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1 Acknowledgements and Usage

This solution set project was undertaken by Caleb McWhorter to eliminate the problems
with former student preliminary solution binders, which could only be used by a single
person at a time and could easily vanish or be otherwise damaged. However during the
compilation and typesetting of these solutions, the Mathematics Department made changes
to the exams rendering these solutions—while still useful—obsolete. The project was then
abandoned. Hence, some solutions will have no given solution or may be incomplete.

Though the format of these exams are not the current exam style in the department,
they are still a wealth of information and are still very useful when used correctly. When
using these solutions, always attempt the problem first before looking at any solution. The
absolute worst way to prepare for the preliminary exams would be to read through these
solutions like a book. The onus is on you, as a Ph.D. student, to use these responsibly.

While the solutions were typeset by Caleb McWhorter, the solutions were contributed
by many individuals. Solutions may contain errors, either from the sourced solution, the
typesetting, or both. However, the solutions come as is. You have been warned. We
thank Caleb McWhorter for his typesetting as well as the students who contributed to the
solutions (the order being alphabetical):

e Jennifer Edmond
e Rachel Gettinger
e Caleb McWhorter

o Carl Ragsdale



2 Algebra Prelims



August 1992

1. Let T : V — W be a linear transformation of finite dimensional vector spaces. Assume
that rank T = k. Prove that there exists ordered bases B for V, and C for W, such that
the matrix representation of T with respect to B and C has the following property: its
(i,i)-entry equals 1 fori = 1,2,...,k, and all its other entries are zero.

Solution: Choose a basis {ki,...,k;} for ker T. Extend this basis to a basis for V: B =
{k1,...,ky,v1,...,0¢}. We claim {T(v1),...,T(v;)} is linearly independent: suppose
rT(v1) + -+ 1T (vx) = 0, where r; € k, the underlying field. Then 0 = T(rv; +
-+ -+ ryvg). Hence, r1v1 + - - - + 140 € ker T. But then Zle ri0; = 2;21 r;kj, where r; € k.
But this implies

r k
0= Zi’;k] — ri0; = Vﬁkl + .o+ r;kr 4+ <—1’1)Ul 4+ 4 (_rk)vk-
j=1 i=1
-+« =rr. Hence, {T(v1), ..., T(vy)} is linearly independent. Therefore, {T(v1),..., T(vx)}
can be extended to a basis for W: C = {T(v1),..., T(vg), w1, ..., Wy }. With respect to this
basis, we have
0

where all missing entries are 0. O

2. Suppose V = W; @& W, and that f; and f, are inner products on W; and W, respectively.
Show that there is a unique inner product f on V such that

(@) Wo = Wi5;
() f(«,B) = fr(a, B), when a, p arein Wy, k = 1,2.
3. Let V be an n-dimensional vector space and let T be a linear operator on V. Suppose

that there exists a positive integer k such that TF = 0. Prove that T" = 0. What is the
characteristic polynomial for T?



-3 1 -1
4. Suppose B = (7 5 l) . Find: (a) the characteristic polynomial and the eigen-
-6 6 2
values of B; and (b) a maximal set S of linearly independent eigenvectors of B. (c) Is B
diagonalizable?

5. If A is a square matrix with characteristic polynomial f(x) = (x —2)3(x + 3)* and
minimal polynomial g(x) = (x — 2)(x + 3)?, give all possible Jordan normal forms for A.

6. Let T : V — W be a linear transformation with dimV = #n, dim W = m, and rank T = k.
Let T* : W* — V* be the dual linear transformation. What are the rank and nullity of T*?



August 1993
1. Let A be a real symmetric matrix satisfying Ak = I for some positive integer k, where I

is the identity matrix of the same size as A. Prove A2 = I.

Solution: Every real symmetric matrix is diagonalizable. Therefore, there exists a (real
orthogonal) matrix Q so that Q 'AQ = D, where D is a diagonal matrix. [Note that
Q! = Q'] Now we have A = QDQ ! so that

I=A"=(QDQ")¥ = QD*Q™!

Since D is real and diagonal, it must be that every diagonal entry is either 1 or —1. But
then D? = I. But then A? = (QDQ!)?2 = QD?Q ! = QIQ~! = I, as desired. O

2. Let v be a nonzero vector of the Euclidean space R". Let T : R” — IR" be the linear

operator given by the formula T(x) = x —2(x,v)v for all x € R", where (, ) is the standard
inner product. Prove that T can be represented by the matrix

I 0
0 -1
where I is the (n — 1) x (n — 1) identity matrix.

3. Let T : R® — R3 be the linear operator represented by the matrix

11 1
01 1
0 0 -1

with respect to the standard basis. Show there exist nonzero T-invariant subspace U and V
of R satisfying R®* = U & V.

4. Let T : R" — R™ be a linear transformation of rank k. Show there exist linear transfor-
mations U : R” — RF and V : RF — R™, where U is onto and V is one-to-one, satisfying
T=VU.

5. Denote by Mat, (R) the set of all real #n x n matrices. A matrix N € Mat, (R) is called
nilpotent if N = 0 for some positive integer k.

(a) Do all nilpotent matrices form a subspace of Mat, (R)?

(b) Prove I + N is invertible, where I € Mat, (R) is the identity matrix.

(c) Show I + N is diagonalizable if and only if N = 0.



6. Let A = (aij) be the n X n real matrix satisfying a;; = 1 for alli,j = 1,...,n. Denote by
the same letter A the linear operator R” — R” whose representation matrix with respect
to the standard basis is A.

(a) Describe ker A and im A as subsets of IR".
(b) What is the minimal polynomial of A?

(c) Show A is diagonalizable.



August 1995

1. Suppose A is a matrix over the complex numbers with characteristic polynomial
(x +2)%(x — 1)°. If the rank of (A — I)? is 3 and the rank of (A + 2I) is 5, where I denotes
the identity matrix, what are the possibilities for the Jordan canonical form of A?

2. Suppose that E is an idempotent linear operator on a vector space, that is E? = E. Show
that the only possible characteristic values for E are 0 and 1.

Solution: Let v be an eigenvector for E with associated eigenvalue A. Then we have
Av = Ev = E*v = E(Ev) = E(Av) = A(Ev) = A0

But then (A2 — A)v = 0. Since v is an eigenvector, v # 0 so that 0 = A2 — A = A(A —1).
Butthen A =0orA =1. O

3. Suppose V is a vector space with a finite spanning set S = {v1,...,v,}. Show that S
contains a basis for V.

Solution: For notation purposes, let S = {ay,...,a,}. If V is the trivial vector space,
then it has an empty basis. If V # {0}, then S # {0}. Choose a vector v; € S. If
S1 := Span{v;} = V, then S is a basis for V. Otherwise, choose v, € S\ S;. Define
Sy := Span{vy,v2}. If S, = V, then we are done. Otherwise, form Sz as before and
continue. Since S is finite of cardinality 7, this process can continue at most n times since
S spans V. Note that S; is linearly independent by construction fori = 1,2,...,n. If the
process terminates at S;, then S; is a basis for V. O

4. Assume V is a finite dimensional vector space of dimension n and let T and S be linear
operators on V, both with rank strictly greater than 7. Show that the composition SoT is
nonzero.

5.

(@) Suppose T : V. — W is a linear transformation between the vector spaces V and W.
What is meant by T!, the transpose of T?

(b) Assume S : R? — RR? is given by S(x,y) = (x +vy,2x —y). Let {f1, f} be the dual
basis of the standard basis {ej, e} for R?, where e; = (1,0) and e, = (0,1). Find S*(f2).

6.

(a) Let V be an inner product space with inner product (, ), and assume T : V — V is
a linear operator on V. What does it mean to say that T is self adjoint? What does it
mean to say that T is normal?

10



(b) Let P, be the inner product space of polynomials of degree at most two over the real
numbers with inner product (f,g) = [ 711 fg. If ¢ is a linear functional defined on P,

by ¢(f) = £(0), find I € P, with p(f) = (f, ).

11



August 1997

1. Let A be a square matrix with characteristic polynomial ¢(x) = x(x — 3)?(x + 5)* and
minimal polynomial (x) = x(x — 3)(x + 5)2. Give all possible Jordan normal forms for
A and for each possible form, indicate the algebraic and geometric multiplicities of the
eigenvalue —5.

2. Give an example of linear operators ¢ and ¢ on R* satisfying the following conditions.
Justify the answers.

(a) ¢ # 0 is neither one-to-one nor onto and ¢? = ¢.

(b) (?+1)? = 0and ¢ is not a root of a polynomial of degree < 3 with real coefficients,
where 1 is the identity operator on R*.

3.InR%, letU = Span{(1,0,1,0),(0,1,0,—1),(0,1,1,0) } and V = Span{(1,0,0,0), (0,0,1,0),(0,1,1,1) }.
Find abasis for U N V.

4. Let ¢ : U — V be a linear transformation of finite-dimensional vector spaces U, V over a
field F, and let ¢ : V — U be the dual linear transformation. Prove that ¢ is one-to-one if
and only if ¢ is onto.

5. Prove that the eigenvalues of a real symmetric matrix are real.

Solution: Let v be an eigenvector of A associated with eigenvalue A. Then Av = Av. If M
is a matrix, M* denote the conjugate transpose and M denote the conjugate of M. Since A
is symmetric, A = AT. Furthermore since A is a real matrix, A* = A. We compute v* Av
two different ways:

v*Av = v*(Av) = v*(Av) = A(7 - 0)
v*Av = (Av)To = (AD)Tv = A(7 - 0).
Sincev # 0,7 -v # 0. But then A = A. Thus, A € R. O

6. Let A = (a;j) be an n x n real matrix, where a;; = 2fori=1,...,n,a;;11 = a;;1; = 1 for
i=1,...,n—1, and the remaining elements of A are zeros. Using the Sylvester criterion
or another method, determine whether a real quadratic form g represented by the matrix
A with respect to a certain basis is positive definite.

12



August 1998
1. Let V be a finite dimensional vector space. Prove that the dimension of V is even if and

only if there is a linear map f : V — V such that ker f = im f.

2. Let V be a finite dimensional complex vector space and let ¢ : V' — V be a linear map.

(a) Assume that for each natural number k, trace(¢*) = 0. Prove that 0 is an eigenvalue of
¢.

(b) Prove that ¢ is nilpotent if and only if for each natural number k, trace(¢*) = 0.

3. Find two matrices having the same rank and the same characteristic polynomial, but not
similar to each other.

4. Let A and B be two self-adjoint matrices. Show that AB is self-adjoint if and only if
AB = BA.

Solution: By abuse of notation, let A and B represent the linear operator given by the
matrices A, B on the vector space V, respectively. Recall a linear operator T is self-adjoint
(hermitian) if and only if (Tv, w) = (v, Tw) for allv,w € V. Now A, B are self adjoint so
that (Av, w) = (v, Aw) and (Bv, w) = (v, Bw) for all v, w € V. Equivalently, A* = A
and B* = B, where (—)* denotes conjugate transpose. Now suppose that AB is self-adjoint
so that (AB)* = AB. But then AB = (AB)* = B*A* = BA. Now suppose that AB = BA.
Then

((AB)v, w) = (A(Bv), w) = (Bv, Aw) = (v, B(Aw) ) = (v, (BA)w ) = (v, (AB)w)
so that AB is self-adjoint. O

5. Let V be an n-dimensional real vector space, and let g4 be a quadratic form on V.
Let A = (ﬂij)lgi,jgn be the symmetric matrix of g in an ordered basis. Show that if the
form g is positive definite, then for each positive integer k, we have det Ay > 0, where

Ay = (aij)1<ij<k-
6.

(a) Show that every n x n matrix A can be uniquely written as the sum of a symmetric
and a skew-symmetric matrix.

(b) Let A and B be two congruent n X n matrices. Show that AT and BT are also congruent.

13



(c) Again, let A and B be two congruent n X n matrices, and write A = A; + A, and
B = Bj + By, where A; and B; are symmetric and A; and B, are skew-symmetric.
Show that A; is congruent to By, and that A, is congruent to By.

14



August 1999

1. Let P4 be the vector space of real polynomials of degree < 4 in the indeterminate x. For
a € R, weputPy(a) ={f € Py: f(a) =0}.

(a) Prove P4(a) is a subspace of Py.
(b) Find a basis for and the dimension of Py (a).

(c) Find a basis for and the dimension of P4(—3) N P4(2).

2. For the indicated values of ¢(x) and m(x), determine whether there exists a square
complex matrix A for which ¢(x) is the characteristic polynomial and m(x) is the minimal
polynomial. If such an A exists, find all possible Jordan normal forms of A. Justify your
answers.

@) c(x) = x(x+1)(x —2)% and m(x) = x(x — 2)2.
(b) c(x) = (x —4)%(x +3)3 and m(x) = (x —4)(x + 3)2.

3. Let A be a 4 x 3 matrix of rank 3 over a field F.
(a) Is there a matrix B satisfying BA = I3, where I3 is the 3 x 3 identity matrix?

(b) Let T4 : F? — F* be the linear transformation given by Ta(x) = Ax for all x € F3. Is
T4 one-to-one? Is it onto?

Justify your answers.
4. Let ¢ : U — V be a linear transformation of finite dimensional vector spaces U, V over a
field F, and let ¢ : V — U be the dual linear transformation. Prove that ¢ is onto if and

only if ¢ is one-to-one.

5. Let U and V be subspaces of the Euclidean space R". If dim U < dim V, prove that there
is a non-zero vector in V orthogonal to all vectors in U.

6. Give an example of a normal linear operator on a finite dimensional unitary space that
is neither self-adjoint nor unitary. Justify your answer.

15



January 2002

1. Let A be a matrix and assume A? has characteristic polynomial x*(x — 1) and minimal
polynomial x?(x — 1). What are the possible Jordan canonical forms of A?

2. Let T : V — W be a linear transformation between two vector spaces V and W. Show
that T is injective if and only if ker T = {v € V: T(v) = 0} only contains the vector 0.

Solution: Suppose T is injective. Let v € ker T. Then T(v) = 0 = T(0) so that v = 0.
Therefore, ker T = {0}. Now suppose that ker T = {0}. If T(v) = T(v') for some v,v' € V,
then T(v) = T(v') implies 0 = T(v) — T(v') = T(v — ') so that v — v’ € ker T. Therefore,
v — v’ = 0so that v = ¢/. But then T is injective. O

3. Let T : V — W be a linear transformation between two finite dimensional vector spaces
V and W. Show that T is an isomorphism if and only if the dual map T* : W* — V*is an
isomorphism.

4. Let T : V — V be a linear operator on a vector spaces V and assume vy, ..., vk are eigen-
vectors of T corresponding to the distinct eigenvalues ay, a2, . .., ax. Show that v1,v,, ..., 0%
are linearly independent.

5. Suppose A is an nn x n matrix over the real numbers R. Show that A is diagonalizable
over R if and only if we can find a basis for R" consisting of eigenvectors for A.

6.

(a) Assume T is a normal linear operator on a finite dimensional complex inner prod-
uct vector space. Show that eigenvectors corresponding to distinct eigenvalues are
orthogonal.

(b) Show by example that this need not be true if T is not normal.

16



August 2002

1. Prove or disprove the following: if A is a complex square matrix such that A" = A for
some integer n > 1, then A is diagonalizable.

Solution: We prove something slightly more general: let k be an algebraically closed field
of characteristic 0 and A is a matrix with entries in k, if A" = A then A is diagonalizable.
Now the matrix A satisfies A" — A = 0, i.e. satisfies the polynomial p(x) = x" — 1. Since
char k = 0, the roots of p(x) are simple. Since k is algebraically closed, we can write

n

plr) =x"—1=[](x—r),

i=1

where r; are the roots of A (in fact, r/' = 1 for all 7). Since the roots of p(x) are distinct, the
characteristic and minimal polynomial for p(x) are identical. But then A is diagonalizable.
[Recall that a linear operator A : V — V is diagonalizable if and only if its minimal
polynomial in F[T] splits in F[T| and has distinct roots, where F is an algebraically closed
field of characteristic zero.] Note that the result is false if the field is not algebraically closed

of characteristic 0. For example, A= <_01 (1)> satisfies A* = I but is not diagonalizable

11
01
A% —1= (A —1)?so that A% = [ but is not diagonalizable. O

over R as it has complex eigenvalues. Furthermore, A = ( > € M;(IF,) satisfies

2. Let V be the vector space of all the real polynomials of degree less or equal to 3, and let
T : V — V be the linear transformation given by T(f) = —f + ' + f".

(a) Find the matrix M of T with respect to the basis {1, x, x2, x>} of V.
(b) Find the minimal polynomial of T.
(c) Is the matrix M diagonalizable? Why, or why not?

(d) Find the Jordan canonical form of M.

3. Let A be a fixed 5 x 8 real matrix for which there exists an 8 x 5 real matrix B satisfying
AB = I, where [ is the identity matrix.

(a) Prove that B can be chosen in such a way that three of its rows consist entirely of zeros.

(b) What are the necessary and sufficient conditions on the matrix A for the uniqueness of
the matrix B satisfying (a).

17



(c) Suppose that now B is a fixed 8 x 5 matrix, and A varies. State, but do not prove the
analogue of (a).

4. Let V be the vector space of all the real polynomials of degree less or equal 3. For all
2

p(x) €V, putg(p(x)) = [{ p(x) dx.

(a) Prove that ¢ is a linear functional on V.

(b) Let {0, p1, P2, ¢3} in V* be the dual basis of the basis {1, x,x%, x>} of V. Express ¢ as a
linear combination of the ¢;.

(c) Give the definition of the evaluation mape: V — V**.
(d) Find e(1 + x + x% + x%)(¢) where ¢ is defined above.

(e) Show that e is a monomorphism. Is it an isomorphism? Why, or why not?

5.
(a) Show that the eigenvalues of a real symmetric matrix are real.

(b) Let A be a real matrix. Show that AT A is diagonalizable.

5 2 2

6. For A = (2 2 4) , find a real orthogonal matrix P and a diagonal matrix D such
2 -4 2

that A = PDP’. Hint: 6 is one of the eigenvalues.

18



January 2003

1. A 5-by-5 matrix A has characteristic polynomial (x — 2)?>(x + 1)?, while the matrix
(A —2I5)? has rank 2 and A + I5 has rank 4. What are the possible Jordan canonical forms
of A?

2. If A is a Hermitian complex matrix, show that its characteristic values must be real.
[Recall that A is called Hermitian (or self-adjoint) if it satisfies the equal A = AT, where
AT is the complex conjugate of the transpose of A.]

3. Let V be a vector space with basis B = {vy,...,v,} and let w € V be nonzero. Show
directly, without quoting the dimension theorem, that we can find i such that we can
replace v; in V by w and still have a basis for V.

4. Let V, (, ) be a finite dimensional inner product space over the real numbers. If W
is a subspace of V, prove that we can write V as a direct sum V = W @ W+, where
Wt ={veV: (v,w)=0forallw € W}.

5. Let V and W be finite dimensional vector spaces over a field kand let T : V — W be a
linear transformation.
(a) Define the transpose map T* : W* — V*, where W* = Homy (W, k) is the dual of W.

(b) Show that T* is injective if and only if T is surjective.

Solution:

(a) Define T* : W* — V* as follows: given f € Homy(W, k), i.e. a k-linear map f : W — k,
define T*(f) by f — f o T. Since f and T are linear, so too is fT. Moreover, T : V. — W
and f : W — ksothat fT:V — k,ie. fT € V* = Homy(V, k).

(b) Note that functions f, g on a set S satisfy fg = 1 if and only if f is surjective and g is
injective. Now T* is injective if and only if there exists a map R* : W* — V* such that
1 = R*T* = (TR)*. But this occurs if and only if TR = 1. Of course, this occurs if and
only if T is surjective. O

6. Let V and W be finite dimensional vector spaces over a field kandlet T : V — W be a
linear transformation. Let S = {v1,v2, ..., v, } be a subset of V. For each of the following
statements either prove it or give a counterexample to it.

(a) If S is linearly independent set in V, then {T(v1), T(v2), ..., T(v,,)} must be a linearly
independent set in W.

19



(b) If {T(v1),T(v2),...,T(vsm)} is a linearly independent set in W, then S must be a lin-
early independent set in V.

20



August 2003

1. Let A be a n x n complex matrix and let k be a positive integer. Show that y is an
eigenvalue of A if and only if 4 = A for some eigenvalue A of A.

2. Let V be a finite dimensional vector space. A linear map ¢ : V — V is said to be
a reflection if 0> = 1y. What are the possible eigenvalues of a reflection? Must every
reflection be diagonalizable? Why, or why not?

3. Let V be a finite dimensional vector space and let o : V' — V be a linear map whose
range is 1-dimensional. Prove that ¢ is either nilpotent or diagonalizable.

4. Prove that if a real quadratic form with matrix A is positive definite, then A is invertible
and the quadratic form with matrix A~! is also positive definite.

5. Let ¢ be a linear operator on the unitary space C".
(a) Proveif (¢x,x) > 0O for all nonzero x € C", then al the eigenvalues of ¢ are positive.
(b) Give an example showing that the converse of (a) is false.

(c) Prove that if ¢ is self-adjoint, then the converse of (a) is true.

6. Find the Jordan canonical form of the following matrices. Justify your answers.

(a)

x 0 0
08 0
vy 0 «
where v # 0.
(b)
1000 - 0
120 0 - 0
1234 --- n

21



January 2004

1. Let A be a complex matrix with characteristic polynomial (x — 1)*(x + 2). Assume that
the rank of (A — I7)? is 5 and the rank of (A + 2I7) is 4. What is the Jordan canonical form
of A? Justify your answer.

2.

(a) Let A be an n-by-n matrix over a field F. Then C(A) = {X € M,(F): XA = AX}is
called the centralizer of A in M, (F). Let Y € M, (F) be an invertible matrix. Show that
C(YAY™) = Y[C(A)]Y~. (Note: Y[C(A)]Y~! = {YXY~!: X € C(A)}.)

(b) If F is the field of complex numbers and n = 2, what is the smallest dimension C(A)
can have?

3. For each of the following statements, either prove it or give an example to show that it is
false.

(a) Assume ¢ : V — W is a linear transformation between vector spaces. If {v1,v,...,v,}

is a subset for V with {¢(v1), ¢(v2), ..., $(v,) } linearly independent in W, then {vy, v, . ..

is linearly independent in V.

(b) Assume V is a 5-dimensional vector space and W is a 3 dimensional vector space with
X:V = WandY:V — W surjective linear transformations. Then there exists v € V,
nonzero, such that X(v) = Y(v) = 0.

4. Show that an n-by-n matrix A over a field F is similar to a diagonal matrix if and only if
there is a basis for F"), the space of n-by-1 matrices over F, consisting of eigenvectors for A.

5. Let P, be the vector space of polynomials of degree at most 2 over the real numbers
togethet with the inner product (f, g) = foz fgdx. Let ¢ : P, — R be the functional given
by ¢(f) = f(1). Find g € P, such that ¢(f) = (f,g), forall g € P,.

6. Let V be a finite dimensional inner product space over the complex numbers and let W
be a subspace with orthonormal basis {a1,az,...,a:}. If B € V, show that vy = Y ;(B, a;) a;

is the unique element of W with || — || = /{(B— 7. B — 7).

22



August 2004

1. Find all possible Jordan normal forms of a complex square matrix A with characteristic
polynomial x(x + 1)3(x — 3)? if A + I has rank 4.

2. Let f be a bilinear form on a finite-dimensional vector space V over a field k, and let
B be the matrix of f with respect to some basis for V. For each a« € V define a function

¢o 1 V = kby pu(B) = f(a, B).
(a) Prove that ¢, is a functional on V.

(b) If V is the dual space of V, prove that the map ¢ : V — V given by o(a) = ¢, is a
linear transformation.

(c) Find and prove the necessary and sufficient conditions on B in order for ¢ to be an
isomorphism.

3. Let I1, I, I3 be three distinct straight lines passing through the origin of the Euclidean
plane R2. Prove that if my, my, m3 are three distinct lines through the origin, then there
exist a linear automorphism ¢ of R? satisfying ¢(I;) = m;, i = 1,2,3.

