l/p k41 i/p
/ |fx;k.k+n|s( f Ifl”) ||x[k.k+nn,,f=(/k Iflp)

Therefore,

e e k+1 =)

Stab<Y [ 1= [ IP<oo

k=1 k=1"k 1
using the countable additivity of integral over the domain of integra-
tion. O

Problem 2. Give an example of a continuous function f: [1,00) = R
such that the sequence a defined in #1 is in €', but f ¢ L'(R).
Hint: f should attain both positive and negative values so that there

. . ksl
is some cancellation in [ f.

Proof. Let f(x) =sin(2nz). Then

k+1 -1 k+1
ap = ] sin(27z) dr = — sin(27x) =0
& 2m

k
1
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for every k, so a € £},
On the other hand, using symmetry properties of the sine function

(sin(t + &) = —sint), we get
k+1 k+1/2 = k+1/2
[ | sin(2wz)| dz = 2 / sin(2nz) dz = — sin(2wx)
k k

&k
-1 2
—?(—1—1)—;

Therefore,

o0 o k41 o0 2
f; Ifl—k;/; =32 =c0

using the countable additivity of integral over the domain of integra-
tion. This shows f ¢ L!([1, 00). 0



MAT 701 HW 8.4: BANACH SPACE PROPERTIES OF
L AND

Due Friday 11/02/18 by the end of the day

Problem 1. Suppose that p,p’ € [1, oo} are conjugate exponents, fr —
f in [P(E), and g, — g in LP(E), where E is some measurable set.
Prove that figr — fg in LY(E).

Proof. In any metric space, a convergent sequence is bounded; hence,
{ll fell»}, which is {d(fr,0)} in terms of the metric d on £, is a bounded
sequence. (One can also say that ||fi|l, < |[fll, + |f — fellp where
the second term tends to zero, hence is bounded. But I wanted to
emphasize that we can bring concepts from metric space theory, such
as bounded sequences, into the study of ## and L* spaces.) Choose M
such that || f¢||, £ M for all k. By the triangle inequality and Hdlder’s
inequality,
I fegr — fally = || fugr ~ frg + frg — falls
< || fegr = fegll + |l feg — folls
< M Sellollge = gllyr + 1Lfe = fllollgll

< Mlige — glly + IS — Fllpllglly — 0
where the convergence to 0 follows from ||gx—g||» — 0 and || fi— f|l, =

0. O

Problem 2. Fixpe€ [l,o0]. Let D={c € #: Yk € NO < a4 < a;}
be the set of all nonnegative nonincreasing sequences in 7. Prove that
D is a closed subset of 7.

Proof. Suppose that a¥) is a sequence of elements of D such that o) —

a in £7. Qur goal is to prove that e € D.
1
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The definition of £ norm (either a sum or a sup} implies |b;| < ||b]|,
for every index k and any sequence b € 7. In our case, this yields
lag) — ag| € ||a¥ — a||, — 0, which means a; = lim;j_ afcj}. It then
follows that:

e g; > 0, by letting 7 — 0 in the inequality aff} > 0.

® a; > aj41, by letting 7 —= 0 in the inequality af) > ai’l 3
(This is using the comparison property of limits: if both sides of a
non-strict inequality have limits, the inequality holds for the limits as

well.) Thus, a € D. O

Remark: there is no need to prove that a € ¢, this is a part of the

assumption “a¥} — a in 2.



MAT 701 HW 8.5-6-7: HILBERT SPACE PROPERTIES
OF L?

Due Monday 11/05/18 by the end of the day

Problem 1. For k € N let ¢(t) = 1/1/7sin(kt).

(a) Prove that {¢y: k € N} is an orthonormal system in L?([0, 27]).
(Hint: product-of-sines formula.)

(b) Prove that the linear span of {¢;} is not dense in L2([0, 27]).
Hint: compute (f, ¢r) for the constant function f = 1.

Proof. (a) By the product of sines formula,

Bu(t)e3(8) = 5= (cos((k = 7)6) = cos((k + )(2)

The integral _[:" cosmt dt, with m € Z, is equal to 27 when m = 0 and

1

is 0 otherwise, because the antiderivative m™" sinmt is 2m-periodic.

Hence,
2n

(Gt = | Bul6)85(0) = {1’ k=3

0, k#3
which means {¢x} is an orthonormal system.

(b) For every k € N the integral fozw 1¢), dt is O because the antideriv-
ative of ¢y is —\/WCos(kt) which is 2w-periodic. Thus, all Fourier

coefficients ¢, = (1, ¢,) are zeros. Recall from class that the following

0

are equivalent for an orthonormal system in L? (and in Hilbert spaces
in general):
(1) The closure of its linear span contains f.
(2) Y cedr = f (the Fourier series converges to f in L?)
(3) X lek|® = [If]13 (Parseval’s identity holds)
1
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The conclusion follows by observing that (2) fails here (or, that (3)
fails). a

Problem 2. (a} Prove that for every f € L?([0, 2n])

lim F(t)sinktdt =0

k=00 fig,27]
(b) Prove that (a) holds for every f € L'([0, 2n]); this is known as
the Riemann-Lebesgue Lemma. (Hint: apply (a) to a simple function
g such that || f — g1 s small.)

Proof. (a) We know from #1 that the functions ¢y(t) = \/1/7sin(kt)
form an orthonormal system in L*([0, 27]). The integral f[0.21r] f(t) sin kt dt
is \/mci where ¢, = ({, ¢k).CBessel’s inequality 3 |ck|? < || f]|? implies
¢, — 0, which proves (a))

(b) Given € > 0, pick a simple function g such that ||f — g|l; < €/2
(such g cxists by the density of simple functions in L? for 1 < p < oo,
section 8.4). Since g is a bounded function on a bounded interval, it
belongs to all L? spaces, in particular to L2. By part (a) there exists
N such that

f g(t)sinktdt‘ <: Vk>N
(0,27) 2

By Holder’s inequality (which is just a comparison of integrals in this
case),
€

<11f = glllsin ktlloo < 5

] (f(t) — g(t))sinkt dt
[0,27]
for all k. Thus,

f(t) sinktdt\ <e Vk>N

[0,2x]
which means f{o,%] F(t)sinkt dt — 0 by definition. O



MAT 701 HW 10.1: ADDITIVE SET FUNCTIONS AND
MEASURES

Due Thursday 11/08/18 by the end of the day

Problem 1. Let (X,Z,u) b measure space.—~For A,B € X let
d(A, B) = p{AAB) where AAB = (A\ B)U (B \ A) is the symmetric
difference of A and B. Prove-that d satisfies-the-triangle inequality:
d(A,B) <d(A,C)+d(B,C) for A,B,C € L.

Proaf. Claim:
(1) AAB C (AAC)U (BAC)

To prove (??), let z € AAB. Then either 1 € A\ Borz € B\ A; we
may assume z € A\ B, because the other case is handled by relabeling
A and B. Consider two cases. Case 1: z € C, then we have z € C\ B,
hence z € BAC. Case 2: z ¢ C, then z € A\ C, hence z € AAC. In
either case (?7) holds, completing the proof of the claim.

Since y is a measure, it is monotone with respect to inclusion and
subadditive (p.243 of the textbook). Therefore, (??) implies

u(AAB) <€ p((AAC) U (BAC)) € w(AAC) + w(BAC)

which was to be proved. a

Problem 2. Fix a function w € L!(R") and define the additive set
function ¢ on the Lebesgue measurable subsets of R* by ¢(E) = [y w.
Prove that the variations of ¢ are given by V(E) = [w*, V(E) =

Jpw™, and V(E) = [, |u].
1
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Proof. Fix a measurable set E. For any arbitrary measurableset A C £

/w=fw+—fw'$/w+5[w+
A A A A E

using the fact that w*,w~ > 0. Thus, V(E) < [ zw'. To prove the

we have

reverse 1nequa.l:ty, observe that the set P = {:c € E: w(z) > 0} satisfies
fP = [pw" (because w* = 0 on E\ P) and [, w™ = 0 (because
~ =0 on P). Thus,

Joo= = fp=

completing the proof of V(E) = [ w™.

Applying the previous result to —w, we obtain

sup [ (-0 = [ (-

Since (—w)* = w™, this yields

V(e == o fL = fw = [
Finally, V(E) = V(E) + V(E) = [ (w* +w™) = [z |w]. O



MAT 701 HW 10.2: MEASURABLE FUNCTIONS AND
INTEGRATION

Due Monday 11/12/18 by the end of the day

Problem 1. Let (X, %, 1) be a measure space, and let f: X = R

be a measurable function. For each Borel set £ C R define v(F) =

p(f~Y(E)). Prove that v is a measure on the Borel ¢-algebra of R.
(This measure called the pushforward of u under f.)

Proof. Recall that a real-valued function is measurable if and only if
the preimages of all Borel sets are measurable. Thus, v is well-defined.
Also, v(E) > 0 for every Borel E because p > 0.

Given disjoint Borel scts Ex C R, observe that f~!(E}) are also dis-

joint, since taking preimages commutes with all set operations. Hence

() -+ (U=))
=p (LkJ f-l{Ek})
= )kj# (F 7 (Ex)
= zkj v (E)

which proves the countable additivity of v. O

Problem 2. With the notation of #1, prove that for every nonnegative

Borel function g: R — [0, 00) the function ¢ o f is measurable on X

/X(gﬂf)du=/kgdv

(Hint: begin with g = xg and proceed toward more general g.)
1

and

Ugc,a o Aot
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Proof. For every Borel set E C R we have (go f)"Y(E) = f~1(g7Y(E))
where g~!(E) is Borel by assumption and therefore f~!(g}(E)) is
measurable. This shows that g o f is measurable.