4. Let GL,,(F) denote the group of n x n nonsingular matrices over a field F.

(a) Prove that the map sending a complex number a + bi to the 2 x 2 real matrix [Z _ab]

is a homomorphism of the field of complex numbers into the ring of 2 x 2 real matrices.

(b) Find a subgroup of GL,(IR) isomorphic to the multiplicative group of nonzero complex
numbers.

(c) Prove that for every n, GL,(C) is isomorphic to a subgroup of GLy, (R).

5. Give a complete list of nonisomorphic groups of order 245, and prove your answer.

6. Let Z[X] be the ring of polynomials in the variable X with integer coefficients. Determine
whether the following statements are true or false. If a statement is true, give a proof; if it
is false, provide a counterexample.

(a) Z[X]is an integral domain.
(b) Z[X] is a Principal Ideal Domain.
(c) Z[X] is a Unique Factorization Domain.

-2

(d) Let Z3 be the set of triples of integers. Given a matrix A = 0 ] , we turn Z>
0

_ = O
_ o o

(4
into a Z[X]-module by putting p(X) - v = p(A)v for all p(X) € Z3 and v = {02] .

U3
Then Z2 is a torsion Z[X]-module.
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7. Let R be a Principal Ideal Domain with field of fractions K. If M C K is a finitely
generated R-submodule of K, show that M is generated by one element.

8. Let a be the real cube root of 2. Compute the irreducible polynomial for 1 + a? over Q.
9. Let K = F(u) be a field extension generated by an element #, and let p € K, B ¢ F. Prove
that « is algebraic over the field F(p).

10. Let K D L D F be fields of characteristic 0. Prove or disprove:

(a) IF K/F is Galois, then K/ L is Galois.
(b) If K/F is Galois, then L/F is Galois.
(c) If L/F and K/ L are Galois, then K/ F is Galois.
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January 2005

1. Consider the following set of vectors in R?

1 3] 4| [5
S=<12{,|5],17].,|9
1 3] 14| |[5
Find a subset T C S such that T is a basis for the span of S.

Solution: Let the vectors of S be x1, x2, x3, x4 in the order given. Note that x; + x, = x3
and 2x; + x2 = x4 so that we can eliminate x3 and x4 from S without changing the span. It
is clear that x; and x; are independent. Then {x3, x»} is a basis for S. ]

2. Let T be the linear transformation from R? to R? defined by T(x,y) = (x +y,x — y).
Determine all ordered bases B for R? such that the matrix representing T with respect to
B (the same B being used as the ordered basis for both the domain R? and the target R?)

equals
-1 1
1 1

To help make it clear that you really understand your description of all such B, do the
following: State explicitly whether the number of such B is 0, 1, a finite number greater
than 1, or infinite. If the number is 1, 2, or 3, list them explicitly. If the number is greater
than 3, list at least 3 different answers explicitly. If your description of all such B is a good
one doing those explicit things should be a triviality.

Solution: The matrix of T is [_11 ﬂ so that
T(bl) = —1b1 +1by = by — by

T(bz) =1b1 +1bp, = b1 + by

Soif {by, by} = { (;i) , (;2) } is a basis, then

(x14+y1,x1—y1) = (X2 —x1, 42 — 1)
(22 +y2, %20 —y2) = (x1 +x2,¥1 +2)
This implies
X2 — 1
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Hence, the number of possible ordered bases is infinite. Now choosing x; = y; = 1,
x2 =y1 = —1,and x, = 2,1 = —4, we have corresponding bases

o= 1))
=105 ()
o={(2).0)

3. A square matrix A has characteristic polynomial (x — 1)®(x — 2)4, nullity (A — 1) = 3,
nullity (A — I)? = 5, nullity (A — 2I) = 2, and nullity (A — 2I)?> = 4. What is the Jordan
normal form for A?

O]

Solution: Observe nullity (A — I) = 3 so that there are 3 Jordan blocks for the eigenvalue
A = 1. Asnullity (A — I)2— nullity (A — I) = 5 — 3 = 2, there are two of the three Jordan
blocks for A = 1 have size at least two. Furthermore, nullity (A — 2I) = 2 so that there
are 2 Jordan blocks for A = 2. As nullity (A — 2I)?>— nullity (A —2I) = 4 — 2 = 2, there
are two Jordan blocks of size at least two for A = 2. Then the invariant factors are (x — 1),
(x —1)%(x —2)?,and (x — 1)3(x — 2)? and the Jordan form, up to permutation of blocks, is

o

S OO OO OO OO
S OO OO OO L O
N eNeNeoNeoNeoNol oo
OO OO OO R PR OOO
OO OO R R, OOOO
QDO OO R OO OO

SO P NODOOOOoOO
OO NODDODDODO OO O
—NO O OO OO oo
N O O O OO OO OO

O

4. Let V be an inner product space with inner product (, ) and u and v vectors in V. Prove
that u = v if and only if (1, w) = (v, w) forallw € V.

Solution: Assume that u = v, then (1,w) = (v,w) for all w € V. Now assume that
(u,w) = (v,w) forall w € V. Take w := u —v. Then as (u,w) = (v,w), we have
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(u—v,u—v)=0.As (-, -)is positive definite, it must be that u — v = 0. Thenu =v. [

5. For this one you do not have to show work. We are just testing to see if you remember a
famous theorem. Fill in the blanks to complete the following famous theorem.
Theorem: If A is a given m X n matrix, then

(@) The null space of A is the orthogonal complement of (blank).

(b) The null space of AT is the orthogonal complement of (blank).

Solution:

(a) The null space of A is the orthogonal complement of the row space of A.

(b) The null space of AT is the orthogonal complement of the column space of A. O

6. Let ¢, 1 be elements of a group G. If g*h = hg* and ¢’ = 1, prove that ¢gh = hg.

Solution: Since g’ = 1, we have ¢® = ¢. Then we have

gh=g%h = g*¢*h = g*hg* = hg'g* = hg® = hg
so that gh = hg. O

7. If H is a subgroup of a group G, then G acts on the set G/ H of left cosets of H in G by
g -xH = gxH. Describe the stabilizer of the coset aH explicitly as a subgroup of G.

Solution: We have
stabaH = {g € G: g-aH = aH}

={g € G: gaH = aH}

={g€G:a'gaH=H}

={g€G:algac H}

={g€G:gcaHa'}
ButaHa ! = {g € G: ¢ € aHa '} is a subgroup of G: 1 € H so thatala™! = aa~! =
1 €aHa! (showing that the set is nonempty). Now if ahia=1,aha~ ' € aHa™!, we have
ahia=' - ahya=' = a(h1hy)a=' and as hy, hy € H, hihy € H. Therefore, a(hihy)a™! € aHa™'.

Finally, if aha=! € aHa™!, (aha=')~' = (a7 )" 'h~la~! = ah~'a~! and as H is a subgroup,
h~! € Hsothatah~la~! € aHa . O

8.
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(a)
(b)

Prove that an integral domain with finitely many elements is a field.

Is there an integral domain containing exactly 10 elements?

Solution:

(a)

(b)

Let R be a finite integral domain and 0 # « € R. Define L, : R — R via x — ax. Now
if Ly (x) = 0, we have ax = 0. Since R is an integral domain, it must be « = 0 or x = 0.
But & # 0 so that x = 0. Then it must be that L, is injective. But then L, is an injective
map between finite sets of the same cardinality. Therefore, L, is surjective (hence a
bijection). Then there exists ¥ € R such that 1 = L,(r) = ar. But then « is a unit. As
this holds for all 0 # a € R, it must be that R is a field.

Suppose R were a finite integral domain. By (a), R is a field. In particular, char R
exists (this is defined even for an integral domain). Suppose charR = n < oco. If
n = pq for some integers p,q € Z-1<then0 =n-1= (pq)-1 = (p-1)-(g-1).
As R is an integral domain, p-1 = 0org-1 = 0. Since p,q > 1 divide n, we have
p,q < n. Butas n = charR, it must be that p- 1,4 -1 # 0, a contradiction. Then the
characteristic of a finite field must be prime. In particular, a finite field must have car-
dinality p" for some 1 and fixed prime p. Now as a finite integral domain is a field and
10 = 2-5, it must be that there is no integral domain containing exactly 10 elements. [

9. For a prime p, the cyclotomic polynomial x*~ +xP~2 + - .- + x + 1 is irreducible in Q[x].
Use this fact to prove the following statement. If = ¢*™/7 and 17 = ¢*™/% then 1 & Q({).

Solution: Suppose that 7 € Q({). Then Q(, 1) = Q(¢) and consider Q(Z, 7).

Q(g, 1)

Now  isaroot of x’ —1 = (x —1)(x® + - +1). Now { is not a root of x — 1 so that  is a
root of x® + - - - +1and x° + - - - + 1 is irreducible. Therefore, the minimal polynomial for {
ispg(x) =x0+---+1and deg pg(x) = 6. Therefore, [Q({): Q] = 6. Similarly, the minimal
polynomial of 77 is p, (x) = x* + - - - + 1 and deg p,(x) = 4. Therefore, [Q(77): Q] = 4. By

assumption, [Q({,7): Q(rn)] = 1since Q({,77) = Q(Z). But we have
[Q(Z ) Q = [Q(%n): QN]Qy): Q]
6 =[Q(5,7): Q(n)] -4
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But then [Q({,77): Q(n)] € Z, a contradiction. Therefore, 1 ¢ Q(). O

10. Let K be a splitting field of an irreducible cubic polynomial f(x) over a field F of
characteristic 0 whose Galois group is Ss. If « € K satisfies f(«) = 0, determine the group
of automorphisms G(F(«)/F) of the extension F(«).

Solution: Because K is the splitting field of f, we know that K/F is normal. Furthermore
since K is the splitting field of f, K/F is algebraic. Since K/F is algebraic and char F = 0,
K/F is a separable extension. But as K/F is normal and separable, K/F is a Galois
extension. But then |Gal(F(a)/F)| = [F(a): F] = degpa.(x) = 3, where p,(x) is the
minimal polynomial of a (which must be f since f(a) = 0 and f is irreducible). Therefore,
Gal(F(a)/F) = Cs. O
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August 2005

1.
(a)
(b)

How many elements of order 6 are there in the symmetric group S7?

How many conjugacy classes in Sy consist of elements of order 6?

Solution:

(a)

(b)

Recall the order of an element of S, is the least common multiple of the cycles in the
cycle decomposition of the element. If ¢ € S,,, the cycle decomposition of ¢ corresponds
to a partition of n. Therefore, ¢ € Sy has order 6, the possible corresponding partition
of 7 is among the following: (6,1), (3,2,2), (3,2,1,1). [As a representative of each type,
we could take (123456),(123)(45)(67),and (12 3)(4 5), respectively.]

For the first type, there are 7 ways to choose the elements of the 6-cycle and 6! ways
to arrange the elements. Then there are 7 - & elements of the form (12345 6). [The
division by 6 in % is the fact that any cyclic permutation of a cycle still represents the
same cycle, .e.g. (abc) = (cab) = (bca) as 3-cycles.]

For the second type, there are (}) ways to choose the elements to form the 3-cycle

and 3 ways to uniquely determine the 3-cycle. Then there are 4 unused elements. If
we form one of the 2-cycles, examining any remaining element, choosing where it is
mapped (there are 3 choices) determines one of the two cycles. But with 2 elements
remaining, it also determines the remaining 2-cycle. There are then (3) - & - 3 elements
of this form.

For the third type, there are again (g) ways to choose the elements for the 3-cycle and
3 to uniquely determine the 3-cycle. There are then 4 unused elements so that there
are (g) ways to choose elements for the 2-cycle and the 2-cycle is uniquely determined

by that choice. There are then (3) - 2 - (3) elements of this form.

Therefore, the number of elements of order 6 in S is:

6 (7\ 3l 7\ 3l (4
7.6+<3>.3.3+<3>-3-<2>—840+210+420—1470.

In any group, conjugate elements have the same order (conjugation preserves order).
Two elements of S, are conjugate if and only if the elements have the same cycle
decomposition, i.e. they have the same cycle type. The elements of order 6 in Sy have
cycle decompositions which can be represented by (123456), (123)(45)(67),and
(123)(45), ie. cycle decompositions corresponding to the following partitions of
7:(6,1),(3,2,2,),(3,2,1,1), respectively. Therefore, there are three conjugacy classes
consisting of elements of order 6.
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2. Show that a group of order 48 cannot be simple.!

Solution: Let G be a group of order 48 and 7, denote the number of Sylow p-subgroups of
G. By Sylow’s Theorem, n, = 1 mod p and n,, | m, where |G| = p"m, where (p,m) =1
and r € Z is maximal (the largest power of p dividing |G|). Note |G| = 48 = 2% - 3. By
Sylow’s Theorem, n, € {1,3}. If n, = 1, then G contains a unique (hence normal) Sylow
2-subgroup. But then G is not simple. Suppose then that n, = 3. Then the action of G on
the set of Sylow 2-subgroups (the action being conjugation) induces a homomorphism of
¢ : G — S3. If ker ¢ were trivial, then G would be isomorphic to a subgroup of S3. But
|G| = 48 and |S3| = 6 and 48 1 6. Therefore, ker¢ # {1}. [Note that the action of G on
the set of Sylow 2-subgroups is nontrivial so that ker ¢ # G.] But the kernel of a group
homomorphism is always a normal subgroup so that G is then not simple. Therefore, no
group of order 48 can be simple.

OR

The class equation for G is

r

Gl =1Z(G)[+ }_[G: Cc(ar)]

i=1

where the Z(G) is the center of G, Cg(x) is the centralizer of x in G, and the summation
is over ay, ..., a, representatives for the distinct conjugacy classes of G. The center of a
group is always normal. Then if Z(G) # G and |Z(G)| # 1, then Z(G) < G is a normal
subgroup. If |Z(G)| = |G|, then G is abelian. By Cauchy’s Theorem, G would then contain
an element of order p for every prime p | |G|. But in an abelian group, every subgroup is
normal so that then G would not be simple. Suppose then that |Z(G)| = 1. Then we have

1

(G2 Cola)] = |G| — |Z(G)| = 48— 1 = 47,
=1

Then there must be a conjugacy class of size 1 or 3. If 1 # x € G has a conjugacy class of
size 1, then x € Z(G) so that Z(G) is nontrivial, a contradiction. If x € G has a conjugacy
class of size 3, there is a homomorphism ¢ : G — S3 given by the action of G on the set of
conjugacy classes of (x) via conjugation. Asim ¢ < Sz and |S3| = 6, usingim ¢ = G/ ker ¢
(by the First Isomorphism Theorem), we must have | ker ¢| > 8. Now if ker ¢ = G, then
every element of G fixes the conjugacy classes of (x). Butif {1(x)171,g(x)¢~ !, h)x)h '}

INote this is trivial by Burnside’s Theorem: if G is a finite group of order p?q?, where a,b € Z~q and p,q
are primes, then G is solvable (so that G cannot be simple). Note that use of such a ‘sledgehammer’ for this
problem would not be allowed.
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are the distinct conjugacy classes of (x), where g, € G. But ¢ - (x) := g(x)g~! # (x) so
that the action cannot be trivial. Therefore, ker ¢ is a proper nontrivial subgroup of G so
that G cannot be simple.

OR

We claim that if G is a finite simple group of order at least 3 and H is a nontriv-
ial proper subgroup of G with |G: H| = n > 1, then G is isomorphic to a subgroup
of A,: Since H < G and |G: H| = n > 1, the action of G on the (left) cosets of H
via left multiplication induces a map ¢ : G — S, with ker¢ < H. But as G is sim-
ple, ker¢ = {1}. By the First Isomorphism Theorem, im¢ = G/ ker¢ = G. Suppose
$(G) £ A,. Then we must be A,¢(G) = S,. By the Second Isomorphism Theorem,
Sul/An = Awp(G)/An = $(G)/(AyN¢(G)). Now as G is simple, A, N$(G) is triv-
ial or A, NP(G) = ¢(G). If A, NP(G) = ¢$(G), then S,/ A, = 1, a contradiction. If
A,N¢(G)=1,then S, /A, = Z/27Z = $(G) = G, ie. |G| = 2, a contradiction. Therefore,
$(G) C A,. O

3. Let G be a finite group with subgroups H, K < G. Consider the restriction to K of the
left action of G on the left cosets of H in G.

(a) Show that the stabilizer in K of the coset H = 1H is H N K.
(b) Show that [K: HNK] < [G: H|.
(c) Conclude [G: HNK] < [G: H|[G : K].

Solution:
(a)

stabx(H) ={k € K: k- H = H}
—{keK: kH = H}
={keK: ke H}
=HNK

(b) By the Orbit-Stabilizer Theorem, |Oy| = |G: staby| so that |Oy N K| = |K: HN K| by
(a). But |Oy| < |0yl = |G: Gy| and

Gu={g3€G:g-H=H}={9e€G:gH=H}={g€G: g€ H} = H.

But then |Oyg NK| < |O| = |G: Gy| = |G: H|. But then |[K: HNK| < |G: H|.
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(c) Using (b),
|G: HNK| =|G: K| |K: HNK| < |G: K| |G: H]|

Therefore, |G: HNK| < |G: K| |G: H|.

4. Let A be a real, symmetric m X m matrix.
(a) Show that the eigenvalues of A are real.

(b) Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

Solution:

(a) Let v be an eigenvector of A associated with eigenvalue A. Then Av = Av. If M is a
matrix, M* denote the conjugate transpose and M denote the conjugate of M. Since
A is symmetric, A = AT. Furthermore since A is a real matrix, A* = A. We compute
v* Av two different ways:

v*Av = v*(Av) = v*(Av) = A(T-v)
v*Av = (AD)To = (AD)To = A(7 - v).
Sincev # 0,7 - v # 0. But then A = A. Thus, A € R.

(b) Note that if A is a real symmetric matrix, (Ax,y) = (x, ATy) = (x, Ay). Let A, u be
distinct eigenvalues with corresponding eigenvectors x, y, respectively. Then

Ma,y) = (Ax,y) = (Ax,y) = (x, Aly) = (x, Ay) = (x,py) = p{x,y).

Therefore, (A — u)(x,y) = 0. Since A, p are distinct, A — p # 0. Therefore, (x,y) = 0so
that x and y are orthogonal.

O

5. Let Cj ] be the real vector space of continuous real-valued functions defined on the
closed interval [0, ], and let V be teh subspace of C|y | spanned by the linearly inde-

pendent functions 1, cos t,sin t, cos? t, and sin 2t. For all f,g € V consider the expression

B(f,8) = Jy (t+1)f(H)g(t) dt.
(a) Prove that B(f,g) is a bilinear form on V;; first define a bilinear form.

(b) Give the definition of a symmetric bilinear form. Is B( f, g) symmetric?
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(c) Give the definition of a positive definite real quadratic form and determine whether
the quadratic form associated to B( f, g) is positive definite.

(d) Is there a basis e, ...,e, for V, for some m > 0, with respect to which the m x m
identity matrix I, is the matrix of B(f, g)?

Solution:

(a) A bilinear form for a vector space V over a field K is a function (, ) : V x V — K such
that

(u+v,w) = (u,w) + (v, w)
(u,v+w) = (u,v) + (u, w)
k{u,v) = (ku,v) = (u, ko)

forallu,v,w € Vand k € K. Now let f,g,h € C[o,n] and r € R. Then
B(f+gh) = [ (t+1)(f+g)hdt

7T

(t+1)fh+ (t+1)gh dt

:/(]n(t+1)fg+(t+1)fhdt

= [+ vz [T
0 0

~ B(£,8) + B(f,h)
Brfig) = [ (t+ 10 f)gdt=r [+ Dfgat=rB(f,g)

B(f,rg) = [ (t+Df(rg)dt =r [ (t+1)fgdt = rB(f,g)
Therefore, B(f,g) is a bilinear form on V.

(b) The definition of a bilinear was given in (a). A bilinear form (-, -) is symmetric if
v,w) = (w,v) for all v,w € V. The given form B(f, which is bilinear from (a), is
& 8
symmetric since

B(f.g) = [ (t+ (gt dt = ["(t+ Dg()f (1) de = B, )

0
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(c) A quadratic form associated to a symmetric bilinear form (-, ) on V over a field Kis a
function g : V. — K such that q(v) = (v, v). The form g is positive definite if g(v) = 0 if
and only if v = 0. Now for the given bilinear form, B(f, g)

a(f) = (f.f) = B(f. f) = /O”<t+ D) dt > 0

since f2(t) > 0. Since f,t + 1, f are continuous on [0, ], we have (¢ + 1) f2(¢) contin-
uous on [0, 7]. Then if B(f, f) = 0, we must have (¢ + 1) f(t) = 0 on [0, 7]. But since
t+1# 0on [0,1], we must have f2(¢) = 0 on [0, 1]. Therefore, f(t) = 0 forall € [0, 1].
Clearly if f = 0on [0,1], then B(f, f) = 0. But then q(f) = B(f, f) is positive definite.

6. Find all possible Jordan normal forms of a complex m x m matrix A with the char-
acteristic polynomial (x? 4 3)?(x + 5)* if the matrix A + 5I,, is of rank 7. No proof is
needed.

7.

(a) Prove that the kernel of the homomorphism ¢ : Clx,y] — C|[t] of polynomial rings

given by ¢(x) = #? and ¢(y) = # is the principal ideal generated by the polynomial
2,3
yr—x°.

(b) Determine the image of ¢ explicitly.

Solution:

(a)

(b)

8.

(a) Give the definition of an integral domain.

(b) Give the definition of the characteristic of a nontrivial commutative ring.
(c) Is there an integral domain of characteristic 67 Explain.

(d) Is there an integral domain with 12 elements? Explain.
Solution:

(@) Anintegral domain is a commutative ring with identity with no zero divisors, i.e. for
alla,b € R,ab =baandifab=0,thena =0orb = 0.
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(b)

(©

(d)

We demand 1 € R. The characteristic of a commutative ring R is the smallest integer
positive integer n € Z such thatn -1 = 0. If no such n exists, we say R has characteristic
0.

The characteristic of an integral domain is either 0 or prime: let R be an integral domain.
If char R = 0, we are done. If not, let char R = n. If n = rs for some integers r, s, neither
of whichare 1, then1 < r,s <n.But0=n-1=(rs)-1 = (r-1)(s-1). Now since
r,s < n,neither r - 1 nor s - 1 are 0. But then R contains zero divisors, a contradiction.
Then it must be that either r = 1 or s = 1 so that n must be prime.

Since 6 is not prime, there can be no integral domain with characteristic 6.

A finite integral domain is a field: let R be an integral domain and consider the map
¢a : R = R given by r — ar, where a € R\ {0} is a fixed element. If ¢,(ra) = 0, then
ra = 0 so that either r = 0 or a = 0. But a # 0 so that r = 0. But then ker ¢ = {0}.
Therefore, ¢ is injective. Since R is finite, ¢ is an injection map between finite sets,
hence an isomorphism. But then there exists ' € R such that 1 = ¢,(*') = ar’. But
then a is invertible. Since a € R\ {0} was arbitrary, R is a field.

Now since R is finite, we know char R # 0. But then char R = p, where p is a prime.
Now R (a field) must contain the subfield IF, = Z/pZ (since 1 € R generates this
subfield). But then R is a vector space over IF, so that it is free over IF,. But R is finite
and IF, has cardinality p so that |[R| = p" for some n € Z.

Alternatively, if q | |R|, where g # p and char R = p, then by Cauchy’s Theorem, R
contains an element of order g, say x € R. Now g-x =0and p-x = 0. Since (p,q) =1,
we can find r,s € Z such that rp +sq = 1. Butthen 1- x = (rp + sq) - x. However,

1l-x=(rp+sq) - x=rp-x+sqg-x=r(p-x)+s(g-x)=0

so that x = 0. But since |x| = g > 01in (R, +), this is a contradiction. Then the only
prime dividing |R| is p so that |R| = p".

Now 12 = 22 . 3 has two distinct prime divisors. Therefore, no integral domain with 12
elements can be a field.

O]

9. Determine the irreducible polynomial for = V2 + /7 over each of the following fields.

(a)
(b)
(©)

Q(v7)
Q(v14)
Q

10. Let{ = e5 .
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(a) Prove that K = Q({) is a splitting field for the polynomial x° — 1 over Q and determine
the degree [K : Q]. Use the fact that for a prime p, the cyclotomic polynomial xP~! +
xP~2 4 ...+ x + 1isirreducible over Q.