If g = xg for some Borel set £ C R, then go f = x;-1(g), hence

[ tao nau=us @) =By = [ ga
By linearity of integrals, the equality [, (go f)du = [, gdv extends

from characteristic functions to all simple functions.

Given a general Borel function g: R — [0,00), let g * g be an
approximating sequence of simple Borel functions, for example g, =
min(k,27%|2%g|). By definition of measurability, g, is measurable in
whatever c-algebra g is measurable, in this case Borel. Therefore,
Jxlgro f)dp = [, g dv holds by the preceding case. Note that grof 7

go f. Letting k — oo and using the Monotone Convergence Theorem,
we obtain [, (go f)dp = [y gdv. ]



MAT 701 HW 10.3A: ABSOLUTE CONTINUOUS AND
SINGULAR ASF

Due Wednesday 11/14/18 by the end of the day

Problem 1. Let (X, X, 1) be a measurc space, and let f: X — K be
an integrable function (that is, f € L'(X, )). Suppose that [, f =0
for every A € L. Prove that f = 0 p-ae. (thatis, f=0o0on X\ Z
where p(Z) = 0).

Proof. For ke Nlet E, = {z € X: f(z) > 1/k}. Then

1 1
0= fduZ[ 7 dn = - u(Ex)
Ek Ek

which shows pu(Ei) = 0. Taking the union over k, we obtain u({f >
0}) = 0. By applying this argument to —f we get u({f < 0}) = 0.
Thus f =0 p-a.e. O

Problem 2. Let (X,Z, 1) be a measure space. Suppose that ¢;: & —
R is a singular ASF with respect to u, for each £ € N. Suppose further
that ¢: ¥ — R is an ASF such that ¢.(A) = ¢(A) for each A € L.

Prove that ¢ is singular with respect to u.

Proof. By the definition of a singular ASF, for each %k there exists a
set Z; C X such that u(Z;) = 0 and ¢x(A) = 0 for all A C Z§. Let
Z = |J, Zr. Then p{Z) = 0 by countable additivity. Also, for any set
A C Z° we have A C Z{ for all k, hence ¢(A) = 0 for all &, hence
#{A) = 0. This shows ¢ is singular with respect to p. O
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SINGULAR ASF 2

Due Friday 11/16/18 by the end of the day

Problem 1. For k € N define b;: [0,1) = R by bi(x) = 1if [2¢z] is
odd, and bi(z) = 0 otherwise. Let

— 2bi(z)

@)= 25

k=1
Prove that: (a) f is a measurable function on [0, 1) with respect to the
Lebesgue measure;

(b) f£([0,1]) € C where C is the standard middle-third Cantor set.

Hint: You can use the following characterizetion of C,
C ={z €[0,1]: dist(3™z,Z) <1/3 for m =0,1,2,...}

2by(z)
3k
discontinuities (specifically, the points z such that 2*z is an integer).

Proof. (a) Each term of the sum, namely , has countably many

By the converse part of Lusin’s theorem, it is measurable. Every partial

sum of the series is measurable as the sum of measurable function.
Finally, the series converges for every , as its kth term is < 2/3*. The
limit of a sequence if measurable functions is measurable.

(b) Given m € {0,1,2,...}, observe that

2 2
3" f(z) = Z2bk man-t 4 3 )
k=m+1

where the first sum is an integer, call it ¢. The second (tail) sum is

I 2/3
nonnegative and does not exceed Z Zom - 11 73

k=m+1

= 1. Thus,

gL 3" f(z) < q+1.
1
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To refine this further, consider two cases. If b,,,1(z) = 0, then the

tail sum is at most

oo

2 29 1
k-m " 1-1/3 3

k=m+2

hence ¢ < 3™ f(z) < q + 1/3, proving that |[3™ f(x) — q| < 1/3.

2bm 1 ()
_3—m-|--1_--m = ':'3*, hence

q+2/3 <3™f(x) < g+ 1. This implies |3™f(z) — (g + 1)| < 1/3.
In cither case, dist(3™ f(z)},Z) < 1/3. This proves f(x) € C. O

o)

If bs1(z) = 1, then the tail sum is at least

Problem 2. Let o be the pushforward of the Lebesgue measure on
[0,1) under f from #1. That is, c(A) = |f~}(A)| for Borel sets A C R.
Prove that: (a) o is singular with respect to the Lebesgue measure on
the Borel o-algebra;

(b) e({p}) = O for every p € R. Hint: show that for distinct z,y € [0, 1)
there exists k such that bi(z) # bi(y). Deduce that f(z) # f(y).

Proof. We know |C| = 0 from earlier in the semester. Also, c(R\C) =
|F~Y(R\ C)| = |8 =0 by #1b. Thus o is singular.

(b) Suppose z,y are distinct points in [0,1). Without loss of gener-
ality z < y. For sufficiently large integers k we have 2%(y — z) > 1,
hence |2¥y| > |2%x| (adding 1 to a number increases its integer part
by 1). Let m be the smallest integer such that |2™y| # [2™z]. Then
|21z | = |2 'y]; call this number g. Since 2™ 'z,2™" 15 € [g,q+1),
it follows that 2™z,2"y € [2q,2¢ + 2). Therefore, |2™z], |2™y] €
{2¢,2g + 1}. Since these are distinct and y > =, we conclude that
[2™y] = 2¢+ 1 and |2™z| = 2¢. Thus b,(y) = 1 and b,,(z) = 0. Also
note that be(z) = by(y) for all £ < m by the minimality of m.
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The difference f(y) — f(z) can be estimated from below as follows:

m=1 oo
fo) - foy = 3 2ol 2 5h 2ly) i)
k=1 k=m-+1
—0+ 24 3 An) = bilz)
. k=m+1 3
2 = 2(0-1)
2 3—m + k=;+l _—3k
_ 2 B 2/3m+1
T3 1-1/3
1
= 37 >0

This shows that f is strictly increasing. In particular it is injective,

which implies that o({p}) = |f~'(p)] = 0 for all p, where the set
f~1{p) has cither 0 or 1 clements. 0






MAT 701 HW 7.2B: LEBESGUE DIFFERENTIATION
THEOREM

Due Friday 11/30/18 by the end of the day

Problem 1. Let £ C R™. Suppose there exists ¢ > 0 such that every
cube Q C R" contains a cube @' such that Q'NE = @ and |@Q’| > ¢|Q].
Prove that |E| = 0.

Proof. If E is measurable and |E| > 0, then we know (a corollary of
Lebesgue Differentiation Theorem) that |QNE|/|Q| — 1 as Q ™\, z, for
a.e. ¢ € E. However, [QNE| =|Q| -|Q\ E| £ [Q]-(Q'| < (1-¢)|Q|,
which implies |@N E|/|Q] < 1—c¢, a contradiction. This proves |[E| =0
in this case.

In general, consider the closure E which is measurable, being a closed
set. If @' is a cube disjoint from F, then the interior of @’ is an open
cube Q" disjoint from E. Since |Q"| = |@'|, the argument from the first
paragraph still applies, and shows |E| = 0. Since E C E, the claim
follows. O

Alternative proof, without LDT. It suffices to show that |[ENQ|, =0
for every cube @, since R" is a countable union of cubes. Choose an
integer m such that (m/2)" > ¢!. Divide @ into m™ equal subcubes,
by partitioning each edge of () into m equal subintervals. Each subcube
has volume m™|Q)| < 27"¢|Q|. Let @’ be as in the problem statement.
Let @ be onc of our subcubes that contains the center of @'. Since
1] < 277¢|Q} < 27|, it follows that the edgelength of § is less
than half of the edgelength of ). This and the fact that @ contains

the center of @' imply O c Q'. In conclusion: EN Q is covered by
1

T —
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m™ — 1 subcubes of volume m~"|@Q|, because we do not need § in this
cover.

Repeat the above for each of the m" — 1 subcubes, getting (m" — 1)2
subsubcubes of volume m~2"|Q|, and so on. In this way, for every
k € N the set EN Q can be covered by (m" — 1}* cubes of volume
m~*"|@Q|. This implies

mt —1

k
QL < (m* — Dfm Q) = (22 1ol oo

mn

proving the claim.

Problem 2. Let f € L}(R"). For k € Nlet Qi be the cube [-1/k,1/k]*
and define iy = |Qi| ' x0, -

(a) Prove that fx h, — f ae.

(b) Prove that f  h, — f in L}(R").

Proof. (a) Let Qf = Q) + z. Recall that (by the commutativity of
convolution)

1
@l Joz

where the second step uses the definition of hy: the value of i (z — t)

(Fem)@) = [ FOhila~1)dt = 7ty d

is 0 unless = — t € Qy, equivalently ¢t € Q.

By the Lebesgue differentiation theorem, the quantity on the right
converges to f(z) for a.e. z, proving the claim.