(b) Determine the Galois group G(K/Q) explicitly and up to isomorphism.
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January 2006

1. Assume A is a n-by-n matrix such that rk[A — 2I,,] — rk[(A — 2I,)?] = 5. (Here rk
denotes the rank of the matrix and I, is the identity matrix.) How much can be concluded
about the Jordan canonical form of A?

Solution: We have rk A 4 nullity A = n. Then we have

= rk[A — 2I,] — rk[(A — 21,)?]
= (n — nullity(A —2I,)) — (n — nullity(A — 2I,)?)
= nullity(A — 2I,)? — nullity(A —2I,)

Then we know there are 5 Jordan blocks associated to A = 2 that are of at least size 2. In
particular, there are at least 5 Jordan blocks associated to A = 2. O

2. Let V = R? be the Euclidean plane and assume that T : V — V is a linear operator. Let
11, I, and I3 be three distinct lines passing through the origin with T(l;) = [; fori = 1,2,3.
Show that T is a dilation, that is, T is multiplication by some constant.

3. Letkbeafield and let T : V — W be a linear transformation between two vector spaces
over k.

(a) Define the adjoint? T* : W* — V* of the linear operator T.

(b) Show that T* is injective if and only if T is onto.

4. Show that a finite group of order 24 cannot be simple.

Solution: The divisors of 24 are 1, 2, 3,4, 6, 8, 12, and 24. By Sylow’s Theorem 1n,(G) =1
mod 2 and divides 24. The only possibilities are 112(G) = 1 or n2(G) = 3. If np(G) =1,
then G contains a unique 2-Sylow subgroup, which is necessarily normal. This implies that
G has a nontrivial, proper, normal subgroup. Thus, G is not simple.

Suppose that 112(G) = 3. Let X denote the set of 2-Sylow subgroups. Note that G acts
on X by conjugation. This induces a homomorphism ¢ : G — Sx. Since |G| = 24 and
|Sx| = 3! = 6, ¢ is not injective. Therefore, | ker¢| > 1. Note that |ker$| # 24 since
any two 2-Sylow subgroups are conjugate (so they all can not be fixed by the action of
conjugation). Thus, ker ¢ is a proper, nontrivial, normal subgroup of G, which implies that
G is not simple. O

2The exam says transpose but clearly the adjoint is meant.
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5. Let S, denote the symmetric group on 7 letters and let A, denote the alternating
subgroup. Recall that if ¢ € G, where G is a group, the centralizer of o in G is the subgroup
Colo)={r€G: 0 =01}.

(a)

(b)
(©)

If o € Ay, use the sign homomorphism from S, to {1}, to show that C,, (0), the
centralizer of o in Ay, is either equal to Cs, () or it is a subgroup of Cg, (o) of index 2.

If n =5and 0 € A, is a 3-cycle, show that [Cg, (0) : Ca,(0)] = 2.

We know that all 3-cycles are conjugate in Ss. Use this and part (b) to show that all
3-cycles are conjugate in As.

Solution:

(a)

(b)

(©

If H < S;,, we claim either all permutations in H are even or exactly half of them are
even. If all permutations of H are even, then we are done. So suppose ¢ € H is an odd
permutation. Let Hg be the set of even permutations of H and Hp be the set of odd
permutations of H. Define a map ¢ : Hf — Hp by p — op. First, we show that ¢ is
well defined. If p; = py, then op; = 0p which implies ¢(p1) = ¢(p2). Furthermore,
if (1) = ¢(p2), then op; = opp, which implies p; = p,. But then ¢ is injective. Let
v € Hp. Then 0~y € Hg since ¢~ '7 is even. But then v = o (¢ 1y) = ¢(c717) so
that ¢ is surjective. Then ¢ is a bijection between finite sets. Therefore, |Hg| = |Ho|-
Then |H| = |Hg| + |Ho| = 2|Hg|, half the permutations of H are even. As Cs, (0) < S,
either Cg (o) = Cy,(0) or |Cs,(0): Cx,(0)] = 2.

There are (3)2! = 20 3-cyles. So |orb o| = |S,: Cs, ()| so that 20 = %. But then

|Cs, (0)| = 6. By the work below in (c), the 3-cycles are conjugate in As. Therefore,
20 = % and then [C4, ()| = 3. Therefore, |Cs,(0): Ca,(0)| = § =2.

Consider (o 03 03). Any other 3-cycle will either have 1, 2, or 3 indices in common.
Without loss of generality, consider (07 04 05), (01 02 04), (01 03 02), respectively.
Define T := (02 04)(03 035). Then (07 02 03)T ! = (010302). Since T € As, (07 02 03)
and (07 04 05) are conjugates. Furthermore, T = (03 04 05) so that T(0q 03 03)T ! =
(01 0p 04) so that (01 02 03) and (0q 07 04) are conjugates. Finally, T = (02 03) (04 05)
so that 7(0q 02 03)T~! = (07 03 02). Therefore, (01 02 03) and (07 03 02) are conjugates.
But then all 3-cycles are conjugate in As.

O]

6. Let G be a finite p-group for some prime p. Show that the center of G is not trivial.
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Solution: Let |G| = p" for some n > 0. If n = 0, the result is trivial. If p = 1, then
G =2 Z/pZ, which is abelian. So suppose p > 1. The Class equation for G is

T

Gl = 12(G)| + ;[G: Co(a;)]

where the Z(G) is the center of G, Cg(x) is the centralizer of x in G, and the summation
is over ay,...,a, representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G: Cg(a;)] > 1sincea; ¢ Z(G). The
Class equation for G can be rewritten as

r

12(G)| = |G| = }_[G: Celai)].
i=1
Each term on the right hand side is a divisor of |G| = p". Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so that
Z(G)] £ 1. 0

7. Let Q denote the field of rational numbers and let f = x® +2x% +7 € Q[x].
(a) Show that f has precisely one real root.
(b) Show that f is irreducible in Q[x].

(c) Show that the Galois group of f over Q is isomorphic to the symmetric group Ss.

Solution:

(a) Observe that f(—3) = —14 and f(—1) = 8 so that by the Intermediate Value Theorem,
there is « € (—3, —1) such that f(a) = 0. By Descartes Rule of Signs, f can have no
positive root and only one negative root. But then it must be that f has only one real
root.

(b) Since f is degree 3, f is reducible if and only if f has a rational root. By the Rational
Root Theorem, the only possible roots of f(x) are £1,£7. But f(1) =10, f(—-1) =8,
f(7) =448, and f(—7) = —238. Therefore, f has no root in Q so that f is irreducible in

Qlx.

(c) Let K denote the splitting field of f. We know K/Q is Galois so that [K: Q] =
#Gal(K/Q). Since there are 3 roots, we know Gal(K/Q) < S3. Then #Gal(K/Q)
is either 3 or 6, i.e. Gal(K/Q) = Az or S3. If f(x) € K][x] has one real root and a two
complex roots, we may consider complex conjugation as an automorphism of order
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2. But then this complex conjugation generates a subgroup of order two in Gal(K/Q).
Then any irreducible and separable extension of a cubic with a unique real root must
have Galois group isomorphic to Sz since Az = Z/3Z has no subgroup of order 2.

O

8.

(a) Let K/F be a finite extension of fields. Show that K/F is algebraic.

(b) Let L/K and K/F be algebraic field extensions. Show that L/F is also algebraic.

Solution:

(a) Leta € K. Wehave F C F(a) C K. Since K/F is a finite extension, F(«)/F is a finite
extension since [K: F| = [K: F(«)][F(a): F]. Suppose [F(«): F] = n. Then « is a root
of a polynomial of at most degree n over F so that « is algebraic. Therefore, K/F is
algebraic.

(b) Leta € L. Since L/K is algebraic, « satisfies some polynomial equation, say f(a) =
apa™ +a, 1" '+ +a9 =0, where a; € K. Consider the extension F(a, ay, ..., a,).
Since K/F is a finite extension, a; is algebraic over F for all i by (a). Now a generates
an extension of at most degree n since the minimal polynomial must divide f(x). Then

[F(a,aq,...,a,): F] = [F(&,a9,...,a,): F(ao,...,an)] [F(ao,...,an): F]
is also finite and F(a, ao, . ..,a,)/F is algebraic. But then the element « is algebraic over
F. Therefore, L/F is an algebraic extension.
O

9.

(a) Assume R is a commutative ring and I C R is an ideal. Show that I[X] C R[X] is an
ideal.

(b) Using the First Isomorphism Theorem or otherwise, show that R[X]/I[X] is isomorphic
to (R/I)[X].

Solution:

(a)

Clearly, I[x] is nonempty since I is nonempty. Furthermore, it is clear that 0 € I[x].
Now suppose f(x),g(x) € I[x]. Then f(x) = ayx" +a, 1x" 1+ - +ap, g(x) =
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(b)

byuXx™ + byy_1x™ 1 4 ... 4+ by, where a;, b; € I. Without loss of generality, assume n > m.
Then

M:

fx) +8(x) = ) (a; + bi)x" € I[x],

0

where we take b; = 0if i > m, sincea; +b; € [ fori =0,1,...,n. Now let h(x) € Rlx].
Write h(x) = ¢;x" + ¢, 1"~ +--- + o, wherec; € Rfori =0,1,...,r. Then

r+n i

x)=Y_ chui_]-xi

i=0 j=0

where we take ¢; = 0if j > rand a; ; = 0ifi —j > n. Since I is an ideal and a; € I,
¢j € R,we have cja;_; € I. But then h(x)f(x) € I[x]. Therefore, I[x] is an ideal of R[x].

Define a map ¢ : R[x] — (R/I)[x] via reducing coefficients mod I, i.e. r,x" + --- +
ro — (rp +1)x" 4+ --- 4 (ro + I). We first check this is a homomorphism. Clearly,
$(1) =1+Tand $(0) =0+ I = I. Suppose f(x),g(x) € R[x] are as given in (a) but
with a;,b; € R (again taking n > m and b; = 0if i > m). Then

¢(f(x) +8(x)) = ¢ < (a; + bi)x

(az+b + 1)

n
(i + I)x'+ Y (b + I)x

i=0

m

(a; +Dx'+ Y (b + Dx
i=0

(f(x)) +o(g(x))

Finally, assume k(x), f(x) € R[x], where we again assume ¢; = 0if j > rand a;_; =0

™= WM:

Il
o

I
™=

Il
o

I
<
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ifi —j > n. Then

P f(x)) = (Z icjai_jxf)

i=0 j=0

r+n i

= Z Z(cjai,j + I)x

i=0 j=0
r+n i

=) Y (¢+D(ai+ D

i=0 j=0

(o) (-9
ioczﬂ ) ( (@ 1) )

¢(h(x))p(f(x))

Therefore, ¢ is a homomorphism. It is clear that ¢ is surjective: if Yo (r; + I)x’
(R/I)[x], then ¢(rpx™ + - - - +19) = Y o(ri + I)x'. We claim ker¢ = I[x]. If f(x)
anx" +a, 1x" '+ +ag € I[x], then

i [\1:

3‘/\

I m

o(f(x)) = panx +a,_1x" 1+ +ap)
= (ay+Dx"+ (a1 +Dx" 1+ (ag+ 1)
=0+Dx"+ 0+ Dx" 14 4+ (0+1)
=0+1I=1

so that I[x] C ker ¢. Finally, if f(x) = a,x" +a,_1x" 1 + -+ + a9 € ker ¢, then

$(f(x)) = planx" +a,_1x" " +- -+ ag)
= (ap+ Dx" + (ap_1 + X" P+ + (ag + 1)
=0+ D"+ O0+Dx" -+ (0+1)

but then a; € I for all i. Therefore, f(x) € I[x] so that ker¢ C I[x]. Then we have
ker ¢ = I[x]. By the First Isomorphism Theorem,

R[x]/1I[x] = (R/1)[x].

10.
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(a) Let S be a commutative ring and assume that I = Sf 4 Sg is the ideal generated by
two elements f and g. Show thatif i € S is any element, then I is also generated by
the elements f and g — hf.

(b) Let Z be the ring of integers and assume I is an ideal of Z[x] generated by the set
f,g € Z[x]. Show that we can replace f and g by two generators, one of which has a
zero constant term.

Solution:

(a) Leth € S. We need to show that I = (f,g — hf). Let x € I, then
x=s1f+s2g =s1f +52(8 = hf) +2hf = (s1+52h)f +52(8 — hf) € (f, g = f)
Therefore, I C (f,¢ — hf). Now suppose x € (f,g —hf). Then
X =s1f+52(8 —hf) =s1f + 28 —s2hif = (s1—s2h)f +s28 € (f,8) = I.

But then (f, ¢ — hf) C I. Therefore, I = (f,g — hf). But then I is generated by f and
§ —hf.

(b) Clearly, I := (f(x),g(x)) C Z[x] is an ideal. By (a) for any h(x) € Z[x]|, I =
(f(x),8(x) = h(x)f(x)).
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August 2006

1.
(a)

(b)
(©)

If G is an abelian group, prove that the map ¢ : G — G defined by ¢(g) = ¢", for all
g € G and some integer m > 0, is an endomorphism.

Give an example showing that one cannot drop the assumption that G is abelian in (a).

In the setting of (a), suppose that the order of G is n and that the integers m and n are
coprime. Prove that the map ¢ : G — G is an automorphism.

Solution:

()

(b)

(©

(a)

Let g,h € G. Since ¢(gh) = (gh)™ and ¢(g)p(h) = g"h™, it suffices to show that
(gh)™ = ¢g"h™ for all g,h € G, m € IN. We prove this with inductionon m. If m =1,
then (gh)! = gh = ¢'h'. Assume that (gh)™ = ¢"h™ for some m. Then

(gh)m+1 = (gh)(gh)m — ghgmhm — ggmhhm — gm+1hm+1
By induction, (gh)" = ¢"h™ forallm € N and g,/ € G. Thus, ¢ is an endomorphism.

LetG = D3 = (0,7 | 0® = 12> = 1,07 = t0? and m = 2. Of course, Dj is a nonabelian
group. As defined above, ¢ is not a homomorphism since

Pp(o7) =otoT = T0P0Tr =12 =1

p()¢p(t) = *t* = o
and 02 # 1.

Let x € ker ¢, then x™ = 1. This implies that |x| divides m. However, |x| divides n.
Since m and n are relatively prime, |x| = 1. Thus, |x| = 1. But then x = 1. This implies
that ker ¢ is trivial so that |phi is injective. But G is a finite group and ¢ : G — G
is an injective map from a finite set to itself, therefore surjective. But then ¢ is an
automorphism.

O]

If G is a group, S is a left G-set, and Perm S is the group of permutations of S, the map
® : G — Perm S defined by ®(g)(s) = gs, for all s € S, is a homomorphism of groups.
Using this fact, prove that N = {g € G: gs = s for all s € S} is a normal subgroup of
G.
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In the rest of the problem, let H be a subgroup of G and let S be the set of left cosets of
Hin G.

(b) Prove that N C H.
Let |G| =n <ooand [G: H] =k > 1.
(c) Prove thatif n > k! then {1} # N # G.

(d) If k is the least prime dividing n, prove H = N. Hint: Find the cardinality of im ®.

(a)

ker® = {g € G: P(g) =1}
={g € G: P(g)s =sforalls € S}
={geG:gs=sforalls € S}
=N

Since N is the kernel of a group homomorphism, N is a normal subgroup of G.

(b) If g€ Nanda € G, then g-aH = gaH = aH for all 2 € G. In particular, this is true
whena = 1. Buttheng-H = g¢h = H. Thus,g € Hand N C H.

(c) Note that |S| = [G : H|] = k, so [Perm S| = k!. From above, we know there is a
homomorphism
®: G — Perm S.

Since |G| = n > k! = |Perm S|, ® cannot be injective. Therefore, ker® = N # {1}.
Also, N C H C G,soker® = N # G. Thus, {1} # N # G, as needed.

(d) By the First Isomorphism Theorem, G/N = im ®. Therefore, |G| = |N||im ®|, so
| im ®| divides both n and k!. It is clear that im ® # {1}. The claim is that | im ®| = k.
Suppose not. Then there exists a prime integer p # k dividing | im ®| (since k* does
not divide k!). However, k is the largest prime divisor of k!, so p < k and p divides n.
This contradicts the minimality of k, so | im®| = k = [G : N] and

G

[G:N]=[G:
k = Kk[H

HJ[H : N]
: N]

Thus, [H: N] =1and H = N.
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3. Prove that a group of order 35 is cyclic.

Solution: The divisors of 35 are 1, 5,7, and 35. Let G be a group of order 35. For p = 5,7,
let n,(G) denote the number of p-Sylow subgroups of G. By Sylow’s Theorem, 15(G) =1
mod 5 and divides 7. The only possibility is n5(G) = 1. Similarly, n7(G) =1 mod 7 and
divides 5 so this implies that n7(G) = 1.

Let H denote the unique 5-Sylow subgroup of G, let | denote the unique 7-Sylow
subgroup of G and consider x € G\ (HUJ). Now |x| divides |G| = 35. If |x| = 1, then
x =1 € H U J, a contradiction. If |x| = 5, then |(x) = 5. This implies that (x) = H, so
x € H, a contradiction. Therefore, |x| # 5. Similarly, |x| # 7. Thus, |x| = 35, which implies
that G = (x). Therefore, G is cyclic. O

4. Let V be a fixed vector space of finite dimension n > 0 over a field F, and let A € F.
If T:V — Visa linear operator with an eigenvalue A, let m be the maximal number of
linearly independent eigenvectors with eigenvalue A.

(a) Prove that the multiplicity of A as a root of the characteristic polynomial T is at least m.

(b) Among all linear operators on V with an eigenvalue A, what are the smallest and
largest possible values of m? Justify your answer (remember,  is arbitrary but fixed).

Solution:

(@) Let Z = {ey,...,em} be a maximal set of linearly independent eigenvectors in V
with eigenvalue A. Since 7 is linearly independent, it can be extended to a basis
B = {ei,...,em, bys1,..., b} of V. The matrix of T with respect to B is the block

matrix
| AMly | B
A-[ L C].

Therefore, det(x] — T) = det(xI — A) = det(xI, — AlL,)det(xl,—y — C) = (x —
A)"det(xI,—,; — C) and the multiplicity of A as a root of the characteristic polyno-
mial of T is at least m.

(b) The smallest possible value of m is 1. Since V is finite dimensional, V' = F" when
a basis B is chosen. Consider a linear operator whose matrix with respect to B is a
diagonal matrix with a A in the a1; spot and A + 1 in the ax, a3, ..., and a,, spots.
Then the characteristic polynomial of T is (x — A)(x — (A +1))"~L. By part (a), m < 1
som = 1.

The largest possible value of m is n. Consider the linear operator T : V. — V defined
by T(v) = Av. Then every nonzero vector in V is an eigenvector with eigenvalue A,
so the maximal number of linearly independent eigenvectors with eigenvalue A is the
maximal number of linearly independent vectors in V, which is n.

47



O]

5. Let V be a finite-dimensional complex vector space with a positive definite Hermitian
form (, ),andlet T : V — V be a linear operator.

(a) Give the definition of the adjoint operator T* : V. — V.
(b) Give the definition of when T is a normal linear operator.

(c) Assuming T is normal, prove that ker T = (im T)L where, for a subspace W of V, W+
denotes the orthogonal complement of W.

Solution:

(a) For any vector v, T*(v) is the unique element of V satisfying (T*v, w(= (v, Tw) for all
welV.

(b) T is a normal operator if TT* = T*T.
(c) First, we show ker T = ker T*. Observe that

xckerT <= Tx=0
<= (Tx,Tx) =0
< (x,T"Tx) =0
— (x,TT*x) =0
< (T"x, T*x) =0
<~ T'x=0
< x ckerT"

proving the claim. If x € ker T, then x € kerT*, so forany y € V,0 = (y, T*x) =
(Ty, x). This implies that x € (im T)~*. Thus, ker T C (im T)*.

If x € (imT)*, then (Ty,x) = 0 for ally € V. This implies that (y, T*x) = 0 for
ally € V. Take y = T*x. Then (T*x, T*x) = 0, which implies that T*x = 0. Thus,
x € ker T* = ker T. Therefore, (imT)* C kerTand ker T = (im T)*.

O]

6. Let R be a commutative ring with identity and let I C R be an ideal. Define the radical
of I, denoted /I, by /I = {r € R: r" € I for some positive integer 1}

(a) Prove that /I is an ideal of R.
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(b)

We ay that I is a radical ideal if and only if I = v/I. Recall that an element r is called
nilpotent if and only if " = 0 for some positive integer n. Prove that I is a radical ideal
if and only if 0 + I is the only nilpotent element of the quotient ring R/ I.

Solution:

(a)

(b)

It is clear that I C /I, which implies that VTis nonempty. Leta, b € V/I. There then
exist m,n € N such that a”,b" € I. Then

(Ll + b)Z(m+n) _ a2(m+n) + aZ(m-i—n)—lb 4ot am+nbm+n 4t bZ(m+n)

Each of the terms above is of the form a/b* for some j,k > 0. The claim is that either
j > mork > nineach term. Note that j + k =2(m+n) soif j < m, k =2m+2n—j >
2mon —m = m + 2n > n. This implies that in each term of the above, either a el
or b* € I. Since I is an ideal, this implies that every term is an element of I so
(a+ b)z("“r”) € I. Thus, a + b € VI and /T is closed under addition. If r € R, a € /1,
then there is a n € IN such that a” € I. Therefore, (ra)" = r"a" € I since I is an ideal.
Thus, ra € V1. Therefore, /1 is an ideal.

Assume that [ is a radical ideal and let  +- I be a nilpotent element of R/I. Then there
isan € N such that (r+I)" = +" + 1 = I. Thus, r"* € 1. Thus implies that r € Vi=1,
so 7+ 1 = 0+ I. Therefore, 0 + I is the only nilpotent element of R/I.

Now assume that 0 4 I is the only nilpotent element of R/I. It was noted above that
I ¢ VI it remains to show that /I C I. Let r € V/I, then there exists a n € IN such
that " € I. This implies that (r + )" = r" + I = I. Thus, r + [ is a nilpotent element
of R/1,sor+ I = 0+ I. This implies that r € I. Therefore, VIcTandI = +/I. But
then I is a radical ideal.

O]

7. Let R be a PID and let a and b be two nonzero nonunits in R.

(a)
(b)
(©

Give the definition of the greatest common divisor of 2 and b.
Prove that a greatest common divisor of 2 and b exists.

Let c be a greatest common divisor of a and b. Prove there exists x,y € R such that
c = xa+yb.

Solution:

(a)

An element d € R is a greatest common divisor of 2 and b if d | a and d | b and for any
c € Rsuchthatc|aandc|b,c|d.
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(b) Since R is a PID, the ideal (g, b) is principal, so there exists d € R such that (d) = (a,b).
The claim is that d is a greatest common divisor of 2 and b. Since a,b € (d), d | a and
d|b.IfceR,c|laandc|b, thena € (c), b € (c), which implies that (a,b) C (c). So
(d) C (c), which implies that d € (c). Thus, ¢ | d. But then d is a greatest common
divisor of 4, b.

(c) If c is a greatest common divisor of a and b, then (c¢) = (a, b) by the previous part. In
particular, ¢ € (a,b), so there exists x, y € R such that xa + yb = c.

O]

8. Let F be a finite field, F[x] the polynomial ring over F, and M and F[x]-module.

(a) Explain why M is also an F-vector space in a natural way. Denote by dimp(M) the
dimension of M as a F-vector space.

(b) Prove that for each positive integer 1, there exists a simple F[x]-module M, such that
n < dimp(M,) < .

Solution:

(a) Since M is an F[x]-module, M is an abelian group with an action of F[x] on M. Since
F C FJ[x], this action can be restricted to F, leading to a scalar multiplication which
makes M into an F-vector space. Also for any m,m’ € M,a € F, x-(m+m') =
xm+ xm’ and x - (am) = a(xm), so x can be viewed as a linear operator on the F-vector
space M.

(b) If there were finitely many irreducible polynomials fi, f>, ..., fi, then the polynomial
p = fif2 - fr + 1is an irreducible polynomial distinct from each f;, which is a contra-
diction. hence, the claim holds.

Let g = |F|. Then there are g* polynomials of degree k for each k. Let 1 be a positive
integer. Then there are only finitely many irreducible polynomials in F[x] of degree
at most n and infinitely many irreducible polynomials in F[x], so there exists an
irreducible polynomial p(x) € F[x] of degree m > n.

View F|x] as a module over itself. The submodules of F[x] are precisely the ideals of
F[x]. Since p(x) is irreducible, the ideal (F[x]-submodule) (p(x)) C F[x] is maximal.
By the Fourth/Correspondence/Lattice Isomorphism Theorem, there are no proper,
nontrivial submodules of F[x|/(p(x)), so F[x]/(p(x)) is a simple F[x]-module. A
basis for F[x]/(p(x)) as a vector space over Fis {1,%,x2,...,x"1},so F[x]/(p(x)) has
dimension m > n as a vector space over F.
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O]

9. Let A be a square matrix over the complex numbers. Assume the characteristic poly-
nomial of A is (x — 2)*(x — 3)°. Also assume that nullity (A —2I) = 4 and nullity
(A-3I)=1.

(a) What are the possible Jordan normal forms of A?

(b) For each possible Jordan normal form of A give its minimal polynomial.

Solution:

(a) The two eigenvalues of A are 2 and 3. Since nullity (A — 2I) is 4, there are four
Jordan blocks corresponding to the eigenvalue 2. Since the power of (x — 2) in the
characteristic polynomial is 4, each Jordan block is a 1 x 1 block. For the eigenvalue
3, since nullity (A —3I) = 1, there is only one Jordan block corresponding to the
eigenvalue 3. This block must have size 5 since the power of (x — 3) in the characteristic
polynomial is 5. Thus, there is only one possibility for the Jordan canonical form of A
(up to the order of Jordan blocks), given below:

o

S OO OO OCOON
OO DODDOOONO O
S OO OO NO OO
QOO R, WO O oo
QO R WO OO oo
O R WO OO O oo
—_ WO OO oo oo
W OO OO O oo

SO OO OCON

(b) Note that the elementary divisors of A are (x — 2) (with multiplicity 4) and (x — 3)°.
The minimal polynomial is the product of the largest power of (x — 2) and the largest
power of (x — 3) in the elementary divisors, which is (x — 2)(x — 3)°. Thus, m(x) =
(x —2)(x —3)°.

O

10. Let f(x) € Q[x] be an irreducible cubic polynomial (Q is of course the rational numbers)
and let F be the splitting field for f(x) over Q.

(a) Prove that the Galois group of F over Q is isomorphic to either Sz or Z/3Z.
For (b) and (c) suppose that f(x) = x> — x + 2.
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(b) Prove that f(x) is irreducible over Q.

(c) Still denoting by F the splitting field for f(x) over Q decide which of the two possi-

bilities in (a) for the Galois group of F over Q is the vase for this f(x).

Solution:

(a)

(b)

(©

Since f is an irreducible polynomial and Q has characteristic 0, f is separable. Let
G = Gal(F/Q) denote the Galois group of F over Q. Since F is the splitting field of
a separable polynomial, |G| = [F : Q]. Let a1, ap, and a3 denote the roots of f. Since
Q(aq) C Fand [Q(a7) : Q] = 3, it follows that [F : Q] > 3. Note thatif 0 € G, 0(«;) is
arootof f fori = 1,2,3. Therefore, there exists an action of G on the three roots of f
which induces a homomorphism ¢ : G — S3. If o € ker ¢, then o (w;) = ; fori =1,2,3.
Since F is generated by Q, a1, a3, and a3, this implies that ¢ is the identity on F. Hence,
ker ¢ = {1} and ¢ is an injection. This implies that G is isomorphic to a subgroup of S3,
so |G| =3 or |G| = 6 by Lagrange’s Theorem. If |G| = 3, then G = Z/3Z. 1If |G| =6,
then G & S3.

Since f has degree 3, f is irreducible if and only if f has no rational roots. By the
Rational Roots Theorem, the only possible rational roots are £1, £2. However, f(£1) =
2and f(2) =8, f(—2) = —4. Hence, f has no rational roots and is irreducible over Q.

The claim is that f has only one real root. It is clear that there is at least one. If 0 < x <1,
W¥—x+2>x2—-14+2=x341>0.Ifx>1,thenx® >xand x> —x+2>2 > 0.
If -1 <x<0,thenx>—x+2>(-1)>-0+2 =1 > 0. Finally, if x < —1, then
f'(x) =3x>—1>3—1=2,s0 f is strictly increasing when x < —1. Hence f will
have exactly one real root, as claimed.

Let & denote the unique real root of f. Then Q(«) C R cannot be the splitting field of f
over Q. Hence, Q(«) C F and

[F:Q]=[F:Q(a)][Q(a:Q] =3[F:Q(a)] >3
so [F: Q] = 6and Gal(F/Q) = Ss.
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January 2007

1. Let G be a finite group having exactly one nontrivial proper subgroup. Prove that G is
cyclic of order p? for some prime number p.

Solution: Let H denote the one nontrivial, proper subgroup of G and consider g € G\ H.
Then (g) is a nontrivial subgroup of G (since ¢ # 1) distinct from H. Therefore, () = G
and G is cyclic. Let n = |G|. Then G contains a subgroup of order d for every d that divides
n. This implies that 7 is a number with exactly order d for every d that divides n. This
implies that 7 is a number with exactly one divisor other than 1 and 7. This immediately
rules out the possibility that 7 is prime and the possibility that n has more than one prime
divisor. Therefore, n = pk for some prime p € N, k € IN, k > 1. If k > 2, then p and
p? are divisors of p* = n, contrary to the choice of n. Thus, n = p? for some prime p, as
desired. O

2. Let G be a finite group having n distinct conjugacy classes.

(a) Prove the identity Z |IC(x)| = n|G].
xeG
(b) Compute the probability that two randomly chosen elements of G commute. The

random selection is done “with replacement” so that choosing the same element twice
is a possible outcome.

Solution:

(a) Let G act on itself by conjugation. The orbits of this action are the conjugacy classes
of G. The stabilizer of any ¢ € G is C(x), the centralizer of x. Let O,. denote the
conjugacy class of x. The Orbit-Stabilizer Theorem implies that

04 =6+ Cw)] = 1

which implies that |C(x)| = ||g|‘ . Therefore,
X

Gl
|Ox|

1
|Ox|’

Y ICl= 1

xeG xeG

=Gl ¥

xeG

Now let x1, x, ..., X, be representatives of the n distinct conjugacy classes of G. In the
sum above, 1/ is counted for every element of O,. Hence, it is counted a total of
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|Ox| times. This implies that

1

¥ Ic@) =161 =1 15

xeG

M-

Il
—

n
Ox| =G| }_1=n|G|,
i=1

as desired.

(b) The probability is p/q, where g is the number of ways to choose two elements from
the group G with replacement and p is the number of ways to choose two commuting
elements of G with replacement. It is clear that g = |G|%. If two elements x,y € G are
chosen, then x and y commute if and only if y € C(x). Therefore, the total number of

ways to choose two commuting elements is ) ° |C(x)| = n|G|. Thus,
xeG

p n|G]| n
q |G |G|

O

3. Let A be an n x n real matrix, and prove that the following (criteria for A to be orthogonal)
are equivalent.

(@) [|AX]| = ||X]|| forall X € R"

(b) (AX, AY) = (X,Y) forall X,Y € R"

(© ATA =1,

Solution: Suppose (a) holds and let X,Y € R" be arbitrary. By (a), |[A(X + Y)|? =

| X + Y||%. In other words, (A(X +Y), A(X+Y)) = (X +Y, X +Y). The left hand side of
this equation simplifies as

(A(X4Y),A(X+Y)) — (AX + AY, AX + AY)
= (AX, AX) 4+ 2(AX, AY) + (AY, AY)
= |AX|]2 4 2(AX, AY) + || AY|?
= [IX[* + 2(AX, AY) + || Y|?

Also,

(X+Y,X+Y)=(X,X)+2(X,Y) + (Y, Y) = | X||* +2(X,Y) + || Y|]?
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Combining these leads to
IX[* +2(AX, AY) + [ Y[|* = | X]* + 2(X, Y) + || Y||*
2(AX,AY) =2(X,Y)
(AX,AY) = (X,Y),

as desired.
Assume that (b) holds, use the matrix notation ATA = (a;;). Let {¢;} ; denote the
standard basis for R". Then

<A€i, A€]> = (Aei)T(Ae]-) = eiTATAej = Lli]'.
Using (b), we have

(Ae;j, Aej) = (e, e) = L 1f1 =]
0, ifi#j.

1, ifi=j
ajj = ey
0, ifi#j.
This implies that ATA = I,,.
Now suppose (c) holds. Then for any X € R",
|AX|]? = (AX, AX) = (AX)T(AX) = XTATAX = XTX = (X, X) = | X|]%

Thus,

Since ||AX]|| and || X|| are both nonnegative, this implies that | AX|| = || X||, as needed. [

4. Let G be a simple group of order 60. Prove that G has 10 Sylow 3-subgroups. (Do not
use the fact that G = As.)

Solution: The divisors of 60 are 1, 2, 3,4, 5, 6, 10, 12, 15, 20, 30, and 60. Let n3(G) denote
the number of 3-Sylow subgroups of G. By Sylow’s Theorem, n3(G) = 1 mod 3 and
divides 20. The only possibilities are n3(G) = 1, n3(G) = 4, or n3(G) = 10. If n3(G) =1,
then G contains a unique 3-Sylow subgroup, which must be normal. Thus, G has a proper,
nontrivial, normal subgroup, contrary to the assumption that G is simple.

Suppose 1n3(G) = 4. Let S denote the set of 3-Sylow subgroups. Let G act on S by
conjugation. This action is nontrivial since any two 3-Sylow subgroups are conjugate (by
Sylow’s Theorem). Therefore, this action induces a homomorphism ¢ : G — S4 with
ker ¢ # G. However, since |G| = 60 and |S4| = 4! = 24, it is impossible for ¢ to be injective.
Therefore, | ker ¢| > 1. Thus, ker ¢ is a proper, nontrivial subgroup of G. Since the kernel
of a group homomorphism is a normal subgroup, this implies that G has a proper, nontriv-
ial, normal subgroup, which again is a contradiction. Therefore, n3(G) = 10, as desired. [

5. Let S5 denote the symmetric group on five elements.
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Cycle Type | Representative | Size of Conjugacy Class
(abcde) (12345) 41=124
(abcd) (1234) (3)3! =30
(abc) (123) (3)2! =20
(abo)de) | (123)45) (E) 21 =20
(ab)(cd) (12)(34) 1G)G) =15
(ab) (12) () =10
1 1 1

(a) Find a representative for each conjugacy class of Ss, and determine the number of
elements in each class.

(b) Find all elements of S5 that commute with the 4-cycle (1234). Justify your answer.

Solution:

(a) Note that two permutations in S5 are conjugate if and only if they have the same cycle
type. Note that |S5| =120 =24 +30+20+20+ 15+ 10+ 1.

(b) We need to compute C((1234)). In general, if G is a group acting on itself by conjuga-
tion, x € G and Gy, is the stabilizer of G, then

Gy=1{g€G:g-x=x}{gecG:gxg ' =x} =C(x).

Return to the situation where G = Ss. By the Orbit-Stabilizer Theorem, [S5 : C((1234))]
is equal to the size of the conjugacy class containing (1234), i.e. [Ss : C((1234))] = 30.
Therefore, |C((1234))] = 122 = 4. Since (1234) has order 4, this implies that C(1234) =
((1234)), so the elements of S5 that commute with (1234) are 1, (1234), (1234)?, and
(1234)3, which are

1
(1234)(1234) = (13)(24)
(1234)° = (1234)(13)(24) = (1432).

6. Let Q be the rational numbers.

(a) Find the minimal polynomial for v/6 + /10 over Q. Be sure to prove that it is the
minimal polynomial.
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(b) What is the degree of the field extension Q C Q[\/g + \/EP

Solution:

(a) Observe that (v/6 4 v/10)? = 6 + 10 + 21/6+/10. Therefore,

(V6 +1/10)2 — 16 = 2v/61/10
(V6 +V10)% — 16)% = 4(6)(10)
(V6 + v10)* — 32(v/6 4 v10)? 4 256 = 240
(V6 +V10)* —32(vV6 + V10)> + 16 = 0

Therefore, v/6 + v/10 is a root of the polynomial m(x) = x* — 32x? + 16. To show that
m(x) is the minimal polynomial of v/6 + /10 over Q, it suffices to prove that m(x) is
irreducible over Q. By Gauss’ Lemma, it is sufficient to prove that m(x) is irreducible
over Z. Write m(x) = x* — 2°x2 4 2%. By the Rational Roots Theorem, the only possible
rational roots are +1, £2, +4, £8, £16. However, none of these are a zero of m(x).

The only other possibility for m(x) to be reducible is that m(x) is a product of irre-
ducible quadratics. Suppose that m(x) = (x> + ax +b) (x> + cx +d) = x* + (a+c)x> +
(b+d + ac)x? + (ad + bc)x + bd for some a,b,c,d € Z. Comparing the constant term
yields bd = 16. The only possibilitiesareb = 2,d =8orb = —2,d = —8orb=4,d =4
orb = —4,d = —4. Comparing the x3 terms yields a = —c. Comparing the x2 terms
yields d + b — ¢ = —32, 50 ¢ = d + b + 32. All of these yield a contradiction. For
example in the first case, b = 4,d = 4, we would then have 2=2+8+32=42,a
contradiction since 42 is not a perfect square. The other cases are handled the same
way. But then m(x) must be an irreducible polynomial.

(b) Since the minimal polynomial of V6 + /10 over Q has degree 4, the extension must
also have degree 4.

O

7. Let F C K C L be a tower of field extensions. Provide either a proof or a counterexample
for the following statement: If F C K and K C L are both Galois extensions then F C Lisa
Galois extension.

Solution: The statement is false. Take F = Q, K = Q(v/2),and L = Q({‘/E) Then K C K
is Galois since K is the splitting field of the separable polynomial p(x) = x> —2 € F[x].
Also, K C L is Galois since L is the splitting field of the separable polynomial g(x) =
x2 — /2 € K[x]. The polynomial m(x) = x* —2 € F[x] has a root in L (namely, v/2).
However, m(x) = (x + v/2)(x — v/2)(x? + v/2) does not split completely since x> + v/2
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has no real roots and L C IR. This implies that F C L is not a Galois extension. ]

8. Let R be a commutative ring with identity and let I and | be ideals of R. Prove: if
I+]=(1)thenI]=1N].

Solution: Note that I] is an ideal generated by products of the form xy, where x € I and
y € J. Since I and | are both ideals, it is clear that every such product is contained in I N .
Therefore, I] C I N J. Now since 1 € [ + |, there exista € [ and b € [ such that1 =a +b.
ForanyceINJ,c=c-1=c(a+b)=ca+cb.Sinceac l,c€]J,cacIJandbe J,cel,
cb € I]. Therefore, ca+cb =c € I]. Thus, I N | C I]. Therefore, [] =1 N . O

9. Let A be a square matrix over the complex numbers. Assume that the minimal polyno-

mial of A is (x —2)? and the characteristic polynomial of A is (x — 2)°.

(a) Give all the possible Jordan canonical forms for such an A.

(b) For each of the possibilities in (a) compute the nullity of (A — 21 )k for all positive
integers k. (I is the identity matrix of the same size as A.)

Solution:

(a) First, the possible invariant factors are:
(x —2),(x—2),(x —2),(x —2)2
(x—2),(x —2)!, (x —2)2

In each case, the elementary divisors are the same as the invariant factors. In the first
case, the Jordan canonical form is, up to permutation of the Jordan blocks,

20000
02000
00200
00020
00012

In the second case, the Jordan canonical form is, up to permutation of the Jordan blocks,

20000
02000
01200
00020
00012



(b) The nullity of (A — 2I) is the number of Jordan blocks corresponding to the eigenvalue
2. In the first case, there are 4 Jordan blocks, so the nullity of (A —2I) is 4. The
difference fo the nullity (A — 21)%2— nullity (A — 2I) is the number of Jordan blocks of
at least size 2. Since there is only one such block, nullity (A — 21 )2—4=1,s0 nullity
(A — 2I)? = 5. Since there are no Jordan blocks of at least size 3, nullity (A —2I)* =5
for all k > 3.

In the second case, there are 3 Jordan blocks, so nullity (A — 2I) = 3. There are 2 blocks
of at least size 2, so nullity (A — 2I)? — 3 = 2. Thus, nullity (A — 2I)? = 5. Since there
are no Jordan blocks of at least size 3, nullity (A — 2I)* = 5 for all k > 3.

O

10. An abelian group is generated by w, x, y, and z subject to the relations: w + 3x + 3y +
52=0,w+x+y+y =0, 2x+2y+2z =0, and 3z = 0. Express what group that is in
each of the two ways that appear in the structure theorem for finitely generated abelian
groups.

Solution: The generators satisfy the relations

w+3x+3y+5z2=0
w+x+y+0z=0
Ow+2x+2y+2z=0
Ow—+0x+0y+3z=0

The coefficient matrix for this system of equations is then

1 3 35
1110
0 22 2
0 00 3
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Performing the following row /column operations

—Ri+R; — R
Ry 4+ Rs — R3
R3+ Ry — Ry

—Cry+C3 — C3

—2C 4+ C4 — Cy
-3C1+C — G
—2C14+C4 — Cy
—R3+ Ry — Ry
Cs3 +— G4

—C3 — G5

—Cy — Gy

yields the matrix

OO O
S o N O
S W oo
o O O O

Thus,
A2Z)Z xZ]2 X Z/3Z xZ/0Z =Z/27 x 7Z./37 x Z

The above is the elementary divisor decomposition of A. By the Chinese Remainder
Theorem, Z /27 x Z./3Z = Z/6Z, this gives the invariant factor decomposition A =
Z/6Z xZ. O
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August 2007

1. Let G be a group of order p? for some prime number p. Prove that G is abelian.

Solution: Let Z(G) denote the center of G. Consider the class equation for G:

G| = |z<c>|+§[czci]

where C; denotes the stabilizer of some x € O; for every distinct orbit O; which contains
more than one element (for otherwise the element is in the center). In particular, [G : C;] > 1
and divides p? for each i. Therefore, p divides [G : C;] for each i. This also implies that
p divides |Z(G)|. Since |Z(G)| divides |G|, there are then two possibilities: |Z(G)| = p?
or |Z(G)| = p. If |Z(G)| = p? then G = Z(G) and G is abelian. If |Z(G)| = p, then
|G/Z(G)| = p so that G/Z(G) must by cyclic. But then G is abelian. O

2. Prove that a finite group of order 24 is not simple.

Solution: The divisors of 24 are 1, 2, 3,4, 6, 8, 12, and 24. By Sylow’s Theorem 1,(G) = 1
mod 2 and divides 24. The only possibilities are n12(G) = 1 or n2(G) = 3. If n2(G) =1,
then G contains a unique 2-Sylow subgroup, which is necessarily normal. This implies that
G has a nontrivial, proper, normal subgroup. Thus, G is not simple.

Suppose that n12(G) = 3. Let X denote the set of 2-Sylow subgroups. Note that G acts
on X by conjugation. This induces a homomorphism ¢ : G — Sx. Since |G| = 24 and
|Sx| = 3! = 6, ¢ is not injective. Therefore, | ker¢| > 1. Note that | ker$| # 24 since
any two 2-Sylow subgroups are conjugate (so they all can not be fixed by the action of
conjugation). Thus, ker ¢ is a proper, nontrivial, normal subgroup of G, which implies that
G is not simple. ]

3. Let H C K C G be groups. Prove that H is normal in K if and only if K C Ng(H) where
Ng(H) is the normalizer of H in G.

Solution: Suppose that H is normal in K and that x € K. Then xHx~! c H, which implies
that x € Ng(H). Therefore, K C Ng(H). Now suppose that K C Ng(H). Then for any
x € K, xHx~! ¢ H, which implies that H is normal in K. O

4. Let T : C" — C" be a linear operator. Prove that ker T = (im T*)~, where the orthogonal
complement is taken with respect to the usual Hermitian inner product on C".

Solution: Suppose x € ker T, then forally € C", (T*y,x) = (x, Tx) = (y,0) = 0. There-

fore, x € (im T*)* and ker T C (im T*)*. Suppose that x € (im T*)*. Then for ally € C",
0= (T*"y,x) = (y, Tx). In particular, (Tx, Tx) = 0, so Tx = 0. This implies that x € ker T,
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soker T = (im T*)*. O

5. Let A be an n x n real matrix with transpose AT, and prove that the following (criteria
for A to be orthogonal) are equivalent.

1. ||AX]| = || X|| for all X € R", where || - || is the usual norm on R”;
2. (AX,AY) = (X,Y) forall X,Y € R", where (-, -) is the usual inner product on R";

3. ATA=1, then xn identity matrix.

Solution: Suppose that (1.) holds. Then (AX, AX) = || AX|]> = || X]|?> = (X, X) for all
XeR"IfX,Y € R", then

(A(X4Y),AX+Y)) =(X+Y,X+Y)=(X,X)+2(X,Y) + (Y, Y).
On the other hand,

(A(X+Y),A(X+Y)) = (AX + AY, AX + AY)
= (AX, AX) + 2(AX, AY) + (AY, AY)
= (X, X) +2(AX, AY) + (Y, Y).

Combining these yields
(X, X)+2(X,Y)+(Y,Y) = (X, X) +2(AX, AY) + (AY, AY)

so that 2(X, Y) = 2(AX, AY) so that (X, Y) = (AX, AY).
Now suppose that (2.) holds. Observe that for X,Y € R", (AX, AY) = (AX)T(AY) =
XTATAY. Let {¢;}"_; denote the standard basis for R” and write ATA = (a;;). Then

1, ifi=]

_ T AT _ — —
<A€i,A€]‘> =¢e A Ae]- = IZZ']' = <€i/ej> = {O, i 7&]

Thus, ATA = I,,.
Finally, suppose that (3.) holds. Then for any X € R,
|AX])? = (AX, AX) = (AX)T(AX) = XTATAX = XTX = (X, X) = ||X|*
Since ||AX|| > 0and || X|| > 0, this implies that || AX|| = || X]|, as desired. O

6. Let Q be the rational numbers. Prove the degree of the field extension [Q(+/6,/10,/15) :
Q] equals 4 and not 8.
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Solution: Now that v/61/10 = 2v/15. Therefore, V15 = %\@\/ﬁ € Q(V/6, \/E) Thus,
Q(v6,v/10,v/15) = Q(v/6,1/10). Consider the extensions Q C Q(v/6) C Q(+/6,1/10).
The minimal polynomial of v/6 over Q is m(x) = x> — 6. This polynomial is irreducible
over Q using Eisenstein’s criterion with p = 3 (or p = 2). Therefore, [Q(1/6) : Q] = 2 and

[Q(v6,v10) : Q] = [Q(V6, V10 : Q(V6)] [Q(V6 : Q] = 2[Q(V6,V10) : Q(V6)].

It remains to show that [Q(\@, \/E) : Q(\@)] = 2. Note that v/10 is a root of the poly-
nomial p(x) = x2 — 10 = (x + v/10)(x — v/10). If p(x) is reducible over Q(+/6), then
V10 € Q(v/6). This implies that there exist a,b € Q such that v/10 = a + b+/6. Squaring
yields 10 = a? + 6b% 4 2aby/6. Now 2ab = 0, so eithera = Qor b = 0. If a = 0, then
6b> = 10 so b* = 3, impossible since b € Q. If b = 0, then a?> = 10, which is impossible
since a € Q. Therefore, v10 ¢ Q(/6), implying p(x) is irreducible over Q(1/6). Thus,
[Q(V6, V10 : Q(V/6)] =2 and [Q(V6, V10,115 : Q] =2-2 =4 # 8, as desired. O

7. Let K C L be a finite field extension, and let f be an irreducible polynomial with
coefficients in K. Assume that the degree of f, and [L : K] are relatively prime. Prove that f
has no roots in L.