(b) Given € > 0, pick g € C.(R") such that ||f — g||; < e. By the

triangle inequality,

Nf*xhe— flli <N f*he—g*hells +lg*he =gl +IIf —gl:

The first term on the right is estimated by the convolution inequality:
ICF = @) * helli < ILf = glullflls < e since [[hlli = 1. The last
term on the right is < € by the choice of g. It remains to show that

||g*hk—g”1—}085k—}00.
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Let N be large enough so that the support of g is contained in
[—N,N|*. If the quantity g * hi(z) = [p. g(t)hi(z — t) dt is nonzero,
then there must be some ¢ such that g{t)hi(z — t) is nonzero, which
requires ¢t € [-N,N|* and z — ¢t € [~1/k,1/k]*. Hence z € [-N —
1, N +1)*. We have shown that the support of g x hy is contained in
[-N-1,N+1]"

Since g € C,(R"™), there exists M such that |g] £ M everywhere.
Then for all z

9% he(@)| < [ l9(x — Dhe(t)| dt < M / halt) dt =
R™ R"

Thus, the sequence g+hy—~g is dominated by the function 2M x|-y-1,n41)".
And since gx hy —g — 0 a.e. by part (a), the Dominated Convergence
Theorem yields ||g * hy — g|l1 = 0. a






MAT 701 HW 7.4A: DIFFERENTIABILITY OF
MONOTONE FUNCTIONS

Due Monday 12/03/18 by the end of the day

Problem 1. Given an increasing function f: R — R and a number
§d >0, let

ey sp LD 100
O<h<éd

Prove that f;5 is a measurable function on R.

Proof. Since f is increasing, it is measurable as the sets {f > a} are
flz+h) - (=)
h
every h, being a multiple of a difference of measurable functions. Let

g(e)=  sup LEF h,i =ie)
O<h<é, heQ

is measurable for

intervals for all a € R. Therefore,

which is also measurable, being the supremum of a countable family
of measurable functions.

We have g5 < fs5 because the supremum on the left is over a smaller
set. Therefore, {gs > a} C {fs > a} for every a € R. To prove the
converse inclusion, suppose fs(z) > a. Then there exists h € (0,4)
such that f(z + h) — f(z) > ha. By density of rationals there exists
K € (h,8) NQ, and by picking h' sufficiently close to & we can achieve
flz + h) — f(z) > h'a. Since f is increasing,

flz+ 1) = f(z) 2 flz+h) - fz) > Ka

which implies gs(z) > a. This proves {fs > a} = {gs > a}. Since the

latter set is measurable, so is the former one. (I
1
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Problem 2. Given an increasing function f: R — R, consider its Dini

number

D. f(z) = limsup fz+h) = f(=)

h—0+ h
Prove that D, f is a measurable function on R.
Proof. Since the pointwise limit of measurable functions is measurable,

it suffices to show that

D.f(z) = lim fin(z)
where the functions fi are from #1. But Dy f(z) = limse fs(z)
by the/a definition of limsup, where the limit on the right exists

by virtue of monotonicity in 8. Since 1/k — 0, the sequential limit

limg_00 fi/x(z) has the same value. O



MAT 701 HW 7.5: ABSOLUTELY CONTINUOUS AND
SINGULAR FUNCTIONS

Due Friday 12/07/18 by the end of the day

Problem 1. Let C C [0,1] be the standard middle-third Cantor sct.
Show that the function f(z) = dist(z, C)” is not absolutely continuous
on [0,1] when 0 < p < log2/log3.

Bonus (not for grade): is f absolutely continuous whenp > log2/log3?

Proof. For each m € N, the set [0,1] \ C contains 2™~! disjoint open
intervals of length 3=™ whosc endpoints are in C. Let {{amk, bmi): k =
1,...2™"1} be these intervals. Let cpi = (@mr + bmi)/2 be their mid-
points. By construction, f(am,) =0 and f(cni) = (37™/2)".

Note that

2!'"—[

1
__ ogm-lq-m _ m
E_l (Cmk — Qmi) =277°37™/2 = 2(2/3) T_m 0
Thus, for any ¢ > 0 there is m € N such that the total length of the

intervals (@mg, Cmk| is less than 4. On the other hand,

gm=1 o omlraem . 1 3 m
S (Ftems) = o) = 216128 = 3 ()

where 2/37 > 1 by the choice of p. This quantity is bounded away from

0, proving that f is not absolutely continuous. O

Problem 2. Use #1 to prove that the composition of absolutely con-

tinuous functions need not be absolutely continuous.

Proof. Recall that Lipschitz functions are absolutely continuous; in par-
ticular d(z, C) is absolutely continuous on [0,1]. Also, it was shown in

class that /z is absolutely continuous on [0,1]. But the composition
1
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f(z) = \/d(z,C) is not absolutely cohtinuous on [0, 1], by virtue of #1
(note that 1/2 < log2/log 3 because 2log2 = log4 > log3). a

Bonus content: d(z,C)? is AC on [0,1] when p > log2/log3. The

proof relies on the following useful lemma: Suppose

e fi.is ACon [a,b] for all k € N;
e the sequence {fi(a)} has a finite limit;

e the sequence {f}} converges in L!([a, b]}.

Then the limit lim f; exists and is AC on [a, b].
Proof of the lemma. By assumption, fi — g for some g € L!, the

convergence being in the L! norm. Define
H o
f(z)= 113;13; fi(a) +f g'(t) dt

which is absolutely continuous because ¢’ € L'. Applying FTC to fi,

we find

filx) = fila) + f ’ fit) dt

Letting £ — oo on the right yields fr.(x) — f(z). (]

The lemma provides another proof that the function g(t) = # is
AC on [0,1] for any p > 0. Indeed, the function g (t) = (t* — 1/k)*
is Lipschitz continuous, being zero on [0,1/k] and having a bounded

derivative on (1/k,1). Also, g — g pointwise. Finally,

, 0, 0<t<1/k
(1) = -1 .
ptP-l 1/k<t<1
which converges to pt?~! in L'. By the lemma, g is AC.
The function d(z, C)? is the pointwisc sum of the scries ) ¢y, where
¢ = 0 outside of the intervals (@i, bmi) from #1, ¢,,.(z) = (x — a,)°
for T € (@mk, k), and @y (z) = (byng — 2)? for x € [Cink, bmi). Since ¢m

consists of finitely many copics of ¢ > 7, it is absolutely continuous.
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Also,

2m-l

1
| 18l =2 T (ot = ame)p = 2237
g k=1

Since p > log 2/ log 3, the series 3 fol |¢!.| converges (it is a geometric
series). Hence > ¢!, converges in L!. By the lemma, d(z,C)? is
AC. O






MATH 701 MiDTERM EXAM SOLUTION

1. Suppose that A C R™ is a closed set and F': R® = R” is continuous. Prove that F(A) is a
Borel set.

Proof. Every closed set is a countable union of compact sets: for example,
20
A=JAn[-k &
k=1
where A N [—k, k)" is closed and bounded, hence compact. The image of a compact set under a
continuous map is compact (MAT 601). Hence,

F(A)=J FAN[-k,k")
k=1
is a countable union of compact sets. Each compact set is closed; so the union is a Borel set
(more specifically, a F,-set). O

Remark: this argument was used in the proof of the main theorem of 3.5, about the measura-
bility of Lipschitz images.
2. Suppose Ei, k € N, are measurable subsets of R". Let E be the set of all points = such

that £ € E). for more than one value of k. Prove that E is measurable.

Proof. Having z € E}, for two values of k means z € E; N E; where 1,7 € N and i # j. So,

E=J|EnE)

iEN j#i
The intersection E; N E; of measurable sets is measurable, and E is a countable union of these,
so it is measurable. 0

Remark: a shorter proof is to introduce f = ), . X&,, which is a measurable function, being
the sum of a series of nonnegative measurable functions. Then note that £ = {z € R™: f(z) > 1}
is measurable.

3. Suppose fi, f: [0,1] = [1,00) are measurable functions such that fi = f. (This means
convergence in measure.) Prove that /Jfx = /F.

Proof. Rewrite the difference of square roots as follows:

_ A=A A
using fr, f = 1. For any € > 0, the above implies {|v/fi — V/f| > ¢} C {lfx — f| > 2¢}. Hence
{IVT = VI > H < {lfe = 1> 2H =2 0

as required. O







4. Let f: E — R be a bounded measurable function, where £ C R" is a measurable set.
Suppose there exists a number p € (0, 1) such that
limsup of|{z € E: |f(z})| > a}| < 0
a—04+
Prove that f € L}(E).

Proof. For j € Zlet E; = {z € E: |f(z)| > 27}. Recall from HW 5.1 that f € L'(E) if and only
if 3 ez 27| E;| < oco. It remains to show this series converges.

The finiteness of limsup implies there exist ap > 0 and M such that o?|{z € E: |f(z)| >
a}| € M for 0 < @ < ag. Let J € Z be such that 2/ < ag. Then

Jo LAY J _
Z PIE;| < 2 23@ =M Z o(1-p)j
j=—o0 Jj==—c0 Jj==00
It is casier to think of this serics after substitution j = —i, so it becomes Y oo, 2P~ which is
a convergent geometric series since 277! < 1.
For j > J we have |E;| < |Ey| since E; C E;. Also, there is an index K such that Eg is
cmpty (because f is bounded). Thus,

oo ) K-1 K-1 .
Y 2lEl= S YIE(<IE Y ¥
e j=J+1 j=J+1

which is a finite sum of finite quantities, hence finite. O






Complex Part

1. Show that the function f(z) = 1/z has no a holomorphic anti-
derivative on {1 < |z| < 2}.

2. Suppose that f is an entire function and f2 is a holomorphic
polynomial. Show that f is also a holomorphic polynomial.

3. Suppose that a function f is meromorphic on the unit disk I} and
continuous in a neighborhood of its boundary 8. Show that for any
number A such that |A] > sup,cap |f(2)} the number of zeros of the
function f — A is equal to the number of poles of [ in D.