Solution: Without loss of generality, it may be assumed that f is monic. Assume that there
exists « € L such that f(«) = 0. Then K C K(a) C Land [L: K] = [L: K(«)] [K: () : K].
Since f is irreducible and monic, f is the minimal polynomial of « over K. Therefore,
[K(a) : K] = deg f and deg f divides [L : K]. Thus, the greatest common divisor of the
degree of f and [L : K] is the degree of f. This contradicts the assumption that the degree
of f and [L : K] are relatively prime. Thus, f has no roots in L. O

8. Let R be a commutative ring with identity and let I and | be ideals of R. Prove: if
I + ] = R then we also have I? 4 J3 = R.

Solution: It suffices to show that 1 € I? + J3. Since 1 € I + ], there exista € I, b € ] such
that 1 = a + b. Using the Binomial Theorem,

1=1=(@+b)*=0a*+4-a°v+6-a**+4-ab’ + b*

where n - x denotes the n-fold sum of x with itself. Since ¢ € I and I? is an ideal,
a*,a’b, a’b? € I2 Similarly, ab’,b* € J3. Then 1 is a sum of elements from I and J3,
implying 1 € I2 + J°. Thus, I+ J*> = R. O

9. Let R be a commutative ring and let M be a cyclic R-module, that is, M is generated by
a single element. Prove that there exists an ideal I in R such that M = R/1.
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Solution: By assumption, there exists x € M such that M = Rx. Therefore, there is a
natural R-module homomorphism ¢ : R — M given by r — rx. To show that ¢ is a
homomorphism, let ,s € R. Then

Pp(r+s)=(r+s)x =rx+sx = ¢(r) + ¢(s)
¢(rs) = (rs)x = r(sx) = r¢(s)

Therefore, ¢ is a homomorphism. It is clear that ¢ is surjective (since 1 € R). By the
First Isomorphism Theorem, R/ ker¢ = M. Now ker ¢ is a submodule of R. But the
submodules of R are precisely ideals. Taking ker ¢ = I, completing the proof. O

2 2 2
220
2 0 2

be the presentation matrix for the abelian group X, that is we have the presentation

10. Let A

257 — X —0
Find a direct sum of cyclic groups which is isomorphic to X.

Solution: Perform the following row /column operations

R3—R1 — R3
Ry — Ry, — Ry
—Ry, — Ry
—R3 — R3
Ry, +— Rj3

Rl—R2—>R1
Rl—R3—>R1

which yields

N O

N O© O
N——

Thus, X = Z/27Z ©Z./27 & Z./27Z. O
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January 2008

1. Let G, H be cyclic groups generated by elements x, y of finite orders m, n respectively.

(@) Determine the necessary and sufficient condition on m, n so that sending x' to i, for
alli € Z, is a well-defined homomorphism of groups.

(b) Describe all homomorphisms of the cyclic group of order 6 into the cyclic group of
order 24.

Solution:

(a) Let ¢ : G — H be defined by ¢(x') = y'. Then ¢(x™") = ¢(1) = 1 = ¢(x)™. Since

H has order n, n divides m. It is clear that this condition is necessary. We claim this
condition is also sufficient.
Suppose that n divides m. We need show that ¢ is well-defined. If x' = x/ for
some i,j € Z, then j = i + mk for some k € Z. This implies that ¢(x') = y' =
Ytk = yiymk = yi(y™k = yi = ¢(x/). Thus, ¢ is well-defined. Notice that ¢ is a
homomorphism since for any i,j € Z, ¢(x'x/) = ¢(x'*/) = y'*/ = y'yl. Therefore, it is
necessary and sufficient that n divide m.

(b) Let Cs = (x) be the cyclic group of order 6 and Cp4 = (y) be the cyclic group of order
24. 1If ¢ : C¢ — Cyp4 is a homomorphism, then ¢(x) generates a cyclic subgroup of Cp4,
which has order at most 6. Furthermore since ¢ is a homomorphism, ¢(x') = ¢(x)".
By the previous part, this means that ¢ is well-defined if and only if |¢9x)| divides
|Cs| = 6, i.e. if ¢(x)® = 1. This implies that ¢(x) € {1,y* v y'?,y'6,4?°}. Thus, there
are 6 such homomorphisms.

O]

2. Given a subgroup K of a group G, the set S of left cosets of K in G is a left G-set by means
of ¢-xK = gxK, for all g,x € G. If H is another subgroup of G, then § is a left H-set by
restriction. Recall that the set HYK = {y € G: y = hxk for some h € H,k € K} is called a
double coset. For any set X, | X| denotes the cardinality of X.

(a) Prove that the orbit of the element xK of the H-set S is the set of left cosets of K in G
contained in the double coset HxK and compute the stabilizer of xK.

(b) Prove that the double cosets form a partition of G.
In the rest of the problem, assume |G| < oo.

(c) Prove that |HxK| = |K|[H : HNxKx~'] = |H|[K: KN x 'Hx].
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(d) Do all double cosets have the same cardinality? If yes, give a proof; if no, give a

counterexample.

Solution:

(a)

(b)

(©)

(d)

Let O(xK) denote the orbit of xK in S. Then
O(xK) ={h-xK:he€ H} = {hxK: h € H}.

This shows that O(xK) is a subset of the set of left cosets of K contained in HxK. If aK
is a coset contained in HxK, then aK C HxK. In particular, a = hxk for some h € H,
k € K, so h-xK = hxK = hxkK = aK. This shows that aK € O(xK). This proves
that O(xK) is equal to the set of left cosets of K in G contained in HxK. Note that
a-xK = xK if and only if x 'ax € K, which is true if and only if 2 € xKx~!. Therefore,
the stabilizer of xK in H is H N xKx~!.

Define a relation on G by x ~ y if and only if x € HyK. We claim that this is an
equivalence relation.

e x=1x1 € HxKforallx € G,sox ~ xforallx € G

o If x ~ y, then x € HyK so x = hyk for some h € H,k € K. Theny = h~xk~! €
HxKsoy ~ x

o Ifx ~y,y ~ z thenx € HyKso x = hyk for some h € H, k € K. Similarly,
y = Wzk' for some ' € H, k' € K. Then x = hyk = hl'zk'k € HzKso x ~ z

This proves that ~ is an equivalence relation. Notice the equivalence classes of ~ are
the double cosets HxK for x € G. This implies that the double cosets form a partition
of G, as desired.

By part (a), the orbit of xK is the set of left cosets of K contained in HxK. By the Orbit-
Stabilizer Theorem, there are [H : H N xKx~!] elements of O(xK),i.e. [H : H N xKx~!]
cosets of K contained in HxK. Furthermore, every element of HxK is contained in one
of these cosets of K. Since the cardinality of all left cosets of K is |K],

|HxK| = |K|[H : HNxKx™1].

The equality |HxK| = |H| [K : x"!Hx] is obtained by letting K act on the set of right
cosets Hx for x € G (via Hx - y = Hxy for y € K) and repeating parts (a) and (b) above.

Not all double cosets have the same cardinality. Consider G = S3, H = ((12)),
K =((13)), x = (23), and y = (123). Then

HxK = {(23), (123)}
HyK = {(123), (132), (13), (12)}

So2 = |HxK| # |HyK| = 4.
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O]

3. Prove that if a group has order p°a where pis a prime, 1 < a < p,and e > 1, then the
group has a proper normal subgroup.

Solution: Let G be a group of order p°a, where p, e, and a are given above. The divisors
of pare 1,p,p?,...,p° L, p% ..., pa, p*a,...,p° 'a, p‘a. Let ny(G) denote the number of
p-Sylow subgroups of G. By Sylow’s Theorem, 11,(G) =1 mod p and divides |G| = pa.
Now p does not divide n,(G), so the only possibilities are 1,(G) = 1 or n,(G) = a. How-
ever, if 1 < a < p, then a is not congruent to 1 mod p (since a — 1 cannot be divisible by
p), so the only possibility is 1,(G) = 1. Thus, G has a unique p-Sylow subgroup. This
unique p-Sylow subgroup is a normal subgroup of order p°. Thus, G contains a proper,
nontrivial, normal subgroup. O

4. Let A be a square matrix over the field C of complex numbers.

(a) Prove that the matrix is invertible if and only if all of its eigenvalues are different from
zero.

(b) Prove that the matrix is nilpotent if and only if zero is its only eigenvalue. Recall that a
square matrix B is called nilpotent if B™ = 0 for some positive integer m.

(c) Prove that if A is nilpotent, it is similar to an upper triangular matrix with diagonal
entries zero. Recall that matrix X and Y are called similar if X = CYC~! for some
invertible matrix C.

Solution:

(a) Suppose that A is an invertible n x n matrix. Then the linear operator on C" defined
by multiplication by A has a trivial kernel. Therefore, there are no nonzero vectors
v € C" satisfying Av = 0v = 0. Thus, 0 is not an eigenvalue of A.

Suppose all the eigenvalues of A are nonzero. Note that A is invertible if and only if
Av # 0 for all nonzero Av # 0 for all nonzero v € C”. Since 0 is not an eigenvalue of
A, the latter condition is satisfied.

(b) Suppose that A is an n x n matrix and assume A has a nonzero eigenvalue A. Then
there exists a nonzero v € C" such that Av = Av. For any m € N, A"v = A"v, which
is nonzero since A" and v are both nonzero. Therefore, A is not nilpotent.

Suppose that the only eigenvalue of A is zero. Since A is a matrix over the com-
plex numbers, its characteristic polynomial splits. This implies that the characteristic
polynomial of A is c4(x) = x™. Therefore, c4(A) = A" = 0 and A is nilpotent.
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(c) Assume that A is nilpotent. Since ¢4 (x) = x", every elementary divisor of A is of the
form x*, where k < n. The Jordan block corresponding to the elementary divisor x is
a k x k matrix of the following form:

010 0
0 01 0
000 ---1
000 ---0

Therefore, the Jordan canonical form of A is an upper triangular matrix with zeros
along the diagonal. Since A is similar to its Jordan canonical form, the result follows.

O]

5. Let A be a real symmetric n x n matrix, and let T : R” — R" be the linear operator on
the Euclidean space R” given by T(X0 = AX, for all column vectors X € R".
(a) Prove that every vector in ker T is orthogonal vector inim T.

(b) Prove that R” = kerT @ imT.

(c) Prove that T is an orthogonal projection onto im T if and only if A, in addition to
being symmetric, satisfies A2 = A. Recall that for any subspace W C R”, the equality
R" = W @& W+ says that every vector v € R" can be uniquely written as v = w + w/,
where w € W and w’ € W+. The linear operator on R” sending v to w, for all v, is
called the orthogonal projection onto W.

Solution:

(@) Let x € kerT, y € R". Then (x, Ay) = xT Ay and (Ax,y) = (Ax)Ty = xTATy =
xT Ay = (x, Ay). Therefore, (x, Ay) = (Ax,y) = (0,y) = 0, i.e. every vector in ker T is
orthogonal to every vector inim T.

(b) By the previous part, if v € kerT N im T, then (v,v) = 0, so v = 0. Thus, ker T N
im T = 0. By the Rank-Nullity Theorem, dim ker T 4 dimim T = n. Therefore,

dim(kerT+imT) = dimker T + dimim T — dim(ker T N im T) = n.
Thus, ker T +imT = R" and ker T N im T = 0. Therefore, R" = kerT ®imT.

(c) Suppose T is an orthogonal projection onto imT. Let y € R" be arbitrary and let
x € ker T. Then T(x + Ty) = Ty since T is an orthogonal projection onto im T. On the
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other hand, T(x + Ty) = Tx + T?y = 0+ T?y = T?y. Thus, T?y = T(x + Ty) = Ty
and A%y = Ay for every y € R". Therefore, A> = A.

Suppose that A2 = A. For v € R", writev = a + b, wherea € ker T, b € im T. Then
b = Tw for some w € R". Clearly, v = a+ Tw = a + Aw. Now Tv = T(a) + T(Aw) =
0+ T(Aw) = A(Aw) = A?w = Aw = Tw. Then T is the orthogonal projection onto
imT.

O]

6. Let Z|x] be the ring of polynomials in one variable with coefficients in the integers. Let
(3,x) = M C Z|x] be the ideal generated by 3 and x. Prove that M is a maximal ideal.?

Solution: If p(x) € M, p(x) = 3q(x) + xr(x) for some p(x),r(x) € Z[x]. This implies
that p(x) = 3k + s(x) for some s(x) € xZ|[x]. Conversely, every element of this form is
contained in M. Suppose I is an ideal in Z[x] properly containing M. Consider f(x) €
I'\ M. Let a be the constant term of f and let g(x) = f(x) — a. Observe that g(x) € (x) C
M C I, which implies that a € I. By the remarks above, a is not a multiple of 3. Observe
that3k € (3) C M C I. Ifa = 3k +1, then 1 = a — 3k € I, which implies | = Z[x]. If
a=3k+2,then2=a—-3k € 1,503 -2 =1 € I. Thus, I = Z[x]. But then M is maximal.

OR

Define a map ¢ : Z[x] — Z/3Z given by ag + a1x + ax> + - - - + a,x" + ap mod 3,
i.e. evaluation at 0 modulo 3 (p(0) mod 3). If p(x) = ag + a;x + axx? + - - - + a,x" and

3 All the maximal ideals of Z[x] are of the form (p, f(x)), where p is a prime and f(x) is a polynomial in
Z[x] which is irreducible mod p, i.e. f(x) € (Z/pZ)[x] is irreducible. To see this, take p and f(x) as stated.
We have

Z[x|/(p, f(x)) = (Z/pZ)[x]/ (f(x))

But (Z/pZ)[x)/(f(x)) is a field since f(x) is irreducible. But then (p, f(x)) is maximal. We now prove the
converse. Suppose M C Z[x] is a maximal ideal. Then k = Z[x]/M is a field. Let ¢ : Z — k be the given
by ¢ = moi, wherei: Z — Z[x] is the canonical inclusion and 77 : Z[x] — k is the canonical projection. If
¢ were injective, then ¢ extends to an injection ® : Q — k. Choosing x — 7(x), 7 extends to a morphism
IT : Q[x] — k. Clearly, IT is surjective. If IT were injective, there would be an isomorphism Q[x] = k.
However, Q[x] is not a field (x is not invertible). Then IT is not injective which shows ker IT = (g(x)) for some
nonzero polynomial g, which necessarily be irreducible. Without loss of generality, we may assume that g
is primitive. Then Q[x]/(g) = k. But then Z[x] — Q[x] gives surjection Z[x] — Q[x]/(g). Therefore, we
have an isomorphism Z[x]/(g) = Q[x]/(g). Write g(x) = ag +a1x + -+ +a,_1x" ' +a,x". In Q[x]/(g),
we have g(x) = 0. But then ¥ = (—ap/ay) + (—a1/ay)X + - + (—a,_1/a,)¥"~!. Then every element of
Ql[x]/(g) can be written as a linear combination of the set {1,%,...,¥" "'} with coefficients in Z[1/a,]. But
{1,%,...,¥" '} is linearly independent in Q[x]/(g). Choose a prime not dividing a,. Then 1/p is not spanned
by {1,%,..., X"~} with coefficients in Z[1/ay]. Then ker ¢ = (n) for some n € Z \ {0}. Butim ¢ is an integral
domain, n must be prime, say p. Then p € M. The maximal ideals in Z[x] containing p are the maximal ideals
in Z[x]/pZ = (Z/pZ)|x]. But then M/(p) = (f(x)) for some irreducible polynomial f(x) € (Z/pZ)[x].
Therefore, M = (p, f(x)) for some polynomial f(x) € Z[x].
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q(x) = by + byx + byx® + - - - + b,x" are elements of Z[x] and r € Z, then

¢(p(x) +q(x)) = ¢((ao + bo) + (a1 + br)x + azx® + - - + (ay + by)x") = (ag + by) mod 3

d(p(x)) +¢(q(x)) =ap mod 3+by mod 3= (ap+by) mod 3

$(rp(x)) =rap mod 3

r¢(p(x)) =r-(ap mod 3) = (r mod 3)(ap mod 3) =rap mod 3
Clearly, ¢ is surjective. Let K denote the kernel of ¢. If p(x) € (3,x), p(x) has constant term
divisible by 3. Then ¢(p(x)) = 0 mod 3 so that p(x) € K. Therefore, (3,x) C K. Now if
p(x) € K, then ¢(p(x)) = ap mod 3 and ¢(p(x)) =0 mod 3. Then gy € (3). But then
for some k € Z, p(x) = ag +ayx + axx? + -+ + a,x" = 3k +a1x +apx® + -+ -+ a,x" =
3k + x(a1 + axx + - - - + a,x"~1). But then p(x) € (3, x). Therefore, K = (3, x). By the First
Isomorphism Theorem, Z[x|/K = Z/3Z. However, Z/3Z is a field so that K must be
maximal.

OR

Using the Second Isomorphism Theorem

. Z[x)/(x)
3,2/ ()

But Z/3Z. is a field so that the ideal (3, x) must be maximal. O

Zx]/(3,x) >~ 7/37Z

7. Let R be a commutative ring with identity. Let I and | be ideals of R. Recall that I]
equals the ideal generated by {ij: i € I,j € J}.

(a) ProvethatI] C IN]

(b) Give an example where I] = I N ]J. Make the example nontrivial in the sense that
neither I nor | equals either O or R.

(c) Give an example where I] # IN].

Solution:

(a) Since I N ] is anideal, it is sufficient to show that I N | contains every element of the
form xy, where x € I, y € J. Since x € I and I is closed under multiplication by R,
xy € I. Mutatis mutandis, xy € J. Thus,xy € I N Jand IJ C I N J.

(b) Take R = Z,1 = 2Z,and | = 3Z. Then 2Z N 3Z = 6Z since a € 27Z N 37 if and
onlyif 2 | aand 3 | a so that 6 | a (as 6 = lem(2,3)). We claim (2Z)(3Z) = 6Z.
Since 6 = 2-3, 6 € (2Z)(3Z) implying 6Z C (2Z)(3Z). If a € (2Z)(3Z), then
a = (2j)(3k) = 6(jk) for some j, k € Z. But then a € 6Z. Therefore, 6Z = (2Z)(3Z)
and 2Z N 3Z = (2Z)(32).
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(©

Take R=27,1=27Z,and | =47Z. Then I N | = 4Z. We claim 4 ¢ I]. If 4 € I], then
4 = a1b1 + - - - + agby, where a; € 2Z and b; € 4Z. For each i, there exist m;, n; € Z
such that a; = 2m; and b; = 4n; so that a;b; = 8m;n; € 8Z. Hence, a1b1 + - - - + ayby =
4 € 8Z, a contradiction. Thus, 4 ¢ (2Z)(4Z), then 2Z N4Z # (2Z)(4Z).

O]

8. Let F be a field and F|[x] the ring of polynomials in one variable with coefficients in F.

(a)
(b)

(©)

Show that a module M over F[x] is also in a natural way a vector space over F.

Assume that F is algebraically closed and that M is a simple module over F[x|. Prove
that the dimension of M as a vector space over F is one.

Assume that F is not algebraically closed. Prove that there exists a simple module M
over F[x] such that the dimension of M as a vector space over F is greater than one.

Solution:

(a)

(b)

(©

Since M is an F[x]-module, there exists an action of F[x] on M. Note F C F[x]. The
restriction of the action of F[x]| to F gives a scalar multiplication of F on M, making M
into an F-vector space. Furthermore for any m,m’ € M,a € F,x- (m+m') = xm + xm’
and x - (am) = axm so x is a linear operator on the F-vector space M.

Let m € M be nonzero. Then F[x|m is a nonzero submodule of M. Since M is simple,
F[x]m = M. This implies that the function ¢ : F[x] — M given by ¢(f(x)) = f(x) -m
is a surjective F[x]-homomorphism. By the First Isomorphism Theorem, F[x]/ ker ¢ =
M. Since M is simple, the Lattice Isomorphism Theorem implies there are no F|x]-
submodules (ideals of F[x]) I such thatker ¢ C I C F[x]. Thus, ker ¢ is a maximal ideal
of F[x]. This implies that ker ¢ = (p(x)) for some irreducible p(x) € F[x]. Since F is
algebraically closed, p must have degree 1. Without loss of generality, assume that p
is monic so that p(x) = (x — «) for some a € F. Viewing F[x| as an F-vector space,
define T : F[x] — F via f(x) +— f(«). Then T is a surjective linear transformation with
kernel (x — «). By the First Isomorphism Theorem,

M = Flx]/ker¢ = F,
so M has dimension 1 as an F-vector space.

Since F is not algebraically closed, there exists an irreducible polynomial p(x) € F[x]
with degree greater than 1. Then the maximal ideal (p(x)) is a maximal submodule of
F[x], so the module M = F[x]/(p(x)) is a simple F[x]-module.

View M as an F-vector space. We claim the set {1,%} is linearly independent. Suppose
al+bx =0. Thena+ bx € (p(x)), so p(x) divides a + bx. Since deg p(x) > 1, this
implies that a + bx = 0soa = b = 0. Then dimp M > 2.
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O]

9. Let T be a linear operator on a finite dimensional vector space over the complex numbers.
Assume that T has two eigenvalues: 3, 4. Assume that the Jordan canonical form of a
matrix representing T has the following form. For the eigenvalue 3 there are 2 blocks of
size 1, 2 blocks of size 2, and 1 block of size 4. For the eigenvalue 4 there are 1 block of size
1, 3 blocks of size 3, and 1 block of size 5.

(a) What is the characteristic polynomial of T?
(b) What is the minimal polynomial of T?

(c) What is the nullity of (T — 3I)3? I is the identity linear transformation.

Solution:

(a) The elementary divisors of T are (x — 3), (x — 3), (x —3)%, (x — 3)?, (x — 3)%, (x —
4),(x —4)3,(x —4)3, (x —4)3,and (x — 4)°. The characteristic polynomial of T is the
product of the elementary divisors: c¢(x) = (x — 3)1%(x — 4)"%.

(b) The minimal polynomial is the product of the largest power of (x — 3) and the largest

power of (x — 4) that are elementary divisors, which is m(x) = (x — 30*(x — 4)°.

(c) Since there are 5 blocks corresponding to the eigenvalue 3, the nullity of (T — 3I) is
5. The quantity nullity (T — 31)2— nullity (T — 3I) is the number of Jordan blocks
corresponding to the eigenvalue 3 that have size at least 2. Since there are 3 such blocks,
it follows that nullity (T — 3I)? = 3+ 5 = 8. By a similar reasoning, nullity (T — 31)3—
nullity (T — 3I)? = nullity (T — 31)% — 8 = 1. Therefore, nullity (T — 31)3 = 9.

O]

10. Let F C K be an extension of fields of characteristic 0. Let G be the Galois group of K
over F. We do not assume that the field extension F C K is a Galois extension. Assume
that G is a finite group and that p is a prime number that divides the order of G. Prove that
there exists a field L with F C L C K satisfying all of the following properties.

(a) L C Kis a Galois field extension with Galois group isomorphic to Z/pZ.
(b) The degree of the field extension L C Kis p.

(c) There does not exist any field strictly between L and K.
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Solution: By Cauchy’s Theorem, G contains an element of order p and hence a subgroup
of order p. Let H C G be a subgroup of order p. Let F = Fix H be the subfield of K
that is fixed by H. Then Gal(K/L) = H and |Gal(K/L)| = [K: L] = p,soL C Kis
a Galois extension whose Galois group has order p. Hence, Gal(K/L) = Z/pZ. But
[K : L] = p so that (a) and (b) hold. Suppose there exist a field F’ such that L C F’ C K.
Thenp = [K: L] = [K: F/][F' : L], soeither [K : F'] = 1or [F': L] = 1. That is, either
K = F or L = F'. This proves (c). O
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August 2008

1

(@) The counterclockwise rotation about the origin through an angle &, where —c0 < a <
o0, is a linear operator on R?. Find the representation matrix of this linear operator
with respect to the standard basis {ej, e }.

1. Let R? be the Euclidean plane with the standard basis e; = [(ﬂ , 6 = [0} .

(b) The orthogonal reflection about a linear through the origin is a linear operator on
R2. Denote by L; the x-axis, and by L, the line obtained by rotating L; about the
origin through a counterclockwise angle 6, where 0 < 0 < /2. Denote by r; the
orthogonal reflection about L;, i = 1,2. Find the representation matrices of r1, 7, and
the composition r,r1 with respect to the standard basis {e1, >}

(c) Using part (a), prove that rpry is the counterclockwise rotation about the origin through
the angle 26.

Solution:

(a) Let R, denote the rotation about the origin through an angle a. Let B denote the
standard basis for R2. Then the matrix of R,, with respect to B, is

A =[[Ru(er)]s [Ra

cos(a + /2 ]]
)

where R,(e1) = [:ﬁﬂ and Ry (ep) = { Thus,

sin(a 4 71/2

_ [cosa cos(a+m/2)|  [cosa cosacos(mm/2) —sinasin(rt/2)|  [cosa —sina
~ |sina sin(a+7t/2)| |sina sinacos(7t/2)+sin(7r/2)cosa|  [sina  cosa

(b) The matrix of r; with respect to B is

[[ri(e)]s [ri(e2)]s ]

Note that e; is fixed by r1 and that r1(e;) = —ep. Therefore,

1 0
(nels Inelal=|g %]
The matrix of r, with respect to B is

~ [cos20 cos(60— (t/2—0))]  [cos20 cos(20— 1t/2)
[Ir2(en)]s [r2(e2)]s] = sin20  sin(6 — (77/2 — 9))] - Linze sin(260 — 7'[/2)]
[c0s20 cos 26 cos(7t/2) + sin20sin(7t/2)
|sin26 sin26 cos(7r/2) — cos 26 sin(7r/2)

_ [cos20  sin26
o |sin20 —cos20| "
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Now the matrix of the composition ror; is

[COSZQ sin 26 } [1 0]

cos20 sin?26
sin20 —cos26| |0 -1

sin20 — cos?20

(c) Let A denote the matrix of the counterclockwise rotation about the origin through
the angle 26 with respect to the standard basis. Let B denote the matrix of r,rq with
respect to the standard basis. By parts (a) and (b), A = B. Therefore, rpry is the
counterclockwise rotation about the origin through the angle 26.

O

2.
(a) Prove that the set of elements of finite order in an abelian group is a subgroup.

Denote by GL(IR?) the group of invertible linear operators on R2. In the rest of the
problem, use the notation and results of Problem 1, without necessarily solving that
problem.

(b) Determine the orders of r; and r, in GL(IR?).

(c) Prove that ror is of finite order if and only if the quotient 6/ 7 is a rational number.
Find the order of rprq if § = 7r/m where m > 2 is an integer.

(d) Explain that (a) will fail if one drops the assumption that the group is abelian.

Solution:

(a) Let G be an abelian group. The claim is that forany n € N and g,k € G, (gh)" = ¢"h".
For n = 1, thisis (gh)! = ¢h = ¢'h!. Suppose the claim is true for some given n. Then

<gh)n+1 = (gh)”(gh) — gnh”<gh) — gl’lghnh — gn+1hn+1
Therefore, the claim follows by induction.

Let H denote the set of elements of finite order in G. The set H is nonempty as 1 € H.
If g,h € H, then g, h have finite order, say n, m, respectively. Then (gh)"" = g""h"" =
(g")™(W™)" = 1™1" = 1. Therefore, gh € H. For g as stated, we also have (¢~ !)" =1
asl=(g¢ )" =¢"(g71)" = (¢ !)". Butthen ¢! € H and H is then a subgroup of
G.
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(b) Geometrically, each has order 2 since a vector in IR? that is reflected twice about the
same line will return to where it started. Alternatively, use the matrixes for r; and r; to

see that )
1 0 10
0 -1 |0 1

cos2 sin20 | [cos26 sin20 | cos?(26) + sin?(26) cos 20 sin 26 — sin 26 cos 26
sin20 —cos260| [sin20 —cos26|  |sin26 cos26 — cos 26 sin 260 sin?(26) + cos?(26)

“lo

(c) Suppose that rorq is of finite order. Note that for n € IN, (r2r1)" is a counterclockwise
rotation about the origin through angle 2n6. If (r,r1)" is the identity transformation,
then 2n6 = 27tm for some m € Z. Therefore, % =7TeqQ.

Therefore, |r1| = 2. Similarly,

Thus, |r2| = 2.

If £ €Q then £ = g for some p € Z, g € IN. This implies that pf = gm. For any
n € N, (rar1)" is a counterclockwise rotation about the origin through angle 2n6. This
implies that (rpr1)? is a counterclockwise rotation about the origin through the angle
2pf = 2mq. This implies that (r,r)? is the identity transformation. Hence r,r; has
finite order.

(d) Take G = GLy(R). Let § = 2. Let r1, 7, be as above. Then |r1| = |r2| = 2, but since
2

~ = m ¢ Q. Part (c) implies that |rpr1| = oo. Thus, the subset of elements of finite

order of G is not closed under multiplication.

O]

3. Let H and K be subgroups of a group G, and set HK = {hk: h € H,k € K}.
(a) Prove thatif HK C KH then KH is a subgroup of G.

(b) Prove that if KN H = {1} then the map p : K x H — G given by p(k,h) = kh is
injective and im p = KH.

(c) Let G be of order n = pm where p is a prime that does not divide m, let S be the
set of all Sylow p-subgroups of G, and let H € S. Then S is a left G-set by means of
goK=gKg lforallg € G, K € S,s0S is a left H-set by restriction. Using (a) and (b),
prove that exactly one orbit of the H-set S consists of a single element, and each of the
remaining orbits consists of p elements.

Solution:
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(a)

(b)

(©

The set KH is clearly nonempty (1 = 1-1 € KH). Let x,y € KH be arbitrary. Then
x = kh, y = K'I for some k, k' € K, h,i/ € H. Therefore, xy~! = hk(h'k')™! =
hk(K')~1(h')~'. Now hk(k')~' € HK C KH, so there exists i € H, k" € K such that
hk(k')~1 = k"h". Therefore, xy~! = k"h"(W')~! € KH. Therefore, KH is a subgroup of
G.

If x € KH, then x = kh for some k € K, h € H. Therefore, p(k, ) = kh = x. This shows
that KH C imp. Itis clear thatimp C KH, soimp = KH.

Suppose h,i' € H, k,k' € K and that p((h,k)) = p((h',k")). Then hk = KW'k, so
(W) 'h=Kk'e HNK,so (k") 'h = Kk~! = 1. Thus, h = I’ and k = k. Therefore,
p is injective.

Notice that this implies that |[KH| = |K x H| (this will play a role in part (c)).

ForK € S,let Hx = {x € H: xK = K} = {x € H: xKx~! = K}. It is clear that
Hpy = H. By the Orbit-Stabilizer Theorem, [H: Hy| = 1 = |Og|, where |Oy| denotes
the orbit of H in S. Now, suppose K # H. Since |H| = p, either Hx = {1} or Hx = H.
If Hx = H, then xKx~! = K for all x € H. This implies that xK = Kx for all x € H.
Therefore, HK = KH. By part (a), KH is a subgroup of G. By part (b),

[KH| = |K x H| = K| [H| = p?,

and p? does not divide |G| = pm since p does not divide m. This contradicts Lagrange’s
Theorem. Hence, Hx = {1}, and Orbit-Stabilizer Theorem,

|H|
Okl = [H: H] = 1 =
’ K’ [ K] ’HK’ p

Thus, exactly one orbit of S consists of a single element and each of the remaining
orbits of S consists of p elements.

O

4. Prove that a group of order 77 is cyclic.

Solution: Let G be a group of order 77 = 7 - 11. The divisors of 77 are 1,7, 11, and 77. For
p = 7,11, let n,(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
n7(G) =1 mod 7 and divides 77. Therefore, n;(G) = 1. Also, n11(G) =1 mod 11 and
divides 77, so n11(G) = 1. Let H denote the unique Sylow 7-subgroup and let | denote the
unique Sylow 11-subgroup.

Itis clear that G # HU] (since |G| = 77 and |H| = 7and |J| = 11),soletx € G\ (HU]J)

be arbitrary. The claim is that G = (x). If |[x| = 1, then x = 1 € HU ], contrary to the
assumption x ¢ HU J. If |x| = 7, then (x) is a subgroup of G or order 7. Since the Sylow
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7-subgroup of H is unique, this implies that H = (x). Thus, x € H, a contradiction.
Similarly, if |x| = 11, then x € ], a contradiction. Thus, |x| = 77, which proves the claim.
Thus, G is cyclic. ]

5. Let w be a vector of length 1 in the Euclidean space R” of n x 1 matrices.

(a) Prove that the matrix P = I,, — ww?

is orthogonal. Here I, is the n x n identity matrix,
and w? is the transpose of w.

(b) Prove that multiplication by P is a reflection about (w), the orthogonal complement
of the subspace spanned by w, that is, prove that if we write an arbitrary v € R" in the
form v = cw + w’ wherec € Rand w’ L w, then Pv = —cw + w'.

(c) Let X, Y be arbitrary vectors in IR” of the same length. Determine a vector w satisfying
PX =Y.

Solution:

(a) Observe that
Pt = 1T —2(ww")T = I, — 2(w™w") = I, — 2ww’ = P.

Therefore, P is symmetric. It is therefore sufficient to prove P? = I,,. This can be shown
directly:
P? = (I, — 2wwT)?
=12 - 2ww! — 2ww! + 4(ww’)?
=1, — dww! + dwwTww?.

Tw =1and

Since w is a unit vector, w
P2 =1, — dww! + dww’ = I,.
Thus, P is orthogonal.
(b) IF v = cw + w’ with ¢, w, w’ as above, then
Pv = P(cw +w') = cP(w) + P(w')

= (I, — 2ww")w + (I, — 2ww’ )’

= cw+w — 2cwww — 2www'.
Since w is a unit vector, w w = 1. Since w’ L w, wTw’ = 0 and
/ /
Po=cwo+w —2cw=—cw—+uw,

as required.
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(c) First suppose there exists a w € R" such that PX = Y. Then there are unique ¢, ¢’ €
R, w',w" € (w)* such that X = cw +w/, Y = w+ w”. Using part (b), PX =
—cw+w = cdw+w'. Soc = —cand w' = w”. Therefore, Y = —cw + w’ and
X-Y=(w+w)—(—cw+w') =2cw. Thus, X — Y € Span{w}. If X =Y, then take

w = 0. Otherwise, w € Span{X — Y} and w must be a unit vector. Take w = ﬁ

Now, it needs to be checked that if w = ﬁ, then PX = Y. Note that

X

_HX—YH(X—Y X+Y
a |

2 X Y] 2
Also,
<x—mxzy>zgx—mx+m
=5 (X X+ (X 1) = (X, ) = (¥, 7))
= A+ (X )~ (X)) 1)
=0

which shows that X € (w)'. Finally,

PX =

ym—yu<y—x> XY _Y=X_ X+Y _,

2 X —Y| 2~ 2 T

as desired.

6.

(a) Let R be a commutative ring with S a subring of R which contains the identity. If P is a
prime ideal of R, show that PN S is a prime ideal of S.

(b) Let Z[x] be the ring of polynomials in one variable with coefficients in the integers.
Assume P is a prime ideal of Z[x]. Show that P is generated as an ideal by at most two
elements.

Solution:

(a) The set PN S is certainly nonempty —0 € PN S. If x,y € PN S, then x +y € P since
P is closed under addition and x +y € S since S is closed under addition. Hence,
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(b)

x+y € PNSand PN Sis closed under addition. Suppose x € PN S and s € S. Since
x,y € S,sx € S. Since P is anideal of R, xs € P. This shows that xs € PNS,so PN Sis
an ideal of S. Also, PN S is a proper ideal of S since1 € Sbut1 ¢ PN S.

Ifa,b € Sand ab € PN S, then ab € P. Since P is a prime ideal of R, either a € P or
beP. Ifaec P,thenae PNS.Ifb € P,thenb € PNS. Hence, eithera € PN S or
b € PN S. This prove that PN S is prime ideal of S.

Note that Z C Z|[x] is a subring that contains the identity. By part (a), PN Z is a prime
dieal of Z, so PN Z = pZ for some prime integer p. Define

¢: Z[x] — (Z/pZ)[«]
q(x) = q(x),

where 7(x) is the polynomial in (Z/pZ)[x] given by reducing the coefficients of g
mod p. Since ¢ is surjective, ¢(P) is an ideal of (Z/pZ)|x]. Since (Z/pZ)[x] is a PID,
¢(P) = (f(x)) for some f(x) € (Z/pZ)[x]. Choose f € P such that ¢(f) = f. The
claim is that P = (p, f(x)).

It is clear that (p, f(x)) C P. If g(x) € P, then g(x) = ¢(g(x)) € ¢(P), so there exists

h(x) € (Z/pZ)|x]. In other words, g(x) — f(x)h(x) = pq(x) for some q(x) € Z]x].

'll;his (imj}ztie)s)that g(x) = f(x)h(x) 4+ pg(x) € (p,f(x)). Thus, P C (p,f(x)) and
= (p, f(x)).

In the case that P N Z = 0, the problem remains unsolved.

7. Let R be an integral domain.

(a)

(b)

Let p be a prime ideal of R. Must p be irreducible? Give either a proof or a counterex-
ample.

Let x be an irreducible element of R. Must x be prime? Give either a proof of a coun-
terexample.

Solution:

(a)

The answer is in the affirmative. Suppose p = ab for some a,b € R. Then p divides ab
or so either p divides a or p divides b. Without loss of generality, suppose p divides a.
Then a = pr for some r € R. This implies that p = prb. Cancel a p from both sides to
see that 1 = rb, so that b is a unit. This implies that p is irreducible.
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(b) The answer is in the negative. For a counterexample, consider R = Z[/—5]. There is
norm N on R defined by N(a + b\/—5) = (a + by/=5)(a — b\/=5) = a? + 5b>. Note
that for any x,y € R, N(xy) = N(x)N(y). Observe that

6=2-3=(14++v-5)(1—+-5)

The claim is that 2 is an irreducible element of R which is not prime. If 2 = ab for
some a,b € R, then 4 = N(2) = N(a)N(b). If N(a) = 2, for some a = x + y/—5,
then x2 + 5y2 =2,s0y = 0and x2 = 2, a contradiction since x is rational. Mutatis
mutandis, N(b) # 2. Therefore, either N(a) = 1 or N(b) = 1. If N(a) = 1, with a as
before, then N(a) = x2 + 5y = 1 so that y = 0 and x = +1. But then 2 = +1 is a unit.
Mutatis mutandis, if N(b) = 1, then b is a unit. Therefore, either a4 or b is a unit and 2
is irreducible.

Note that 2 divides (1 + +/=5)(1 — v/=5). If 2 divides 1 + /=5, then 1 + /=5 = 2a
for some a € R. But then 6 = N(1 ++1/—5) = N(2)N(a) = 4N(a), a contradiction as
4 16. Thus, 2 does not divide 1 + v/ —5or 1 — v/—5 despite the fact that 2 divides the
product. Hence, 2 is not prime in Z[/—5].

Note: If R were assumed to be a UFD, then the answer is yes. So when looking for
counterexamples, one need search for integral domains which are not UFDs (hence,
not fields, Euclidean domains or PIDs).

O

8. Let A be a matrix with characteristic polynomial (x — 2)®(x — 3)2. Assume A — 1213
has rank 5, while (A — 2I3)? has rank 3. What are the possible Jordan canonical forms for A?

Solution: Note that A is an 8 x 8 matrix since its characteristic polynomial has degree 8.
By the Rank-Nullity Theorem,

nullity(A — 2Ig) = 8 —rank(A —2I3) =8—-5=3
nullity ((A — 2I3)?) = 8 — rank[(A — 2[3)*] =8 -3 =5

Since nullity (A — 2Ig) = 3, there are 3 Jordan blocks corresponding to the eigenvalue 2 in
the Jordan canonical form of A. Since

nullity[(A — 2I3)?] — nullity(A — 2[g) =5 — 3 =2

there are two Jordan blocks corresponding to the eigenvalue 2 which have size at least 2.
This means that there is one Jordan block of size 1. Since the multiplicity of the eigenvalue
2 is 6. This means that there is one Jordan block of size 3 and one Jordan block of size 2.
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For the eigenvalue 3, there are two possibilities: either there are two Jordan blocks of
size 1 or one Jordan block of size 2. This means that there are two possible Jordan canonical
forms for A, up to permutation of the Jordan blocks, given below:

or

O OO OO NOO
OO O R NOOO
S OO NOO OO
OO NODODOC OO
OO OO OO NOO
QOO R, NOOO
SO NODODOC OO
—_ WO oo o oo

S OO OO RPN
SO O OO~ NO
S OO NOO OO
WO O OO o oo

SO OO RPN
OO OO OO~ NO
O WO OO OO
WO OO OO oo

O]

9. Let a be a positive rational number that is not a square in Q. Prove that y/a has degree 4
over Q.

Solution: Note that v/a is a root of the polynomial
m(x) :=x*—a=(x— Va)(x+ Va)(x —iva)(x +iVa)

The claim is that m(x) is irreducible over Q. It is clear that m(x) contains no rational
roots. [For instance, by the Rational Roots Theorem, the only possible roots are +1, +2, +4
— none of which are a root of m(x).] It remains to show that m(x) cannot be factored
into products of irreducible quadratic polynomials over Q. If such a factorization exists,
then the quadratic polynomials must have the same irreducible factors in C|x] as m(x)
(since C[x] is a UFD). If (x — v/a)(x + v/a) € Q[x], then \/a = /ay/a € Q, contrary to the
assumption that a is not a square in Q. Any possible quadratic factor for m(x) in Q[x] can
be a product of either x — iv/a, x + iv/a with either of x — /4, x + {/a as then the product
will not be in Q[x]. Finally, (x — i/a)(x +i¥/a) = x*> + \/a. However, \/a is not rational
since a is not a square in Q. Thus, m(x) is irreducible over Q and m(x) is the minimal
polynomial of v/a. Hence, +/a has degree 4 over Q. O

10. Let K = Q(+/2,1/3,1/5). Determine the degree of the extension [K : Q], prove that K is
a Galois extension of Q, and determine its Galois group.

Solution: Observe that K is the splitting field of the separable polynomial p(x) = (x? —
2)(x% —3)(x? —5) over Q, so K is a Galois extension of Q. For any o € Gal(K/Q), ¢ is com-
pletely determined by o(1/2), o(+/3), and ¢(+/5). Since o permutes the roots of x> — 2, there
are two possibilities for o(v/2): ¢(v/2) = V2 or 0(v/2) = —/2. Similarly, ¢(v/3) = £v/3
and 0(v/5) = +v/5. Hence, there are eight elements of Gal(K/Q). Let ;x denote the
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element of Gal(K/Q) sending /2 to (—1)'v/2, v/3 to (—1)/v/3, and /5 to (—1)¥\/5 for
i,j,k € {0,1}. Itis clear that 0;,jx commutes with ¢y » i for all i, j, k, i',j’, k" € {0,1}. More-
over, each of these elements has order 2 (except 0y 00 which has order 1) and are distinct
from every other element. By the Fundamental Theorem of Finitely Generated Abelian
Groups, we have Gal(K/Q) = Z /27 x Z/27Z x Z./27Z. Since K/Q is a Galois extension,

[K:Q] = |Gal(K/Q)| = 8. O
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January 2009
1. Let G be a group of order 132 = 22 - 3 - 11. prove that G is not simple.

Solution: Note that the divisors of 132 are 1,2, 3,4, 6,11, 12, 22,33, 44, 66, and 132. For any
prime p, let n,(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
1n,(G) divides |G| = 132 and n,(G) =1 mod p. Therefore, the only possibilities are:

m(G) € {1,3,11,33)
Tl3(G) € {1,4}
nn(G) € {1, 12}

If n,(G) = 1for p € {2,3,11}, then the Sylow p-subgroup is unique and therefore normal.
But then G is not simple.

Suppose then that 1,(G) > 1. Then it must be that 7111 (G) = 12. Since the intersection
of any two Sylow 11-subgroups is the identity. Then there are 12(11 — 1) = 12(10) =
120 distinct non-identity elements of G in these two distinct subgroups. Similarly since
n3(G) = 4, the 4 Sylow 3-subgroups contain 4(3 — 1) = 4(2) = 8 distinct non-identity
elements. Together, these account for 128 distinct elements of G.

Now, let S;, Sp, and S3 denote three distinct Sylow 2-subgroups of G. Notice it is
possible to have |S; N S3| = 2. Observe that for i # j, |S; N S;| < 2. The Inclusion-Exclusion
Principle implies that

|S1US, USs| = |S1]| + [S2| + [S3] — |S1 N Sa| — |S1 N S3] —|S2 N S3] +|S1 N S2 N S3
>44+444-2-2-241=7
Therefore, there are at least 128 + 7 = 135 distinct elements of G, a contradiction. Therefore,

one of n2(G), n3(G), or n11(G) is 1, implying that G is not simple. O

2. Let H and K be normal subgroups of a group G, and assume that G = HK. Prove that
there is an isomorphism
G(HNK) = G/H xG/K

(Formal manipulations with isomorphism theorems will not be enough; you’ll need to

explicitly define a map.)

Solution: Define ¢ : G — G/H x G/Kby g — (gH, gK). The map ¢ is a homomorphism
since forall g,¢' € G

¢(g8") = (38'H,3¢'K) = (¢Hg'H,gKg'K) = (gH,gK) - (§'H, g'K) = $(g)¢(g")-

To see that ¢ is surjective, suppose (§H, ¢'K) € G/H x G/K. Since G = HK, g = hik; for
some hy € H, ki € K. Thisimplies that ¢ = (hikih™1)hy = kohy fork, = hlklhl_l € K (since
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K is normal in G). Therefore, gH = kohiH = koH. Also, §' = hyks for some hy € H, k3 € K,
s0 §'K = hpk3K = hyK. Define " = hoky = ko(k; 'hako) = kahs for hy = k; 'haky € H
(since H is normal in G). Then ¢(g") = (kahsH, hok2K) = (koH, oK) = (¢H, ¢'K) so that
¢ is surjective.

Now g € ker¢ if and only if (¢H,gK) = (H,K) ifand only if ¢ € Hand g € K, i.e.
g € HN K. Thus, ker ¢ = H N K. By the First Isomorphism Theorem,

G/(HNK)=G/H x G/K.

3. Let A be a complex square matrix of size n.
(a) Define what it means for A to be Hermitian.

(b) If XAX* has real entries for every X € C", prove that A is Hermitian.

Solution:
(@) Aisahermitian matrix is a matrix which is its own conjugate transpose, i.e. if a;; = aj;.

(b) Let B = {e1,...,e,} denote the standard basis for C" and A* denote the conjugate
transpose of A. Let A = (a;;). Then e;Aej = aj; is real so that a;; = a;;. For i # j, take
X = e;+ej. Then XAX" is real, so

(ei +ej)Alei +e)" = ejAej +ejAej +ejAej + ejAe;

is a real number. By assumption, ¢;Ae; and ejAe; are both real. This implies that
eiAe}“ + ejAe; is real. Now eiAe]’f +ejAe; = a;; + aj; has imaginary part zero. Therefore,
Im(a;;) = —Im(aj;), where for z € C, Im z is the imaginary part of z.

Now for i # j, take X = ie; + ej. By hypothesis, X AX* is real. Therefore,
(iej +ej) Alie; +e;)" = ie;A(—i)(ef ) +ie;Aej +e;A(—i)(e]) +ejAe;
= e;Aej +ejAej +i(ejAej — ejAe;)
=a;+ ajj =+ i((ll‘j — (Zﬁ)
Since XAX*, a;; and a;; are real, i(a;; — aj;) must be real. Therefore, Re(a;;) = Re(a;;).

For each i # j, it has been shown that Re(a;;) = Re(aj;) and that Im(a;;) = Im(aj;).
This implies that a;; = @;;. Since this is true when i = j, this implies that A = A*.

O]
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4. Let F be a field and V a vector space over F, not necessarily of finite dimension. Let S
and T be subsets of V such that S is linearly independent and T spans V. Prove that V has
abasis BwithS C N C SUT.

Solution: Consider the set
Z={I:SCICSUTand Iislinearly independent}.