4. Suppose that f and g are entire functions such that fog(z)==x
when z € R. Show that f and g are linear functions.
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REAL ANALYSIS AND MEASURE THEORY
QUALIFYING EXAM, SPRING 2018

Notation: LP spaces are with respect to the Lebesgue measure m.

1. Let (X, I, u) be a measure space (so, X is a set, Z is a r-algebra of
subsets of X, and y is a measure). Suppose Ay C X fork = 1,2,...,n.
Define the function f: X — R as follows: f(x) is the number of
indices k such that x € A;.

(a) Prove that if each Ay is a measurable set, then f is a measurable
function.

{b) If f is a measurable function, does it follow that each A; is a

measurable set? Prove or disprove.

2. Let f(x) = 1/x for x € (0,1). Show that there exists a sequence
of Lebesgue integrable functions f;: (0,1) = R such that fy = f in
measure and f(O.l) fx =0forall k.

3. Suppose that f € L2((1,0)). For every number ¢ > 0 define
Er = {x € (1,00): |f(x}| > tv/x}

Prove that there exists a constant C such that m(E;) < C/t for all
£>0.

4. Consider the sequence of functions

k
fil*) = T

on the set [0, 1] equipped with the Lebesgue measure. Prove that the
LP normof fitendsto 0if 1 < p < 3 butnotif p > 3.
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Qualifying Exam, Complex Analysis, January 12, 2018
Notation: Throughout the exam A denotes the open unit disc in C.

1. Find a conformal map from the strip {0 < Imz < 7} onto A.

9. Find f LI
|

z|=7 422 — 72

@ Let f be a non-constant entire function. Show that the function e/ has an isolated
cssential singularity at infinity.

L7tz HY 2

4T f(z) = %-‘_Lfi find f(A).

22
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Qualifying Exam, Real Analysis and Measure Theory
January, 2018

1. (a) Give an example that shows that the image of a measurable set under a continuous function
f: R — R may not be measurable.

(b) Let f: R® — R" be a Lipschitz continuous function; that is, there exists a constant M > 0 such
that
|f(z) = fW < M|z -yl  forevery z,y € R".

Prove that f maps measurable sets into measurable sets.

2. Suppose that E C R" has a finite measure and f is a measurable function on E. Prove that f € L'(E)
if and only if 350, 271{z € E: |f(z)| = 2'}] < .

j=0

3. Let 1 < p<ooandp =p/(p—1) Suppose that f,g: E — [0, c0] and not identically 0 (i.e., neither
function equals 0 a.e.) such that f € L?(E) and g € L”'(E). Prove that the equality

Jol= () ()

holds if and only if f? is a multiple of ¢*" a.c.

4. (a) Let f: R® = R be a continuous function with compact support. Fix K € {1,2,...}, and divide
R” into cubes {Qq}a=12,.., R* = | o, @a, each of volume |Q,| = 1/K. Define

fielz) = I(Qiﬂl ]Q f@)dy forze€Qa.

Show that fyy = f in L}(R") as K — oo.
(b) Does the statement in (a) hold for f € L'(R")? Justify your answer.
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Qualifying Exam, Complex Analysis, August 2017

Notation: Throughout the exam ID denotes the open unit disc.

1. Find a conformal map from the sector D = {z € C: 0 < Argz < §} onto D.

2. How many zeros (counted with multiplicity) does the function
flz)=€e —422+32+1
have in the disc {z € C: |z| < 2}?

3. Let D C C be a bounded domain, z5 € D, and f ;: D — D be a holomorphic function
such that f(zp) = 2zp. Show that |f'(2)| < 1.

4. Let f, : D = C, n > 1, be continuous functions which are holomorphic on D. Assume
that f,(0) = 0 and that the real part functions u, = Re f, converge uniformly on the unit
circle D as n — oo to a function u. Show that the sequence {f,} converges normally on D
to the function

1 [ef4z
f(Z)_Q_'"'/o e"’—zu(e )dé.
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QUALIFYI‘;:()» EXAM, Real Analyis and Measure Theory

Problem 1. Let E C R with positive Lebesgue measure, |E| > 0. Show that the set {z—y | z,y €
E} contains an interval centered at the origin.

Problem 2. Let E C R" have positive finite Lebesgue measure, 0 < |E| < oo, and let f

be measurable on E, show that limyo || fllp = || fllec - Show by example that this is not true if
|E| = .

| Problem 3. Suppose that f(z) is Lebesgue measurable and finite a.e. on (0,1) C R. If the
fwhction g(z,y) = f(z)~ f(y) is Lebesgue integrable over (0, 1) x (0, 1) C R?, show that f € L'(0,1).

Problem 4. Consider R" with Lebesgue measure, n > 3, 1 < p < n, and p° = =£. For

n=p’
u € L7 {R") show that
lim R"’f |ufPdz =0
) R<|x|<2R
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Qualifying Exam, Complex Analysis, January 2017

Directions: Attempt as many as you can of the following problems. Write neatly
on one-sided sheets; explain; show work; justify your cloitns (if you are using a
theorem from class and/or the textbook, you must quote the theorem
by its name, but you are not required to supply the theorem's proof).
Write page numbers and remember to print your name.

Notation: Throughout the exam A denotes the open unit disc in C with center
ot the origin, that is: A = {z, |z| < 1}.

1. Let C denote the positively-oriented boundary of the domain

D= {:EC, -2<Rez <« %. [Ttn =] <2}.

Find .
I= /-:-.-‘:_—l-d.t
c

where n > 0is an integer. Write your answer in algebroic form */ = a+ib".

2. Find the domain of convergence and the siun ol the following two power
serics. Explain,

(a.) iko:"'; {b.) ik’- =k
knl

k=]

3. Evnluate the {ollewing integral. Explain ond justify all your claims.
+o0
ztsinx

- (#*+1)

dr

4. Prove that there nre no, non-constant polynominls of the form
{0.1) PE) ="y gz g

that satisfy

(0.2} Ip(z}l <1 when [=]=1.
1
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Real Part
1. Let (X, Z, o) bea measure space. Show that a simple function f = 7, w,xe,
14 measurable if and only if all sots E; € T.
2. Compute the following limit and justify the calculation:

1
lim [(1+nz?)(1+2%)""dz,
" m_u[

where x is the Lebesgue mensare with respect to x.

3. Let f be a Lebesgue measurable function on the interval [0, 1) and the measure
of the set of {c : |f(x)] = oo} is 0. If the function g(=,y} = f(z) - f(y) Is
integrable on the unit square i R? show that f is iutegrable on [0, 1],

4. Let (X,Z, ) be a mensure space and let {fi} be a sequence in LP(X, ji),
1 € p < oo, converging to f in LP(X,u), let {ge} be a scquence in L=2(X, u),
Hgille € A for all k, converging to g in L*{X,u). Show that fige = fo¢ in
LP(X, ).
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Qualifying Exam, Complex Analysis, August 2016

Directions: Attempt as many as you can of the following problems. Write neatly
on onc-sided sheets; explain; show work; justify your claims (if you are using a
theorem from class and/or the textbook, you must quote the theorem
by its name, but you are not required to supply the theorem’s proof).
Write page numbers and remember to print your name,

Nolation: Throughout the exam A denotes the open unit disc in € with center
at the origin, that is: A = {z, |z| < 1}.

1. Let C denote the positively-oriented boundary of the domain
D= {z €C, -2<Rez< %, |Im z| < 2}.

zll
! _[z“—ldz
c

Find

where n > 0 is an integer. Write your answer in algebraic form “J = a+ib".

2. Let f be continuous on C and analytic except possibly on the unit circle
{|z] = 1}. Suppose that there is an entire function g such that f(z) = g(z)
for |z| = 1. Prove that f = g (and hence f is entire).

3. Let S be a square with center at the origin. Suppose that F : A — § is
analytic, one-to-one and onto and furthermore, that F{0) = 0. Show that

Fliz) =iF(z) forallz € A.

4.  Prove that there are no, non-constant polynomials of the form

{0.1} plz)=z2"4+an 12" '+ a2 4ag

that satisfy

(0.2) |p{z)[ <1 when |z{=1.
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Qualifying Exam, Complex Analysis, August 2015

Notation: Throughout the exam A denotes the open unit disc in C.

1. Find the image of the half-disc D = {z € C: |2| < 1,Imz > 0} by the M&bius map

fe)= .

2. Let f be a holomorphic function on A\ {0} such that |f(2)| > 1 for all z € A\ {0}. Show
that 0 is an isolated singularity of f which is either removable or a pole.

3. Let D & C be a simply connected domain, zp € D, and f : D — A be a conformal map
such that f(zg) = 0. If g : D — A is a holomorphic map such that g{z;) = 0, show that
|¢'(20)| € |f'(20)|, and the equality holds if and only if g is a conformal map.

-+o0 eiz
4. Compute F(w) = /

oo (T —w)?
Imw > 0, and Imw < 0, separately.)

dzr, where w € C\ R. (Hint: consider the cases
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AUGUST 2015 QUALIFYING EXAM IN REAL ANALYSIS

Notation: m stands for the Lebesgue measure on the real line. The spaces LP({0,1])
are understood with respect to m. You may use without proof any standard results from
MAT 701, MAT 601, and MAT 602.

1. Let (X, M) be a measurable space, and suppose A, € M forn =1,2,.... Let
A = {x € X: x € A, for infinitely many n, and x € A, for infinitely many n}
Prove that A € M.

2. Suppose f: [0,1) — [0, o) is a measurable function such that fol VI=xf(x)dx < oo
Let F(x) = [ f(t)dt for x € [0,1).

(a) Prove that F is continuous on [0,1).