Note that Z is nonempty since S € Z. Also, 1 is a partially ordered set under the inclusion
relation. Let C be a chain in Z. The claim is that C has an upper bound in Z. To prove this
consider the set

I=JcC

ceC
It is clear that C C [ forall C € C. Itis also clear that S C I C SUT. Thus, to prove the
claim, it suffices to show that I is a linearly independent set. Let x1, x2,...,x, € I and let

aixy+axxy+ - +apx, =0

be a relation of linear dependence among the x;. Notice that each x; € C; for some C; € C.
Let C = max{C;: i =1,2,...,n}. Then x; € C for all i and the above is a relation of linear
dependence among elements of C. Since C is linearly independent, a; = a, = --- =4, = 0.
Thus, I is linearly independent and I € Z. Thus, the chain C has an upper bound in Z, as
claimed. By Zorn’s Lemma, there exists a maximal element B € 7.

The claim is that B is a basis for V. Since B € Z, B is a linearly independent subset of
V. Notice that if T C Span B, then Span B = V since T spans V. If the claim is false, there
exists v € T such that v ¢ Span B. Then B U {v} is linearly independent, contradicting the
maximality of B. Thus, B is a basis for V. SinceB€ Z,S C BC SUT. O

5. A linear operator T : V — V, with V a finite-dimensional vector space, is called nilpotent
if some power of T is zero.

(a) Prove that T is nilpotent if and only if its characteristic polynomial is p(t) = t* for
some k.

(b) Prove that if T is nilpotent then T4™V = 0.

Solution:

(a) Assume that T is nilpotent. Then there exists a n € IN such that T" = 0. Let m(t)
denote the minimal polynomial of T. Then m(t) divides t". This implies that m(t) = t/
for some j < n. Every irreducible factor of the characteristic polynomial is a factor of
the minimal polynomial, which implies that p(t) = t* for some k.

If p(t) = tX, then m(t) = ¢/ for some j < k. Therefore, 0 = m(T) = TJ. Thus, T is
nilpotent, as required.
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(b) By part (a), m(t) = t/ for some j < dim V. This implies that T/ = 0, so T' = 0 for all
| >j.Since dim V > j, T4mV = 0.

O

6. Let R be an integral domain and let a and b be nonzero elements of R. Recall that we
say an element c of R is a least common multiple of a and b if and only if ¢ satisfies the
following two conditions

(@ a|candb |c
(b) For any nonzerod € Rifa|dandb |dthenc |d.

Prove that if R is a Principal Ideal Domain and a and b are nonzero elements of R then a
least common multiple of a and b exists. (The problem does not require facts about UFDs.
If you use any, you should prove them.)

Solution: Since R is a PID and (a) N (b) is an ideal, there exists ¢ € R such that (¢) =
(a) N (b). The claim is that c is a least common multiple of @ and b. Since ¢ € (a), a divides

c. Similarly, b divides c. Now suppose d € R is nonzero and thata | d and b | d. Then
d € (a)N(b) = (c). Therefore, ¢ | d, as needed. O

7. Let A be a 10 x 10 matrix over the complex numbers, and let I be the 10 x 10 identity
matrix. Assume the characteristic values of A are 2 and 2i. Assume further that (A — 2I)
has nullity 3, (A — 2I)? has nullity 5, (A — 2I)? has nullity 6, (A — 2iI) has nullity 2, and
(A — 2iI)? has nullity 4.

(a) Find the Jordan canonical form of A.
(b) Find the characteristic polynomial of A.

(c) Find the minimal polynomial of A.

Solution:

(a) Since (A — 2I) has nullity 3, there are 3 Jordan blocks associated to the eigenvalue 2.
Since
nullity[(A — 21)°] — nullity[(A —21))] =6 -5=1,

the eigenvalue 2 has one Jordan block of at least size 3. Since
nullity[(A — 2I)?] — nullity (A — 2I) =5 -3 = 2,

the eigenvalue 2 has two Jordan blocks of size at least 2, so exactly one Jordan block of
size 2. Therefore, the remaining Jordan block has size 1.
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Now consider the eigenvalue 2i. Since (A — 2iI) has nullity 2, there are 2 Jordan blocks
associated to the eigenvalue 2i. Since

nullity[(A — 2iI)?] — nullity(A — 2i[) =4 -2 =2,
there are two Jordan blocks of size at least 2 for the eigenvalue 2i. Now since
3+2+1+2+2=10,

this means that the Jordan block associated to the eigenvalue 2 that has size at least
31is a 3 x 3 Jordan block. It also means that each of the Jordan blocks associated to 2i
has size exactly 2. Thus, the Jordan canonical form is, up to permutation of the Jordan
blocks,

2 0 0 0 0 0 0 0 0 07
1200000 0 0 O
01200000 0O
000200000 O
000120500 0 O
0000O0O20 0 0 O
000O0O0OO0O2 0 0 O
000O0O0OO0OT12 0 O
000O0O0OO0OOTO0OZ2 O

0 00000 0 0 1 2]

(b) The elementary divisors of A are (x —2)3, (x —2)2, (x —2), (x — 2i)?, and (x — 2i).
Since the characteristic polynomial is the product of the elementary divisors, it follows
that

c(x) = (x —2)%(x —2)%(x — 2) (x — 20)%(x — 2i)% = (x — 2)%(x — 2i)*

(c) The minimal polynomial is the product of the largest power of (x — 2) and the largest
power of (x — 2i) in the elementary divisors, which is m(x) = (x — 2)3(x — 2i)2.

O

8. Consider the following group

c= 2 2
T 120Z " 50Z

(a) Express G as a direct sum of groups of the form Z /p*Z for (not necessarily distinct)
prime integers p and positive integers k.
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(b) Express G in the form
G

I
D-
3

N

where m; divides m; 1 for each i < u.

Solution:
(a) Note that 120 =23-3 5. By the Chinese Remainder Theorem,
Z7/120Z = Z/8Z x Z./3Z x Z./5Z.
Also, 50 = 2 - 52. By the Chinese Remainder Theorem,
Z/50Z = Z/27Z x Z/257Z.
Thus,
GXZ/2ZXZ/2PZ xZ/3ZxZ/5Z xZ/25Z
=Z/2202/PZHZ/3ZGZ/5ZSZ/25Z.
(b) Using the Chinese Remainder Theorem, write

7./2°7 x 7./37. x Z.]5*Z. = 7./ 600Z.

Similarly,
Z/27Z x Z./]57Z = Z./10Z.
Therefore,
G=2Z/10Z @ Z/600Z,
and 10 | 600.

O]

9. Find the minimal polynomial for v/2 4 /3 over Q. Make sure you prove that it is the
minimal polynomial, not just some polynomial of which it is a root.

Solution: Let & = /2 + /3. Observe

oc:\ﬁ—i—\/g
o =5+2v2V3
(a* —5)* = 4(2)(3)
at —10a% +25 =24
at—10a24+1=0
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Then «a is a root of the polynomial m(x) = x* — 10x? + 1. It remains to show that m(x)
is the minimal polynomial of « by showing that m(x) is irreducible over Q. By Gauss’
Lemma, it is sufficient to show that m(x) is irreducible over Z.

By the Rational Roots Theorem, the only possible roots of m(x) are 1, neither of
which are roots of m(x). Therefore, m(x) has no linear factors. Suppose m(x) can be
written as a product of two irreducible quadratic polynomials. Without loss of gen-
erality, assume these factors are monic. Write m(x) = (x> +ax +b)(x* +cx +d) =
x*+ (a+c)x® + (b+d+ ac)x® + (bc + ad)x + bd for some a,b,c,d € Z. Comparing
the constant terms, bd = 1, so either b = d = 1 orb = d = —1. Comparing the x3
terms of the two polynomials, a + ¢ = 0, so a = —c. Now comparing the x> terms:
b+d+ac=2b—a%>= —10.If b = 1, then a® = 10, a contradiction since a € Z and 10 is
not a perfect square in Z. If b = —1, then a> = 8, again a contradiction. Therefore, m(x)
cannot be written as a product of quadratic polynomials, implying that m(x) is irreducible.
Hence, m(x) is the minimal polynomial of V2 + /3 over Q. O

Note: If p(x) is monic and p(x) = (ax? + bx + ¢)(rx?> + sx + t), then ar = 1. So p(x) =
(ax? 4+ bx +c)(rx®> + sx + t) = (ar)(ax?® + bx +¢)(rx® + sx + t) = r(ax®> + bx + ¢)(a(rx® +
sx +t) = (rax® + rbx + rc)(arx® + asx + at) = (x2 + rbx + rc) (x* + asx + at), so you may
assume that the factors are also monic.

10. Let F C K C L be field extensions. Assume that F C L is a Galois field extension and
that its Galois group is abelian. Be sure to give reasons for your answers to (a) and (b).

(a) Is K C L a Galois field extension?

(b) Is F C K a Galois field extension?

Solution:

(a) Since F C L is a Galois extension, L is the splitting field of a separable polynomial
f(x) € F[x] over F. Since F[x] C K][x], L is also the splitting field of a separable
polynomial over K. Thus, K C L is a Galois field extension.

(b) By the Fundamental Theorem of Galois Theory, F C K is a Galois extension if and only
if the subgroup of Gal(L/F) that fixes K is normal. Since Gal(L/F) is abelian, every
subgroup of Gal(L/F) is normal, so F C K is a Galois field extension.

O]
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August 2009

1. Let V be a real vector space with subspaces A, B and X and with A C B. Prove that if
A+X=B+Xand ANX =BNX,then A = B.

Solution: Letb € B.If b € X, thenb € BN X = AN X C A, as required. Otherwise, b ¢ X
butb € B+ X = A + X. Therefore, there exista € A, x € X such that b = a + x. Since
x = b—aand B is a vector space, x € B. But then x € BN X = AN X. Therefore, x € A
and b = a + x € A since A is a vector space. Thus, B C Aand A = B. O

2.

(a) Let G be a finite abelian and let p be a prime number that divides the order of G.
Without using the Fundamental Theorem of Finite Abelian Groups, prove that G
contains an element of order p.

(b) LetG ={1=¢1,92,...,8n} be a finite abelian group. If 14 - - - g # 1, prove that the
order of G must be even.

Solution:

(a) We prove this by induction on |G|. If |G| = p, then G is cyclic of order p (essentially
by Lagrange’s Theorem), so any generator of G has order p. Suppose p | n, let G be a
group of order n, and suppose the conclusion holds for all groups of order m < n such
that p | m. Let x € G. If p divides |x|, then |x| = pk for some k € IN, and it is clear that
xF has order p.

Suppose p does not divide |x|. Let N = (x). Since G is abelian, N is normal in G. Note

that N is proper since p does not divide |N|. Now |G/N| = %, SO

|G| = N[ -|G/N.

Since p is prime and p divides |N| - |G/N|, either p divides |N| or p divides |G/N].
But p does not divide |N|, so p divides |G/N|. By the inductive hypothesis, G/N
contains an element of order p. Let yN be an element of G/N of order p. Then
(yN)? = y?N = N, which implies that y» € N. However, y ¢ N since p > 1.
This implies that (y#) C (y) since the former is contained in N and the latter is not.

Therefore, |y?| < [yl Since [y7| = e < |yl, ged(p, lyl) > 1, s0 ged(p, ly]) = p.

Thus, p divides |y|. But then G has an element of order p.

OR
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Let #G denote the order of G. If #G = p, then any non-identity element has order p as
p is prime. So assume n > p, p | n, and the result is true for all groups with size less
than n and divisible by p. Since p | n and n > p, #G is not prime. Then G has a proper
non-trivial subgroup, say G. Since G is abelian, H is normal and G/ H is a group. Now

#H - #(G/H) = #G = n,

either p divides #H or #(G/H). By induction, H or G/H has an element of order p.
If H does, so too does G. Now suppose G/H has an element of order p, say g. Let m
denote the order of ¢ in G. Then ¢" = 1in G so that g" = 1in G/H. But then p | m.
Thus, g has order divisible by p so that g"/7 is an element of G with order p.

(b) Suppose that the order of G is odd. Then 2 { |G|, implying that G has no element
of order 2. Therefore, if ¢ # 1, then ¢ # ¢~!. Reindex the elements of G as fol-
lows: ¢1 = 1 and for each even k, gx11 = g 1. Therefore, 818283 " §n—-18n =

1(8283)(8485) - - - (gn-18n) = 1.
O

Note: One need only consider the primes dividing |G| since Lagrange’s Theorem forces G
to contain no elements of prime order not dividing |G|.

3. Prove that no group of order 48 is simple.

Solution: Let G be a group of order 48 = 23.3. The divisors of 48 are 1, 2, 3, 4, 6, 8, 12,
16, 24, and 48. For each prime p, let n,(G) denote the number of Sylow p-subgroups of G.
By Sylow’s Theorem, n5(G) =1 mod 2 and 1, (G) divides 48. The only possibilities are
n2(G) = 1and np(G) = 3. If n2(G) = 1, then G has a unique Sylow 2-subgroup, which is
necessarily normal. In this case, G has a proper, nontrivial, normal subgroup, implying
that G is not simple.

Otherwise, 11,(G) = 3. In this case, let X denote the set of Sylow 2-subgroups and let
G act on X by conjugation, i.e. ¢-S = ¢gS¢~! forall g € G,S € X. Since any two Sylow
2-subgroups are conjugate in G, this action must be nontrivial. Therefore, the action of G
on X induces a nontrivial homomorphism ¢ : G — S3. Since |G| = 48 and |S3| = 3! = 6,
this homomorphism cannot be injective. Therefore, ker ¢ is a proper, nontrivial, normal
subgroup of G. Thus, G is not simple. O

4.

(a) Let E be an Euclidean space—that is, a finite dimensional vector space over R, the
real numbers, with a positive definite, symmetric, inner product denoted by ( , ).
Let E* = Homg(E, R) be the dual space. Prove that the map ¢ : E — E*, given by
¢(v) = py, where p,(w) = (w,v) for all v, w € E, is an isomorphism.
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(b) Let E be the Euclidean space consisting of all polynomials in one variable with real
coefficients of degree less than or equal to 2 with inner product given by (f,g) =
fol f(t)g(t) dt. Let a be the element of E* given by a(f) = f(1). In the notation of part
(a), find the v € E such that ¢(v) = a.

Solution:

(@) Letv, v € V,a € |R. Observe pyy(w) = (w,v+7") = (w,0) + (w,v") = pp(w
py (w) forall w € V. Thus, py vy = po + . This proves that ¢(v + v') = ¢(v) + ¢(v').
For any w €, pg(w) = (w,av) = a(w,v) = ap,(w). Therefore, ¢(av) = ap(v). But
then ¢ is a linear transformation.

)+
V')

Suppose v € ker¢. Then p,(w) = 0 for all w € V. In particular, p,(v) = (v,v) = 0.
Since the form is positive definite, v = 0. But then ker ¢ = 0 so ¢ is injective.

Note that E has a orthonormal basis {ej,ea,...,e,}. If f € E*, let ¢; = f(e;) for
i=1,2,...,n. Definev = cie; + - - - 4+ cpe,. Then for any w = ajeq + - - - +aue, € E,
(w,v) = (a1eq + -~ + axeqn, cre1 + - - - + cney)
= aici(er, e1) + -+ -+ ancn(en en)
=aif(er) +- - +anf(en)
= f(are1 + - -+ aney)
= f(w).

Therefore, p, = f, which implies that ¢ is surjective. Therefore, ¢ is an isomorphism.

(b) The goalis to find a v € V such that p,(w) = (w,v) = w(1) forallw € E. Takew =1,
w = x, w" = x*. Write v = ag + a1x + ax?. Since w(1) = w'(1) = @"(1) = 1, it
follows that

1

1
0—a0+§a1+§a2

1

1 1 1
1= (w,0) = /0 (ap + a1x + ax®) dx = (aox + §a1x2 + 3a2x3)

1
. = an—i—gﬂl—i—iﬂz

1

1 1 1 1
1= (w,v) = / (apx + a1x* + apx®) dx = <2a0x2 + galx?’ + 4a2x4>
0

1 1 1 1 1
1= (w",0) = /0 (agx® 4 a1x° + apx*) dx = <3a0x3 + Ealx4 + 5a2x5> ) = 30 + & + e

This leads to a system of three equations in three unknowns which can be solved:

1 1
fl0+§fl1+fa2=1

3
1a—f—}a—i—la—l
S0 T g T i =
1a—f—}a—i—la—l
R e
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The solution to this is a9 = 3, a1 = —24, a, = 30. Hence, v = 3 — 24x + 30x2.

O]

5. Let S, denote the symmetric group on n letters with A, the alternating subgroup. Let
a € Ay. Cs,(a) denotes the centralized in S, of a. Similarly, C4, («) denotes the centralizer
in A, of a.

(a) Prove that [A, : Cy,(a)] is equal to either [S, : Cs,(a)] or 3[S, : Cs,(a)]. (Hint:
Consider the natural homomorphism from S, to S,/ A,.)

(b) Prove that if « is centralized by some permutation not in A, then the conjugacy class
of x in A, is equal to the conjugacy class of a in S,,.

Solution:

(a) Consider the homomorphisms

Ca, (&) = Cs, () 25 S, %5 {21},

where i and ¢ are the identity functions and ¢ is the sign map. There are two cases: ei-
therim(co¢) = {1} orim(co¢) = {£1}. Ifim(c o ¢) = {1}, then every permutation
that centralizes @ must be even. Therefore, C4, () = Cs,(«). This implies that

[Sn: Cs, (a)] = [Sn: An] [An: Ca, (a)] =2[An: Ca, (a)].

Thus, [An: Ca, ()] = 3[Su: Cs, ().

Otherwise, im(c o ¢) = {£1}. Note that ker(c o ¢) = Cx, («). By the First Isomor-
phism Theorem,
Cs, (a)/Ca,(0) = {£1}.

In particular, [Cs, («): Cx,(a)] = 2. Therefore,

_ 1Gs, ()] _ 1S4l

2= .
Ca, (@) |Au]

which implies that

S ARV NP
S Gl =g W] T Teaay] — A Ca

as required.
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(b) Note that if S,, acts on itself by conjugation, then the stabilizer of « is Cg, («). If A,
is acting on S, by conjugation, then the stabilizer of a is C4, (a). Let Oy4,(a) and
Os, (a) denote the orbit of « in the action of A, on S, and the action of S, on itself,
respectively. If a is centralized by some permutation not in A, thenim(c o ¢) # {£1},
soim(co¢) = {£1}. Inthis case, [S,: Cs, («)] = [An: Ca,(«)]. By the Orbit-Stabilizer
Theorem,

04, (@)] = [A: Ca,(@)] = [Su: Cs, ()] = |Os, (®)].

Since Oy, () C Og,(a) and both sets are finite. It follows that Oy4, (¢) = Os, (a).
Hence, the conjugacy class of « in A, is equal to the conjugacy class of a in S,,.

O]

(a) Let A be an n-by-n matrix over the complex numbers, A a complex number, and k a
nonnegative integer. Explain the significance of rank[(A — AL, )f*1] — rank[(A — AL,)¥]
in the Jordan canonical form of A.

(b) Let A and B be n-by-n matrices over the complex numbers such that for every complex
number A and every positive integer k, rank[(A — AI,)¥] = rank[(B — AL,)¥]. Prove
that A and B are similar.

Solution:
(a) Using the Rank-Nullity Theorem,

rank[(A — AL — rank[(A — AL)"] = (n — nullity[(A — AL)**1]) — (n — nullity[(A — AL)Y])
= nullity[(A — AL,)*] — nullity[(A — AL,

Therefore, | rank[(A — AL,)¥1] — rank[(A — AI,)¥] | is the number of Jordan blocks in
the Jordan canonical form with eigenvalue A and size at least k + 1.

(b) By the Rank-Nullity Theorem, it is clear that nullity[(A — AL,)*] = nullity[(B — AI,,)¥]
forall A € C, k € IN. The claim is that A and B have the same Jordan canonical form.
Let A € C. Since nullity(A — Al,) = nullity(B — Al,), A and B have the same number
of Jordan blocks associated to the number A. Since

nullity[(A — AL,)?] — nullity(A — AL,) = nullity[(B — AL,)?] — nullity(B — AL,),

A and B have the same number of Jordan blocks associated to the number A of size
at least 2. Therefore, A and B have the same number of Jordan blocks associated to
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the number A of size 1. Assume that A and B have the same number of Jordan blocks
associated to the number A of size 1,2, ..., and k. Since

nullity[(A — AL)**?] — nullity[(A — AL)**!] = nullity[(B — AL,)**2] — nullity[(B — AL,)**1],

A and B have the same number of Jordan blocks of size at least k + 2 and since they
have the same number of blocks of size at most k, they must have the same number
of Jordan blocks of size k + 1. By induction on k, A and B have the same number of
Jordan blocks of size k for all k € IN associated to each complex number A. Therefore,
A and B have the same Jordan canonical form, which implies that A and B are similar.

O

7. Leta = /7 + 2.

(a) Find the minimal polynomial of & over Q, the field of rational numbers.

(b) Find the Galois group of the field extension Q C Q(«). (Hint: First prove that
Q(x) = Q(V7,v2))

Solution:

(a) Observe that

a=V7+V2
o® =9+2V2V7
(a® —9) = 4(2)(7)
at —18a% 481 = 56
at — 184> +25=0

Therefore, a is a root of m(x) = x* — 18x? + 25. It remains to show that m(x) is
irreducible over Q. By Gauss’ Lemma, it is sufficient to show that m(x) is irreducible
over Z. By the Rational Roots Theorem, the only possible rational roots of m(x) are
+1, 45, £25, none of which are zeros for m(x). Therefore, m(x) has no factors of
degree 1. It remains to show that m(x) cannot be factored into a product of irreducible
quadratic equations over Z. Suppose that m(x) = (x* 4+ az + b)(x* + cx +d) for
a,b,c,d € Z (we can without loss of generality assume that the factors are monic).
Then

m(x) = (x> +az+b)(x* +cx+d) = x*+ (a+¢)x> + (ac + b+ d)x* + (ad + bc)x + bd.
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(b)

Comparing coefficients, bd = 25. If b = 1,d = 25, then b 4 d = 26 so comparing the

coefficients of x2, x3, we have
O=a+c
0=uac+26
Implying a = —c so that ¢ = 26, a contradiction as ¢ € Z. If b = 2,d = 5, then
b + d = 10. Repeating the process from above,
O=a+c
0=ac+10
Then a = —c so that ¢2 = 10, a contradiction as before. The negative cases are

handled mutatis mutandis. Note this completes the cases as we can always switch
the ordering/labeling of the quadratic factors. Thus, m(x) is not the product of two
irreducible quadratic polynomials over Z, so m(x) is irreducible over Z and hence
over Q.

It is clear that « € Q(v/2, /7). Since Q C Q(+/2,V/7), it follows Q(a) C Q(v/7,/2).

Notice that
(V7+V2) (V7 —V2)=7-2=5.
This implies that (v/7 + v2) ™1 = 1(v/7 — v2) € Q(a). Then v7 — V2 € Q(a). Now

%((\TH V2) + (V7 - v2)) = V7 € Q(a)
(V74 V2) ~ (V7 -2)) = V2 € Q)

Thus, Q(«) is a field containing Q, V2, and v/7. Since Q(\@, \ﬁ) is the smallest
subfield of C containing Q, v/2, and v/7, Q(v/2,v/7) C Q(a). Therefore, Q(a) =
Q(V2,V7).

Now consider o € Gal(Q(a)/Q). Since ¢ fixes Q, o is completely determined by o'(1/2)
and o (/7). Now since (v/2)> —2 =0,

o((vV2)? ~2) = 0(0)
0(v2)? —0(2) = o(0)
c(v2)2-2=0,

i.e. that o(1/2) is a root of m(x) = x> — 2. There are now two possibilities: either

U(\@) =+2or (7(\@) = —/2.
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Similarly, there are two possibilities for o(1/7): either ¢(v/7) = /7 or o(v/7) = —/7.
Thus, there are four elements of Gal(Q(«)/Q).

It is clear that o7 is the identity of Gal(Q(«)/Q) and that every non-identity element
has order 2. Thus, Gal(Q(«)/Q) = Z/2Z x Z/2Z =V, the Klein 4-group.