(b) Does F have to be bounded on [0,1)? Prove or disprove

() Prove that fol F(x)dx < co.

3. Give an example of a sequence of functions f,: [0,1] — [0,1] such that the total
variation of f;, on [0, 1] is at most 2, and the function f(x) = sup,, fx(x) is notin BV([0,1]).

4. Suppose that {fs : n = 1,2,...} is a sequence of functions on [0,1] such that
”fn ||L4{!:0'1]‘] < 1 for all n.

Which of the statements (a)—{c) follow from the above? Prove or give a counterexample
to each.

(a) There is a constant C such that || fu[|12(po,1)y) < C for all n.
(b) There is a constant C such that || fx(| .s(j0,1)) < C for all n.
(¢) There exists a subsequence { f,, } which converges almost everywhere on [0, 1].
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Complex Analysis Qualifying Exam January 2015

Instructions: Please use the bluebooks provided for your solutions of the 4
problems below. You may use without proof any standard results from class.

Problem 1. Show that 320 Lz converges absolutely for |z] < 1. Also

n=ln
show that there are infinitely many z with |z| = 1 for which the series diverges.

Problem 2. Let f(z) be holomorphic on C cxcept for poles. At oc assume
that f has a removable singularity or a pole.

(a) Show that f has finitely many poles on CU {oo}.

(b} Let p;(z) be the principal part of f at the jth pole, 1 < j < N, show that

N
HOEDW IO

i=1

is constant.

Problem 3. Let f be continuous on C and analytic except possibly on the
unit circle, |z| = 1. Assume there is an entire function g such that f{(z) = g(z)
for |z] = 1. Prove that f = g, and hence f is entire.

Problem 4. Let f, be analytic in the unit disc, D, and have positive real
part: R(f(z)) > 0 on D. Assume that the f, converge pointwise on D to a
function f having R{f(z)) < 0 on D. Prove that f is constant on D.
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Real Analysis Qualifying Exam January 2015

Instructions: Please use the bluebooks provided for your solutions of the 4
problems below. You may use without proof any standard results from your
courses.

Problem 1 Let ;* be Lebesgue outer measure on R. Show that there are
disjoint sets Ey, E», ... satisfying the strict inequality

w (B <Y ut (B
k k

Problem 2. Construct a fmction in L'(R) that is not in L?((e,b)) for any
non-empty interval (a,b} C R.

Problem 3. Let S be a measurable space and F a sigma algebra of subsets of
5. Let v be a positive finite measure on F and g a finitely additive real-valued
set function on F. Finally, assume that both v+ ++ x4 and v = i are non-negative,
finite, and countably additive on F. Prove that g is a signed measure on F
whose total variation is absolutely continuous with respect to v

Problem 4. Let the f; be Lebesgue integrable on R such that [f()| ™, 0
a.e. Also assume that the series Y, | fu(z) is an alternating series for almost
every z. Prove that

f_ m;fn(m) dz = Zl f " @
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Qualifying Exam, Complex Analysis, August 2014
Notation: Throughout the exam A denotes the open unit disc in C.
1. Find a conformal map from the half-disc D = {z € C: |z| < 1,Rez > 0} onto A.

2. Let D be a2 domain in C containing 0 and f : D — R be a continuous function such that
f(0) =0 and

f(2)dz=0
aR

for every closed rectangle R € D with sides parallel to the coordinate axes. Prove that
f(z)=0forevery ze D.

3. Let D < C be a bounded domain, z5 € D, and f : D — D be a holomorphic function
such that f(zp) = zp. Show that |f'(z)| < 1.

4. Let f, : A — A, n > 1, be a sequence of holomorphic functions such that f, has a zero
of order m,, at 0, where lim,,_,oc m, = co. Show that {f,} converges locally uniformly to
zero on A,
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Qualifying Exam Real Analysis August, 2014

Throughout m is Lebesgue measure.

1. Assume that E is a closed subset of R. Prove or give a counterexample;

(a) If E£° is dense then m(E) = 0.
(b) If m(E) = 0 then E* is dense.

. Let E be a Lebesgue measurable subset of R and f a measurable function. If f > 0
on E a.e. and [ fdm < oo, prove that

lim [ fY"dm = m(E).

n—o0 E

. Let f be absolutely continuous on [0,1] with f(0) = 0 and f' € L*([0, 1]). For which

values of o does
lim z7%f(z) =0

T304

for all such f7

. Let (X, A, p) be a measure space and f : X — R a measurable function.

(a) Show that E = {(z,t) : |f(z)| > t} is measurable in the product space (X x
[0,00), A x L, x m), where L is the o-algebra of Lebesgue measurable subsets
of [0, 00).
(b) For p > 0 prove
[ 1Pau= [ ortuta s 1@ > e
3 0

(c) Prove that if f € L? then

. P . — T r . —
Jim #Pp(z 2 |f(z)] > 8) = lim Fu(z: |f(z)] > t) = 0.
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Qualifying Exam, Complex Analysis, January 11, 2013
Notation: Throughout the exam A denotes the open unit disc in C.

1. Find & conformal map from the strip {0 < Rez < 1} onto A.

2. Let C denote the positively oriented boundary of the domain
D={zeC: -1/2<Rez< 2, [Imz| < 2}.

-7

Find / . 4" 7 dz, where n > 0 is an integer. Write your answer in algebraic form, a + bi.
c2i~

3. Is there an entire function f(z) such that e/©*) has a pole at oo ?

4. Suppose that f, g are holomorphic functions in A so that f(0) = g(0) =1 and
(flg-fg)1/n)=0
for all integers n > 2. Show that f =g on A.
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JANUARY 2013 QUALIFYING EXAM IN REAL ANALYSIS

Notation: m stands for the Lebesgue measure on the real line. The spaces LP([0, 1)) are

understood with respect to m.

1. Suppose that f: [-1,1] — R is a function of bounded variation. Prove that the
function g(x) = f(sinx) belongs to BV([a, b]) forall ~e < a < b < co.

2. Let (X, M, yi) be a measure space such that for every set A € M the measure ji(A)
is a nonnegative integer. Suppose that { s }n>1 are measurable real-valued functions on
X such that [ |fa|dp — 0as n — oo, Prove that f, — O ae.

3. Suppose that f € L([0,1]). Prove that the function g(x) = |f(x)|**! is in L1([0, 1]).

4. Suppose that { f,} is a sequence of nonnegative Borel measurable functions on [0, 1]
such that fol fn(x}dm(x) = 1foralln.

Which of the statements (a)-(d) follow from the above? Prove or give a counterexample
to each.
(@) Theset A = {x: fu(x)} < 2 for all n} is Borel
(b) The set B = {x: fa(x) < 2 for infinitely many values of n} is Borel
() A#o
d) B#o
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QUALIFYING EXAM, Measure Theory, August 2012

Problem 1. Let f : R — R be given by f(z) = z2. Let m be Lebesgue measure on the Borel sets
of R. For the following statement, prove OR provide a counterexample (with the details showing it
is indeed a counterexample):  For all Borel sets E C R, if m(F) = 0 then m(f(E)) = 0.

Problem 2. A sequence of (Lebesgue) measurable functious f, on R is said to converge almost
uniformly to the measurable function f on R if and only if for cach € > 0 there is a measurable sct
E C R such that m(F) < € and f, — f uniformly on R\ E.

Give an example of f, — f pointwise almost everywhere but NOT f, — f almost uniformly.
Show that your example works.

Problem 3. On [0,1] C R set g(z) = +/z. Define f on {0,1) by f(3) = L forn=1,2,3,..,,
(ira

2
linear pieces of f are graphed.

=0forn=1,23,..., and otherwise f is linear. See the figure where the first few

11
0.1+
05
044
03~ /\
0 v £ ‘/\ \l T v )
02 0.4 05 03 1

(i) is g absolutely continuous? Why or why not.
(ii) is f absolutely continuous? Why or why not.
(iii) is g o f absolutely continuous? Why or why not.

Problem 4. (i) For a space X with measure u and p(X) < oo, prove that L7 ¢ L? for
0 < p < g<oo. (ii) Suppose that X contains disjoint scts Fy for k = 1,2,... with0 < u(E) < 27~
Show that L* is not contained in L9.
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MAT 701 Real Analysis Qualifying Exam August 2013

Problem 1. Let f be a measurable function satisfying
2
C o— ,
If(z}| € T2 00 < T <0

a. Prove that

=300

lim fm f(nz)dz =0.

b. Is it necessarily true that

o0

lim i (ﬁ) dz = 07

i
- —20

Problem 2. Let f be an integrable function satisfying fol f(z)dz = 0. Prove
that there are intervals I of arbitrarily small positive length such that

flf(s:)d:r. =0,

Problem 3. Formulate and prove a version of Holder’s inequality for products
of three functions. It is sufficient to obtain an upper bound on ful fl)g(z h(x) de
for non-negative measurable functions f, g, and & in terins of suitable L” norms
of the individual functions. It is permissable to use the usual {two function)
Hélder inequality without proof.

Problem 4. Let C be a closed sct of positive Lebesgue measure and f(z) =
d(x,C), the distance from the point r to the set C. Prove that there exist
points = at which the derivative of f vanishes. Give an example of a closed set
of measure zero for which there is no such point z.












Topics for Qualifying Exam in Complex Analysis

I Complex Plane and Elementary Function.
a) Complex Numbers
b} Polar Representation
c) Stereographic Projection
d) The Square and Square Root Functions
e} The Exponential Function
f) The Logarithm Function
g) Power Functions and Phase Factors
h) Trigonometric and Hyperbolic Functions

IT Analytic Functions
a) Review of Basic Analysis
b) Analytic Functions
¢) The Cauchy-Riemann Equations
d) Inverse Mappings and the Jacobian
e) Harmonic Functions
f) Conformal Mappings
g} Fractional Linear Transformations

IIT Line Integrals and Harmonic Functions
a) Line Integrals and Green’s Theorem
b) Independence of Path
¢) Harmonic Conjugates
d) The Mean Value Property
e) The Maximum Principle

IV Complex Integration and Analyticity
a) Complex Line Integrals
b) Fundamental Theorem of Calculus for Analytic Functions
¢} Cauchy’s Theorem
d) The Cauchy Integral Formula
e} Liouville’s Theorem
f) Morera’s Theorem
g) Goursat’s Theorem
h} Complex Notation and Pompeiu’s Formula

V Power Series
a) Infinite Series
b) Sequences and Series of Functions
¢) Power Series
d) Power Series Expansion of an Analytic Function
e) Power Series Expansion at Infinity
f) Manipulation of Power Series
g) The Zeros of an Analytic Function



h) Analytic Continuation

VI Laurent Series and Isolated Singularities
a) The Laurent Decomposition
b) Isolated Singularities of an Analytic Function
¢) Isolated Singularity at Infinity
d) Partial Fractions Decomposition

VII The Residue Calculus
a) The Residue Theorem
b) Integrals Featuring Rational Functions
c) Integrals of Trigonometric Functions
d) Integrands with Branch Points
¢) Fractional Residues
f) Principal Values
g) Jordan’s Lemma
h) Exterior Domains

VIII The Logarithmic Integral
a) The Argument Principle
b) Rouche’s Theorem
c) Hurwitz’s Theorem
d) Open Mapping and Inverse Function Theorems

IX The Schwarz Lemma and Hyperbolic Geometry
a) The Schwarz Lemma
b) Conformal Self-Maps of the Unit Disk

X Harmonic Functions and the Reflection Principle
a) The Poisson Integral Formula
b) Characterization of Harmonic Functions
¢) The Schwarz Reflection Principle

XI Conformal Mapping
a) Mappings to the Unit Disk and Upper Half-Plane
b) The Riemann Mapping Theorem
¢} Compactness of Families of Functions
d) Proof of the Riemann Mapping Theorem

References: Complex Analysis by T.W. Gamelin
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|
1

Complex Part
1. Suppose that f(z) = u(z,y) + iv{z,y) is a function on a domain
D and zy € D. Show that il: a) u and v are differentiable at zp; b) the

limit
flzo + Az) = f(zg)
Az
exists, then either f(z) or f(z) are complex differentiable at zq.
2. Suppose that f is an analytic function on a disk {|z]| < 2r} given
by a series ) .-, €,2". Show that the series

lim
Az—=0

converges on € and |[F(z)| € Mel®/", where
M= inlax|f(z)|.
I|l=r

3. Let F be a family of analytic functions on the open unit disk
D such that Rf({z) > 0 for each f € F and z € D. Show that every
sequence of functions in F contains a subsequence converging normally
to a function in F or co.

4. Let f be a nonconstant analytic function on the unit disk D and
let U = f(D). Show that if ¢ is a function on U (not necessarily even
continuous) and ¢ o f is analytic on D, then ¢ is analytic on U.






1. Under what conditions on complex numbers a and b the linear
function ax + by is analytic as a function of z = z;y?

2. Find the formula for entire analytic functions which have a simple
0 at 0. What entire analytic functions have simple zero at co?

3. Let f be a conformal mapping of a disk. Show that f’ is never
equal to 0.

4. Let D C Cis a domain and {f;} is a sequence of analytic functions
on D such that the functions

n

galz) =D 1fi(2)l

=1
converge normally on D. Show that the functions

ha(2) = 3 11(2)

also converge normally on D.






Qualifying Exam, Complex Analysis, August 2010

1. Let n > 0 be an integer. How many solutions does the equation 3z = e* have in the
open unit disk? Justify your answer in full detail.

2. Let f(z) = 5 an2" be holomorphic in the unit disk U such that
1
13 < —_— .
@IS (o Yee U
Prove that |a,| < efor alln > 1.

3. Are there any entire functions f which satisfy |f(z){ > /|z| for all z € C ? Justify your
answer in full detail.

+00

4. Show that the function I(z) = / e~t=2¥dt, 2 € C, is constant.

-






Complex Part

1. Show that the function f(z) = 1/z has no a holomorphic anti-
derivative on {< 1 < |z| < 2}.

2. Suppose that f is an entire function and f? is a holomorphic
polynomial. Show that f is also a holomorphic polynomial.

3. Suppose that a function f is meromorphic on the unit disk I and
continuous in a neighborhood of its boundary 8D. Show that for any
number A such that |A| > sup,cgp |f(2) the number of zeros of the
function f — A is equal to the number of poles of f in D.

4. Suppose that f and g arc cntire functions such that fog(z) ==z
when x € R. Show that f and g are linear functions.






QUALIFYING EXAM COMPLEX ANALYSIS

Thursday, January 8, 2009

Show ALL your work. Write all your solutions in clear, logical steps. Good luck!

Your Name:

Problem | Score | Max

1 20
2 20
3 30
4 30

Total 100




Problem 1. Let f = f(z) be analytic in the unit disk, f{0) = 0. Show that the infinite series

> (="
n=1

is converging and represents an analytic function in the unit disk.



Problem 2.

Consider an analytic function defined in the unit disk by the following power series

==}
f(z)= Zanz" , where the coefficients are real numbers such that n~2% <a, <n
n=]

Show that f does not extend analytically near the point z = 1.



Problem 3. (Cauchy Formula)
Let F be a countable compact subset of a domain 2 € C. Suppose we are given a bounded holomorphic
function

J:Q\F~C
Show that f extends holomorphically to the entire domain 2.

a) First try a simple case when F is finite

b) Try the case when F has finite number of accumulation points

c¢) Try the general case.

d) The problem still remains valid if F is a compact sct of zero length (1-dimensional Hausdorff measure},
try to extend your proof to this general case. Recall that F has zero length if it can be covered by a finite
number of disks whose diameters sum up to a number as small as we wish.



Problem 4.
Compute the following integral

f € cosx dr
0 (1 + 172)2
Hint. Consider the following complex function in the upper helf plane

e':z

f(2)="(‘m§5§






Qualifying Exam, Complex Analysis, August 2008

i. Let f be an entire [unction, @ € C and r > {a|. Show that

1 J0/e)
21 Jizj=r 2@

= f(0).

2. Find the image of the first quadrant {z > 0,y > 0} under the M&bius map w = f—; .
=z 1

3. Find all the continuous functions v : € — R which have the property that for every

rectangle B C C with sides parallel to the coordinate axes

f vdzr = —area R , vdy =0,
BR B8R

where @1t is traversed counterclockwise. (Hint: Consider the function f(z) = z + 1u(x, y),
where = = T + 1y.)

4. Suppose that
fi2)=14cz 4+ ezt +...
is & holomorphic function on the closed unit disc A such that |f(z)| € M for |z| = 1. If

2 € Ais a ero of f show that
1

S iy
{20l 2 77






Qualifying Exam, Complex Analysis, January 11, 2008
Notation: Throughout the exam U denotes the open unit disc in C.

1. Show that a complex valued function k(z) on U is harmonic if and only if

h(z) = f(2) + 9(2),
where f(z) and g(z) are analytic on U.

2. Find z"cos z dz, where n € Z.
lz|=1

3. Find all the possible Laurent expansions centered at 0 of the function
422
z) = ——
& ==y
Specify the annulus of convergence for each such expansion.

4. (i) Show that the Mobius transformation h(z) = 12:_3 , where @ € U, is a conformal
self-map of U.

(i) Let f : U — U be a holomorphic function and assume that a4,...,e, € U are zeros
of f. Prove that |f(0)| < |a;...ay].







Qualifying Exam, Complex Analysis, August 22, 2006

1. Find a conformal map from the strip {0 < Im z < 1} onto the unit disk.

, sin(nz)
2. Find —_—idz,
l=|=2 22(1 s z)

3. Let f be a holomorphic function on the closed disk Ag = {2 € C: |z| < R}. Show that
o< 5 ff
I/ O < 5 . |£(2)| dzdy .

oo
4. Suppose that f, are holomorphic functions on a domain D and Z | fal converges locally
n=1

uniformly on D. Show that Z |fi.| converges locally uniformly on D.

n=1



Real analysis qualifying exam Aug. 22, 2006

1. Let E C R denole a countable set.

{a) Compute the Lebesgue measure of E.

(b) Construct an E that is a G set (countable intersection of open sets),

(c) Construct an £ that is not a G set.

2. Give an example of a sequence { f,.} for each of the requirements below or show that
no such sequence exists.  L! denotes the Lebesgue integrable functions on R.

(a)0 < fu — 0in L', but {f,} does not converge pointwise a.e. 10 zero.

(b0 £ fn — Dae, but { fn} does not converge in L! to zero.

(0L fn— fae.and [ fo < Lbut f¢ L.

3. Givenap > 1let f € LP(]0,1]) with respect to Lebesgue measure m , and let
E C [0,1] be measurable. Put v(E) = [, fdm.

(a) Show that v is a complex measure absolutely continuous with respect to m.

(b) Let g(x) = ([0, z]) for each x € [0, 1]. Prove

loly < ) 1115

4. Forsome 1 < p £ oo let T : LP(R) — LP(R) be a continuous linear operator,
Suppose ||/llp < ITf1l, forall f € LP(R).

(a) Show there exists a real constant C independent of f so that
iTAlp € Cllfllp
forall f.
(b)ShowTis1:1.

(c) Show T has closed range, i.c. whenever T'f, — g in LP there exists f € LP such
that Tf = g.



Il

Qualifying Exam, Complex Analysis, January 28, 2006

1. Find a conformal map from the half-disk {z: [z —1] <1, Imz > 0} onto the upper
half-plane {Imw > 0}.

2. Find z"e'/*dz, where n is an integer.
lz]=1

3. Let f be a holomorphic function on U \ {0}, where U is the open unit disk, such that
f(1/2) =2 and the function
g9(z) =z |f(2)*

is holomorphic on U \ {0}. Find f.

4. Let f be a holomorphic function in U\ {0}, where U is the open unit disk, which satisfies
1/ (z)| £ —log|z|, Vz € U\ {0}.
Prove that f = 0.






QLL 2005

Measure Theory Part

1. Let {rp}3, be the ratlonals f(z) = :c 2for0<z <
1 and 0 otherwise, and set g(z) = 3 oo, 27" f(z — ). Is
f(z) measurable? Why? Is g(:z:) measurable" Why? What
is the set of points of discontinuity of g? Is g integrable?
Why? Show that g is not in L? on any interval.
2. Let i be Lebesgue measure on the borel sets of the
real line, and define v(E)tobe1if0 € Eand 0if0¢ E
for all borel sets E. Is v a measure? ¢ finite? Compute g—:

3. Define L? (Lebesgue measure). Is L*(R) C L'(R)?
Why? Is-L%(0,1) c LY(0,1)? Why?
4. Let fr — fin LP, 1 < p < 00, gx — ¢ pointwise and
lgklloo < M for all k. Prove that fygrx — fg in L7
Complex Part

1. Let f be an analytic function on the unit disk and
f(2) is real when z is real. Show that f(z) = f(z).

2. Let {f.} be a sequence of continuous functions on
the closed unit disk that are analytic in the open unit disk.
Suppose { f,} converges uniformly on the unit circle. Show
that {fn} converges uniformly on the closed unit disk.

3. Suppose that f is an analytic function on an open set
containing the closed unit disk, | f(z)] = 1 when |2| = 1 and
f is not a constant. Prove that the image of f contains the
closed unit disk.

4. Let F be a family of analytic function

oo
f(zy=z+ Zanz“
n=2
on the open unit disk such that |e,| < n for each n. Show
that F is normal, i.e. every sequence of functions in F
contains a subsequence converging normally to a function
in F.






Cﬂmp|Q)( AM[L/S]S
ol 2oy g Spring 2005

1. Find all points where the polynomial p{;, I)=1+2z+2+ zi 4+
2?3 + 122 is complex differentiable.
2. Find the maximal radius of the disks centered at 0, where the

function f(z) = ;> can be represented by a Taylor series.

3. Suppose that a function fis holomorphic in a neighborhood of the
origin and f(z) = f{2z) whenever z and 2z are in this neighborhood.
Show that f is constant.

4. Show that the function f(z) = Z cannot be uniformly approxi-
mated on the unit circle by polynomials of 2.

5. Show that an entire function f(z) such that S(2)] > jz|V for

sufficiently large N is a polynomial.
6. If function f;, j = 1,2,..., are holomorphic and uniformly

bounded in the unit disk are not equal to O there and f;(0) = 0 as
§ ~+ oo, then f; =0 uniformly on compacta in the unit disk.
7. If f is holomorphic and bounded in {Imz > 0}, real on the real

axis, then f is constant.






Topics for Qualifying Exam in Analysis
MAT 701

c-algebras

Measures, outer measures, Borel measures

Measurable functions

Lebesgue integration in abstract measure spaces and in R, Lebesgue measure
L? spaces, Holder's and Minkowski's inequalities, approximation by continuous
functions, duality of L”and L?.

Radon-Nikodym theorem, Lebesgue points, absolutely continuous functions,
functions of bounded variation, fundamental theorem of calculus

7. Product measures, Fubini's theorem

il b [

&

References:

Real Analysis, 2™ ed., Gerald Folland
Real and Complex Analysis, 3™ ed., Walter Rudin

Measure and Integral, Richard Wheeden and Antoni Zygmund
Real Analysis, 3" ed., H.L. Royden







MAT 701 Qualifying Exam January 2012

Instructions: Please use the bluebooks provided for your solutions of the 4
problems below. You may use without proof any standard results from MAT
701, MAT 601, and MAT 602,

Problem 1. Let f,, be non-decreasing functions on (—o0,0] such that f, = 0
in (Lebesgue) measure as n = oo. Proof ot counterexample: Necessarily f,, — 0
almost everywhere on (—oo, 0] with respect to Lebesgue measure.

Problem 2. Prove that any function f € LP([0,1]*),1 € p < oo, can be
approximated by a finite linear combination of functions of the form h(z)g(y)
with h and g continuous on [0,1]. More precisely, given € > 0 there is a function

n
u(z,y) = Y hyi(z)gi(y)
j=0
with h; and g; continuous on [0,1] for j = 1,2,...,n, such that [|f —u|l, < e

Problem 3. Lect f be a continuous real-valued function on the real line that is
differentiable almost everywhere with respect to Lebesgue measure and satisfies

J{(0} = 0 and
[} = 2(x)
almost everywhere. Prove that there exist infinitely many such functions, but

that only one of them is absolutely continuous.

Problem 4. Let x4 and r be measures on the same measurable space. Assume
that g is finite, and define a sct function pp by

1o{A) = sup{p{AN B) : B is measurable and v(B) < oo}

for measurable sets A. Also define a set function A on measurable sets A by
AMA)Y = p(A) — po(A). Prove that both io and X are mneasures, and that A has
the property that A(A4) > 0 implies v(A) = co for measurable scts A.






Qualifying Exam Summer 2011 Analysis

(1) In Euclidean space R® with Lebesgue measure m, for £ € N and some 1 < p < oo let f, fy € LP
with fi — f pointwise a.e. as k — o0o. Assume that [|fi]l, £ M < oo for all k € N. Also, let g € L7 where

1,1

O

Pla

(a) Prove or provide a counterexample to the statement: ||f||, < M.

(b) True or False, explain your answer. For all R > 0, for all § > 0 thereis F C {r € R" | |z| < R} =

B(0, R) with m(F) < 4 and f; — f uniformly on B(0,R)\ F.
(c) Prove or provide a counterexample to the statement: For all ¢ > 0 there is a Ry > 0 so that

/g
( / lgl? dm) < € whenever R > Rj.
z|2R
{d) True or False, explain your answer. For all € > 0 there is a § > 0 so that for all E C R* if m(EF) < §

then / lg|? dm < e.
E

(e) Prove klim ffkg dm = /fg dm
—00

(2) Let {f,| < g€ L and f,, = f in measure as n — oo. Prove f,, = f in L! as n — oo.

(3) (a) Give an example of continuous f : R = R and £ C R with m(E) = 0 so that m(f(E)) # 0, m
is Lebesgue measure on R.
(b) Let f be an absolutely continuous function on the interval [a,b]. Show that m(f(£)) = 0 for all

E C [a,b) with m(E)=0.

(4) For f a positive measurable function on the interval [0, 1], which is larger(assume all the integrals
make sense)?

/OlfdmfollogfdmOR /Olflogfdm

Prove your answer.






Analysis Qualifying Exam
August 2010

You must justify your answers in full detail, and
explicitly check all the assumptions of any theorem you use.

1. Assume that f, f1, f2, - € L}*(R) (Lebesgue measure), and that as n — co (i} f, — f pointwize on R

and (ii} ||fnlh = |Ifl1. Prove that for any any measurable set £ C R, lim / fom= f f-
ne—oe JEg E

2. Let f € L1, 00) (Lebesgue measure). For cach of the following statements, if the statement is true,
prove it, while if false give a countercxample.

(a) If f is continuous then f(x} — 0 as & — co. (Do not assume continuity for parts (b),{c) and (d}.)

(b)j |fl = 0 asn—D0.
[n.n+1)

@va[ l—0asn=o.
[nn+1]
{d) liminf /n Ifl=0
o [nna-1]

3. Let f € L?(0, 00) (Lebesgue measure). Prove the following:
(a) I/ f(t)dtl < V2| flla for £ > 0.
0

() lim z-!/2 / " f(tydt = 0.

4, Define
e sin(L) if0<y<e<l
0 otherwise

f(w,y)={

1 41 1 41
Prove or disprove: f f flz, y)dzdy = f [ f{z, y)dydz.
0 Jo o Jo






Real analysis qualifying exam Jan. 13, 2010

1. (a) Let f be a continuous map of a metric space X into a metric space Y.

True or False. If false either give a counterexample, or make the statement true by
either adding a hypothesis or modifying the conclusion. Do not prove if true.

(i) If X is compact, then so is f{X).

(i} If X is connected, then so is f(X).

(iii) If f is one-to-one, then f~1 : f(X) — X is continuous.

{b) The Cantor set C C [0,1] C R consists of all sums x = Z:‘;l 34+ where the n;

are allowed to form any sequence of 0's and 2’s. Let f : € — [0, 1] be the canonical map
defined by f(z) = 372, 3.

Prove or Disprove.

(i) f is onto,

{ii} f is continuous,

(iii) f is one-to-one.

2. Let {f;} be a sequence of Lebesgue measurable functions that converges pointwise

a.¢. 1o a function f on the interval = [0,1]. Let F € L?(I)} and g € LP (J) where p and
¢ are dual exponents, 1 € p < oo.

@Ifp>1, | fll, <1 =12,...)and [, fig = [, Fg,provethat [, fg = [, Fg.
(b) Show by example that the conclusion of part (a) is false when p = 1.

3. Let £ be a real valued function on the interval I = [a, b].

(a) Give the definition of absolute continuity for f on I.

(b) Suppose f is absolutely continuous on [.

True or False. If false either give a counterexample or modify the statement so that it
is true. Do not prove if true.

(1) f is uniformly continuous on I.

(i1) f is differentiable at every z in the interior of [.

(ii) f' € L}(I) and f(z) - f(a) = f: Fiydl,a<z < b

(c) Suppose f is absolutely continuous on [. Prove that the set of values
{v = f(x) : f{<) is not defined} has measure zero.

(d) Suppose f is absolutefy continuous on f. Prove that the set of values
{y = f(z) : f'(x) = 0} has measure zero.

4. Let Borel functions f € L!'(R) and g € L*(R) be given so that f{z — y)g(y) is a
Borel function on R?. Prove that ffom |f{z — y)gly}dy < cofora.e. z.






Qualifying Exam Measure Theory
8 January 2009
Show ALL your work. Write all your solutions in clear, logical steps.
Each problem has the same weight
Good luck!

Problem 1. Given 0 < py < py < 00 construct a Lebesgue measurable function
f on R so that f € LP(R,m) if and only if p € {pp,p1]. (m denotes Lebesgue
measure)



Problem 2. Let g be a measure on X with p(X) < oo. For f measurable on
X show that ,,IHEQ I1Flp = 1flle



i
Problem 3. ‘Let M f(x) = sup ————
fe) = S0 B Jotem

Littlewood Maximal function of a function f € L'(R*,m} (a) Show that there
are finite positive constants ¢ and R (that depend on f) so that M f(z) > lm—clk-

for all # with |#| > R. (b) Use part (a) to show that if M f(z) € L*(R*,m)
then f=0a.c

|f{y)ldm(y) be the Hardy-



Problem 4. Suppose f, are measurable functions on (X, i) and that |f,]| <
g € L(u). Show that if f, — f in measure then ffd,u = ﬂh_ﬂ;-, fady



——

Measure Theory Qualifying Exam Falil 2008

Problem 1. Let E © R with m(E) > 0 (i.e. E has positive lebesgue measure).
Show that the set E— E = {z —y | z,y € E} contains an interval centered at 0.

Problem 2. Let p be a positive measure on X and f measurable on X, For
0 <r <p<s<ooshow that [|fll, € max(}fli. || fll+).

Problem 3. Prove that a positive measure g on X is o-finite if and only if
there is an f &€ LY (dpu) with f(x) > 0 for all z € X.

Problem 4. Let 1 < p < oo and suppose that fi — f in LP{R,m) as & — o0
0 ,z<k
1 ,z2k
for k =1,2,.... What does the sequence figx converge to in LP? Prove it.

(m is Lebesgue measure on R). In addition assume that gu(z) =






Y

Analysis Qualifying Exam

You should justify nontrivial steps, referring to theorems when appropriate.

1. Fix p € (0, 00). Give an example of a function f ¢ LP(0,1) such that f € L™(0,1) for all » < p.

2. Let f be a nonnegative measurable function on [0,1]. Prove that || fll, — || fllee a5 p — o0, including
the case +o00 = +00.

3. Let (X, M, ) and (Y,N,v) be o~finite measure spaces and let K'(z,y) be measurable with respect to
the product o —algebra M x N. Assume there is a finite constant A > 0 such that

f K (z,y)dv(y) < A for all 3 € X
)

and

f |K(z,y)|de(z) < Aforall ye Y.
X
Fix p€ (1,00) and f € LP(X, M, i) and define
@6 = [ S@KE i)
X

Prove that | T || Le) < Allfl Loy

4. Let ¢ : [-m, 7] — [—1,1] be measurable. Let 0 < r < 1 and prove that

N
‘r‘%‘:‘f.,l-m(t}‘f_nl—qﬁ(t)

Evaluate the right-hand side above for ¢(t) = cost.







Measure theory exam  Jan. 28, 2006

1. Let P denote the o-algebra of all subsets of R and define a measure p by p(E) = 1
if0 € Eand p(E) = 0if 0 ¢ E. Let m denote Lebesgue measure and M the Lebesgue
measurable sets. Let f denote a rea) valued function on R.

(a) Show (p, P) is a o-finite measure space.

(b) Which is true and which is false and why?
(i) If f is Lebesgue measurable, then f is g-measurable.
(i} If f is p-measurable, then f is Lebesgue measurable.

(c)Show that if f € L'(p), then there is a.¢.[p] a unique Lebesgue measurable function
g such that
f gdp = f Jdp
E E
forall E € M.

(d) Show by example that g is not a.e.[m] unique.

2. Let p be a signed (or complex) Borel measure on R such that {u|(R) < oo. Let
E C R be a measurable subset with u(E) # 0. Suppose for all z € R and all Borel
subsets 4 C E
#(A + z) = p(4)
Prove that 4 = 0. _‘

3. Let L! denote the Lebesgue integrable functions on the interval [0, 1] with respect 1o
Lebesgue measure and let || f]] denote the L! norm.

(a)Construct a sequence {fn} C L' such that {|fa]| = O, but {f.} converges at no
point.

(b)Canstruct a sequence {f,} C L! such that f, — 0 at every point, but || f,|| = co.

(c) Suppose f € L', fn = [ a.e.,and || fa|l = ]| S]] Prove that fn — fin L,

4. Letl < p < oo and let f and g be Lebesgue measurable functions on the half-line
(0, 00).
{a) Show how 1o use the Fubini theorem (Fubini-Tonelli) and the identity
oo oo
W) g [T s
o T+y 0o l+y
10 prove

/0' [ Iﬂf_);dy 9(z)dz < Gyl lplglly

where p' is the dual exponent to p.

(b) Can the Fubini theorem be used 10 get the same type of result when = +y is replaced
by £ ~ y in part (a)? Why or why not?






ﬂtu_ 2005

Measure Theory Part

1. Let {r,}°%, be the rationals, f(z) =z""?for0 < z <
1 and 0 otherwise, and set g(z) = > .o, 27"f(z — ). Is
f(z) measurable? Why? Is g(z) measurable? Why? What
is the set of points of discontinuity of g? Is g integrable?
Why? Show that g is not in L? on any interval.

2. Let u be Lebesgue measure on the borel sets of the
real line, and define v(F)tobe 1if0 € Eand0if0 ¢ E
for all borel sets E. Is v a measure? ¢ finite? Compute g—:.

3. Define L? (Lebesgue measure). Is L*(R) C L'(R)?
Why? Is-L%(0,1) € L*(0,1)? Why?
4. Let f — fin LP, 1 < p < 00, gx — g pointwise and
lgklloo < M for all k. Prove that frgr — fgin LP.
Complex Part

1. Let f be an analytic function on the unit disk and
f(z) is real when z is real. Show that f(z) = f(z2).

2. Let {fa} be a sequence of continuous functions on
the closed unit disk that are analytic in the open unit disk.
Suppose {f.} converges uniformly on the unit circle. Show
that {f.} converges uniformly on the closed unit disk.

3. Suppose that f is an analytic function on an open set
containing the closed unit disk, |f(z)} = 1 when |z| = 1 and
f is not a constant. Prove that the image of f contains the
closed unit disk.

4. Let F be a family of analytic function

o0
flzy=z2+ Zanz"
n=2
on the open unit disk such that |a,] £ n for each n. Show
that F is normal, i.e. every sequence of functions in F
contains a subsequence converging normally to a function
in F.






Analysis Exam 29 January 2005
Measure Theory Part

1. Let f(z) be the standard Cantor function. Define g(z) = f(z)+z.
Show that g is continuous, increasing, and 1-1 from {0, 1] onto [0,2].
Use g to show that the image of a Lebesgue measurable set under a
continuous map may not be measurable.

2. Consider the real line with Lebesgue measure. A sequence of
measurable real valued functions f, converges in measure to the mea-
surable function f. In addition |f,| < g for all n where g is an integrable
function. Show that

lim [ 1fz = f1=0
n—cQ

3. Suppose that 1 < p < g <r < oo and that f € LFN L7, Estimate
the L9 norm of f in terms of a product involving the L? and L™ norms.
Something like ||l < IS/}~ where 0 < & < 1.

4. Let f be measurable on the interval [0, 1] {(Lebesgue measure on

the real line). If the function g(z,y) = z(f*(z) — f*(y)) is integrable
on the unit square in R? show that f is integrable on [0, 1].







24 Ochoker 2007
Measure *ﬂmeorl(?‘ﬁ

1. Define Lebesgue Quter Measure |- |, on R. Show that there exist
disjoint Ex C R for k =1,2,... so that

o
iUrf—J Ek}e < Z |Ek|c
k=1
2. Define convergence in measure. Construct a sequence of functions
on [0,1] C R that converges in measure (Lebesgue measure) but does
not converge point-wise for any point of [0, 1.
3. Define what it means for a set function to be absolutely continuous
with respect to a measure. Let f € L(R,dz) where dz is Lebesgue
measure and set

#(B) = /E fdz

Prove that ¢ is absolutely continuous with respect to dz.
4. Let fi = f point-wise a.e. with [fe| < gx € L' and gx = g in L
show that fi — f in L'