O]

8. Let R be a Principal Ideal Domain.

(a) Let I = (x) be a nonzero ideal of R. Prove that I is a maximal ideal if and only if x is
irreducible.

(b) Let I be a nonzero ideal of R. Prove that I is a maximal ideal if and only if I is a prime
ideal.

Solution:

(a) Suppose that I is a maximal ideal and that x = rs for some r,s € R. Without loss of
generality, suppose r is not a unit. Then x € () so that (x) C (r). Since r is not a unit,
(r) # R. So (x) = (r) by the maximality of (x). This implies that r = ux for some
u € R*. Therefore, x = rs = uxs, which implies 1 = us, i.e. that s is a unit. Therefore,
x is irreducible.

Suppose that x is irreducible and ] is an ideal such that I C | C R. Then | = (y) for
some y € R. Since x € |, x = ry for some r € R. However, x was assumed to be
irreducible, so either r is a unit or y is a unit. If 7 is a unit, then (x) = (y),ie. I = J. Ify
is a unit, then the ideal | contains a unit, which implies that | = R. Therefore, I is a
maximal ideal.

(b) Since I is a maximal ideal, the quotient ring R/I is a field. But then R/ is an integral
domain so that I must be prime. [Recall, I is a prime ideal if and only if R/I is an
integral domain.]

Suppose I = (x) is a prime ideal. We claim that x is irreducible. If x = ry for some
7,y € R, theny € I. Since I is a prime ideal, either r € I or y € I. Without loss of
generality, assume that r € I. Then r = xu for some u € R. This implies x = ry = xuy.
Then 1 = uy. Therefore, y is a unit. But then x is irreducible. Therefore, I = (x) is
maximal.
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9.

(a) Give an example of a commutative ring with at least two simple modules that are not
isomorphic.

(b) Let R be a commutative ring and let M be a simple R-module. Prove that any nonzero
endomorphism of M is an isomorphism.*

Solution:

(a) Take the commutative ring Z and the Z-modules Z /27 and Z /3Z. These modules
are not isomorphic since they have different cardinalities. Clearly, Z/2Z and Z/3Z
have no proper, nontrivial subgroups, which implies they are both simple.

(b) Let f : M — M be a nonzero endomorphism. Then ker f is a submodule of M. Since
M is simple, either ker f = 0 or ker f = M. It was assumed that f is nonzero, so
ker f # M. Thus, ker f = 0 and f is injective. Furthermore, the image of f is a
submodule of M. Since M is simple, either im f = 0 or im f = M. Since f is nonzero,
im f # 0. Therefore, im f = M and f is surjective. Therefore, f is an isomorphism.

O]

10. Suppose E is a finite field. Prove that the order of E is p", where p is a prime number
and 7 is a positive integer.

Solution: Since E is a finite field, it has characteristic p for some prime number p. In this
case, E contains a subfield isomorphic to IF;, the field with p elements. In this case, E can
be viewed as a vector space over F,, so E = ]F’; for some n € IN, the latter clearly has order
p". ]

4This is Schur’s Lemma.
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January 2010

1. Recall that a subgroup H of a group G is called characteristic if ¢(H) C H for every
automorphism ¢ of G.

(a) Prove that characteristic subgroups are always normal.

(b) Let P be a p-Sylow subgroup of a finite group G and assume that P is normal in G.
Prove that P is a characteristic subgroup of G.

Solution:

(a) Let x € G and define ¢, : G — G via ¢,(g) = xgx~!. We claim that ¢, is an
automorphism of G. Clearly, ¢ is a homomorphism as

x(8)¢x(h) = (xgx™1) (xhx™) = x(gh)x ™! = ¢x(gh)

Now ¢ € ker¢y if and only if xgx~! = 1 if and only if ¢ = x"'x = 1. There-
fore, ker ¢ = {1} so that ¢y is injective. Furthermore for any ¢ € G, ¢x(x1gx) =
x(x~1gx)x~! = g so that ¢, is surjective. But then ¢ is an automorphism of G.

By assumption, ¢(H) C H forall x € G. That s, xHx ! C Hforall x € G. Then H is
a normal subgroup of G.

(b) We claim that P is the unique Sylow p-subgroup of G (hence normal). Suppose Q is
also a Sylow p-subgroup of G. Then by Sylow’s Theorem, P and Q are conjugate, i.e.
there is a x € G such that xPx~! = Q. By assumption, P is normal in G so that Q C P.
But P and Q have the same (finite) order, but then P = Q, as claimed.

Now if ¢ is an automorphism of G, then ¢(P) is a subgroup of G with the same order
as P, i.e. ¢(P) is a Sylow p-subgroup of G. But by uniqueness (proved above), it must
be that ¢(P) = P. Thus, P is a characteristic subgroup of G.

O
2. Prove that there are no simple groups of order 20 or 57.

Solution: Note that if |G| = 20 = 22-5. Let n5(G) denote the number of Sylow 5-subgroups
of G. By Sylow’s Theorem, n15(G) =1 mod 5 and n5(G) divides 4. But then it must be that
n5(G) = 1 so that G contains a unique Sylow 5-subgroup. But by Sylow’s Theorem, unique
Sylow p-subgroups are normal so that this Sylow 5-subgroup is necessarily normal. Hence,
a group of order 20 must contain a proper, nontrivial, normal subgroup and therefore
cannot be simple.

If |G| = 57 = 3-19, let n19(G) denote the number of Sylow 19-subgroups of H. By
Sylow’s Theorem, n19(H) =1 mod 19 and n19(H) divides |H| = 57. But then n19(G) = 1.
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Then as above, G must contain a proper, nontrivial, normal subgroup. Therefore, G cannot
be simple. O

3. Let G be an abelian group of order n and assume that G has at most one subgroup of
order d for each d | n. Prove that G is a cyclic group.

Solution: By the Fundamental Theorem of Finitely Generated Abelian Groups (or Funda-
mental Theorem of Finite Abelian Groups, if one prefers), we have

GEZ/PYZ % - X Z/p}*

where the p; are (not necessarily distinct) primes and «; € N. If p; = p;, then Z/p}" and
Zz/ p?j each contain a subgroup of order p;. Hence, G has at most one subgroup for every

divisor of n. This implies that the p; as distinct primes, hence relatively prime. But then by
the Chinese Remainder Theorem,

C=Z/PYZx - xZ/pt =Z/(py'py - P )Z

which is cyclic. O

4. Let R be a commutative ring such that the polynomial ring R[x] is a PID. Prove that R is
a field.

Solution: Let (x) denote the ideal generated by x in R. If (x) were a maximal ideal of R[x],
then R[x]/(x) = R would be a field. It remains then to show that (x) is maximal. However
since R[x] is assumed to be a PID, (x) is maximal if and only if (x) is irreducible if and only
if x is irreducible. Suppose x = p(x)g(x) for some p(x),q(x) € R[x]. Clearly, p(x) and
g(x) must have degree at most 1 and cannot both be degree 1. Without loss of generality,
assume that p(x) has degree 0, i.e. p(x) := p € Ris a ‘constant’. Now g(x) has degree one.
Write q(x) = ax + b for some a,b € R. Then x = pax + pb which implies pa = 1. But then
p is a unit. Therefore, x is irreducible. The result then follows. O

5. Recall that a n x n matrix A is normal if AA* = A*A. Prove that if A is a normal lower
triangular matrix over the complex numbers, the A is a diagonal matrix.

Solution: We prove this by induction on 7. If n = 1, the result is trivial. If n = 2, suppose
A = (a;j). Then

AA* — [ 0 ay @\ _ (andn ai11a21
a1 ax 0 ax»n a11a1 A2 + ax1az1
AFA — an @\ (an 0\ _ (andn +anap axpd
0 axn/) \axn ax ap1a2 a0
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Since AA* = A*A, ay1ay] = anag + axnaz. Thus, aynay. Thus, andyy = |a|> = 0so
ay = 0. This implies that
i 2
0 ax
so that A is diagonal.
Now assume that the result is true for any normal lower triangular (n — 1) x (n — 1)
matrix and let A = (a;;) be a normal lower triangular 7 x n matrix. Then

an 0 0 -~ 0 ay A Az e An
A apg ap 0 -+ 0 0 a» ax - 4w
Anl Gm2 @p3 0 Ann 0 0 0 - aum

From this, observe that the (1,1)-entry in AA* is |a;1|*>. Now observe that

aj;; a1 a4z - dpl apg 0 0 -~ O
. 0 axp ax -~ ae||ax a2 0 -+ 0
ATA =

0 0 0 - duw/ \@m a2 p3 -+ aun

The (1,1)-entry of A*A s |a11|*> + |az1|* + - - - + |am |*. Since AA* = A*A, it follows that

|1111|2 = \0111|2 + !5121|2 + |1131|2 ++ ‘an1|2

0= \a21|2-|- ]a31|2—|----+ |an1]2

Since |ax; |2 is a positive real number for each k, it follows that a;; = 0 for k > 1. Thus,

. an 0
i

where Bisan (n — 1) x (n — 1) is a lower triangular matrix. Since A is normal, it is imme-
diate that B is normal. The inductive hypothesis implies that B is a diagonal matrix. Hence,
A is also a diagonal matrix. The result now follows by induction. O

6. Let R = Z[x] and let I = (2, x). Prove that I is not a free R-module but it is torsion free.

Solution: Since Z is an integral domain, Z[x| is an integral domain. Moreover, I is an ideal
of R. If r(x) € Rand p(x) € I are such that r(x) - p(x) = 0, it must be that r(x) = 0 since
R is an integral domain. But then Tor(I) = {0}, i.e. I is torsion free.

Now if I is an ideal in an integral domain R and I is a free R-module, it must be that
I is principal. To see this, suppose B were a basis for I as an R-module and |B| > 1. Let
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x,y € Bbedistinct. Thenx -y + (—y) -x =0 =0-x + 0 - y are two different expressions
for 0 as a linear combination of basis elements of BB, a contradiction. Then it must be that
B = 1and I is principal.

Therefore, to show I is not free as an R-module, it suffices to show that I is not a
principal ideal in R. Suppose to the contrary I = (p(x)) for some p(x) € R. Then
2 € (p(x)) so that 2 = r(x)p(x). But then p(x) must be a constant polynomial. Now
Z|x] is a UFD, implying that then p(x) € {£1, £2}. If p(x) = £1, then I = Z[x], which
cannot be since3 € Z[x] and 3 ¢ I. If p(x) = £2, we can without loss of generality assume
p(x) = 2 (since (2) = (—2)). We know x € (p(x)) = (2) so that x = 2r(x) for some
r(x) € Z[x]. But then r(x) must have degree 1. Write r(x) = ax + b for some 4,b € R. But
then we must have 2a = 1, a contradiction as a € Z. Therefore, I # (p(x)) so that I cannot
be principal. Hence, I is not a free R-module.

OR

By the proof above, we only need show that I is not principal. Suppose to the contrary
that (2,x) = I = (p(x)). Certainly if f(x) € (2,x) = (p(x)), then f = 2¢(x) + xh(x) for
some g(x),h(x) € R. But then evaluating at 0 yields f(0) = 2¢(0). Then f(0) must be
even. Furthermore, we know 2 € (2,x) = (p(x)) so that 2 = p(x)g(x) for some g¢(x) € R.
But then it must be that degp = 0 so that p(x) is constant, i.e. p(x) = p(0) = 2n for
some n € IN. [Note that p(x) = %1 is not possible since (p(x)) = (2,x) # R[x].] Now
x € (p(x)) so that x = p(x)h(x) = 2nh(x) for some h(x) € R. But evaluating at x = 1
gives 1 = 2nk(1). But this implies that 1 is even, a contradiction.’?

O

7. Let F be a finite field. Prove that the product of the non-zero elements of F is —1.

Solution: Suppose that char F # 2,i.e. 1 # —1. Ifa € F* and a®> = 1, then 4 is a root of the
polynomial p(x) = x> —1 = (x +1)(x — 1),s0a € {£1}. Therefore, ifa ¢ {+1},a"! # a.
Therefore, the product of the nonzero elements of F is

(1) (V)aya; *azayt - - - ana,t = -1,
as required.

Ifchar F=2,then1 = —1land x> =1 = (x — 1)(x + 1) = (x — 1), which has a unique
root of 1. Thus, ifa € F* and a # 1, then a—! # a. Therefore, the product of the nonzero
elements of F is

1a1a1’1a2a2’1 . -ana,jl =1=-1,

as required. N

5Note: it will generally be the case that for a domain D, (a, x) will not be a principal ideal in D[] for any
nonunita € D.
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8. Let & = /2 + v/2. Find the minimal polynomial of ¢ over Q and show that{ = /2 — V2

is another root of this minimal polynomial. Show that the degree of Q(¢) over Q is 4. Prove
that sending & to ¢ = v/2 — 1/2 is an automorphism of Q(¢&) over Q. Describe the Galois
group of Q(&) over Q.

Solution: Observe that

E=1\2+V2
2=2+2
(§*-272=2
& -4 +4=2
42 4+2=0

Therefore, ¢ is a root of the polynomial m(x) = x* — 4x? + 2. Notice that m(x) is irreducible
as it is Eisenstein with p = 2. Therefore, m(x) is the minimal polynomial of ¢ over Q. Since
m(x) has degree 4, [Q(&) : Q] = degm(x) = 4.

The same computation as above shows that \/2 — 1/2 is a root of m(x). Since m(x) is
even, we know that +£1/2 + /2 and £+/2 — /2 are roots of m(x). Since m(x) has degree
4, these are the complete roots of m(x).

We claim that Q(¢) is the splitting field of m(x) over Q. Itis clear that if m(x) splits over
afield F D Q, then Q({) C F. Itis then sufficient to show that Q(&) contains all the roots of
m(x). Obviously, £x = +/2 + /2 € Q(¢). Observe that (/2 +v/2)?> =2+ /2 € Q(¢),
s0 &2 —2 = +/2 € Q(&). Now

V2+vay2—va= e+ vae-va) = va,

which implies that vV2 — V2 = ——— . Therefore, —v/2 — v/2 . There-

P V2-v2 T s <0 V2-v2eQ(@)
fore, Q({) is the splitting field of m(x) over Q.

Since Q(¢) is the splitting field of a separable polynomial over Q, Q(¢)/Q is a Galois
extension and | Gal(Q(¢)/Q)| = [Q(¢) : Q] = 4. If ¢ € Gal(Q({)/Q), then ¢ is completely
determined by ¢ (¢). Note that o(¢) must be a root of the minimal polynomial ¢, so there
are only four possibilities for o(¢). Since |Gal(Q(¢)/Q)| = 4, each of these possible
automorphisms must actually be an automorphism. Therefore, sending & to v/2 — /2 is
an automorphism of Q(¢&) over |Q.

We claim Gal(Q(¢)/Q) = Z /47Z. Let o be the automorphism that sends ¢ to v/2 — v/2.
Note that

240(v2) = 02+ V2) = o(&) = 0(§) =2~ V2,
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which implies that ¢(v/2) = —+/2. But by a previous computation,
(7( 2—\f2> = o(v2) = —V2 = —¢

o(¢) 2-V2
Therefore, 02(¢) = o(\/2 — /2) = —¢&, which shows that 0> # 1. By Lagrange’s Theorem,
|o| = 4. This implies that Gal(Q(§)/Q) = (o) = Z/4Z. O
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August 2010

1. Prove that there is no simple group of order 42.

Solution: Let G be a group of order 42. Observe 42 = 2 -3 - 7. Let n7(G) denote the number
of Sylow 7-subgroups of G. By Sylow’s Theorem, n7(G) =1 mod 7 and n7(G) divides
6. But then it must be that n;(G) = 1. Therefore, the Sylow 7-subgroup is unique and
hence normal. But then G contains a proper, nonzero, normal subgroup. Therefore, G is
not simple. O

2. Let G, H and K be groups with |G| = 35, |H| = 60, and |K| = 42. Assume there exist
group homomorphisms ¢ : G - Hand ¢ : G — K with ker ¢ # G and ker ¢ # G. Prove
that ker ¢ N ker ¢ consists of one element.

Solution: By the First Isomorphism Theorem, G/ ker¢ = im¢. Lagrange’s Theorem

implies that ‘k‘j g7 divides |H| = 60. Further, Lagrange’s Theorem implies that | ker ¢|

divides |G| = 35. The divisors of 35 are 1, 5, 7, and 35. Since ker ¢ # G, | ker ¢p| # 35. Also
notice that % = 7 does not divide 60, % = 35 does not divide 60, but % = 5 divides 60.
This implies that |ker¢| =7.

Similarly, |k : 4’\ must divide |K| = 42. Since kery # G, | ker | # 35. Since £ = 5 and
¥ = 35 do not divide 42, thls implies that | ker ¢| # 7, | ker | # 1. The only p0551b111ty is
| ker | = 5 (this works as 2 = 7 divides 42).

Recall that the mtersectlon of two subgroups is again a subgroup. By Lagrange’s Theo-
rem, | ker ¢ Nker | divides both | ker ¢| = 7 and | ker | = 5. Therefore, | ker ¢ Nker ¢| =
1, as required. O

3. Let T : V — W be a surjective linear transformation of vector spaces. Let W; and W, be
subspaces of W such that W = W; + W,. Prove that V = T-1(W;) + T~ 1(Wa).

Solution: Let v € V. Then T(v) € W so that T(v) = w; + w, for some wy € Wy, wy € Wh.
Since T is surjective, w; = T(v1) for some v; € T~ (Wy). Similarly, w, = T(v;) for some
vy € T~1(W,). Observe that

T(v— (v1+v2)) =wi +wp, —wy —wy =0,

so v — (v; +v2) € kerT. This implies that v — (v; + v7) u, where Tu = 0. Re-

arranging this equality gives v = (u + v1) + v2. Now T(u —|— 1) = T(v1) = wy, so
u+wv; € T"Y(Wy). Since v; € T~}(W>), this implies that v € T~1(W;) + T~1(W,). Thus,
V =T~ Y(W;) + T~} (W,), as required. O
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4. Let G be a group of order 77 acting on a set X with 20 elements. Prove that the action
has at least 2 fixed points.

Solution: For any x € X, let O, be the orbit of x and let G, denote the stabilizer of x in G.
By the Orbit-Stabilizer Theorem, |Oy| = [G: Gy], so in particular |Oy| divides |G| = 77.
Obviously, |Oy| # 77, so the only possibility is |Oy| € {1,7,11}. Since the orbits of the
action of G on X partition, consider the equation 20 = 11a + 7b 4 ¢, where 4, b, and c are
nonnegative integers. The claim is that ¢ > 2, so suppose for the sake of contradiction that
c < 2. If c = 0, then the equation reduces to 20 = 11a + 7b. Clearly, a < 1. If a = 0, then
this reduces to 2— = 7b, which has no integer solutions. Therefore, ¢ # 0.

If c = 1, then 20 = 11a + 7b 4 c reduces to 19 = 11a + 7b. The only possibilities are
a=0ora=1.1Ifa =0, then this reduces to 19 = 7b, which has no integer solutions. If
a =1, then 19 = 11 4 7b, so 8 = 7b. This has no integer solutions. Therefore, ¢ # 1. This
implies ¢ > 2. In other words, there are at least two orbits which only contain one element
of X. Thus, the action has at least two fixed points. O

5. Let V be a finite dimensional vector space over the complex numbers. Let ( , ) be a
Hermitian form on V. Let W be a subspace of V and assume that the restriction of ( , )
to W is nondegenerate. Prove that V is the direct sum V = W @ W+, where W+ is the
orthogonal complement of W computed with respect to (, ).

Solution: If W = 0, then the conclusion is obvious. Suppose W # 0. Note that if
w € WNWH, then (w,w’) = 0 for all w' € W. Since the restriction of the form to
W is nondegenerate, this implies that w = 0. Since the restriction of {( - , - ) to W is
nondegenerate, there exists an orthonormal basis {wy,wy, ..., wy,} of W. This can be
extended to a (not necessarily orthonormal) basis {w1, wy, ..., W, V1, .., 0n} of V. The
matrix of this form with respect to this basis is

A B

C D)’
where A is a m x n matrix, D is an (n — m) x (n — m) matrix, etc.. Note that the a;; entry
of Ais (w;, w;) and that the b;; entry of A is (w;, v;). Consider the change of basis matrix,

(1 Q
P=(o 9)

where Q is an arbitrary matrix. Then
«(A B (A AQ+B
# (e n)r= (0197
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Notice that the basis of this matrix is {wy, wy, ..., W, ), 4, ..., )} for some v; € V. Now
choose Q = —A~!B. Then AQ + B = 0, which implies that (w;, v?) = 0 for all indices i, j.
Hence, v; € Whforallje {m+1,...,n}.

Therefore, any v € V can be written as v = (ayw; + axwa + - - - + AWy ) + (bmHv:nH +
-+ +byv),) € W+ WL, Therefore, V. = W + W,. Since W N W+ = 0, this implies that
V=WaeWH, as required. O

6. Anideal I in a commutative ring R is called primary whenever foralla,b € R, ifab € I,
then either a € I or b" € I for some integer n > 1. Let R be a UFD and r an irreducible
element of R. For any fixed integer m > 1, prove that the ideal I = (™) is primary. Be sure
to justify the use of UFD carefully.

Solution: Suppose ab € I for some a,b € R. This implies that ab = r"'c for some c € R.
Since R is a UFD, each of 4, b, ¢ can be factored into a product of irreducible elements (note
that 7" is written as a product of irreducible elements):
a = a'lll P a‘;f’
! Is
b =0l b,

nt

_ M
C=2¢C - -Csy

where a;, b;, c; are irreducible elements of R for each index i and j;, [;, n; € IN for all indices
i. This implies that

Dl = pmem L
ay ---apbl by =7r"c c

Now each side of the factorization of ab into irreducible elements. Since such a factorization
is unique, r is equal to some a; or b; (in fact, at least m copies of r show up on the left hand
side). This implies that either r" is a factor of a or 1 is a factor of b for some k > 1. If " is
a factor of a, then a = r"x for some x € R, which implies thata € I. If r* is a factor of b for
some k > 1, then b = r*y for some y € R. This implies that b" = (#")*y™ € I. Therefore,
is primary. O

7. Let R be a commutative ring and M a Noetherian R-module. Let f : M — M be a
surjective R-module homomorphism. Prove that f is an isomorphism. Hint: Consider the
kernels of the composition f* = fo fo---o fforn=1,2,....5

Solution: By assumption, f is surjective. It remains to show that f is injective. If x € M,
n € N,and f"(x) = 0, then f"*!(x) = f(f*(x)) = f(0) = 0. Therefore, ker f* C ker f"*!
for all n € IN. This implies we have a chain of ideals

kerf Ckerf2C--- Ckerf"C---

6This is an example of Fitting’s Lemma.
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Since M is a noetherian R-module, the chain must stabilize, i.e. there is a m € IN such
that ker f™ = ker f"*1 = ker f"*2 = .... Now suppose x € ker f and x # 0. Since f
is surjective, f" is surjective for all n € IN. This implies there exists a y € M such that
f™(y) = x. However, f™*1(y) = f(x) = 0. Thus, y € ker f"*1,y ¢ ker f™, a contradiction
as ker f™ = ker f"*1. Therefore, ker f = {0}, implying that f is injective. Therefore, f is
an isomorphism. O

8. Let A be a matrix over C whose only eigenvalues over C are A = 7, and A = 3 and
suppose that

dimker(A —7I) =2
dimker(A —7I1)2 =3
dimker(A —71)° =3
dimker(A —3I) =2
dimker(A —3I)* =2
(a) Find the Jordan form of the matrix A. (Just the Jordan matrix [, not the basis.)

(b) Find the minimal polynomial of A.

(c) Let F =C, V = F", where A is an n x n matrix and make V into an F[T]-module by
setting T - v = Av and extending linearly. Write V as a direct sum

vy T

F
~ m;(T)

withmy | my | ... | my.

Solution:

(a) Since dimker(A — 7I) = 2, there are two Jordan blocks associated to the eigenvalue
7. Since dimker(A — 71)3 — dimker(A — 7I)? = 3 — 3 = 0, there are no Jordan blocks
with size at least 3. Since dim ker(A — 71)? — dimker(A — 7I) = 3 — 2 = 1, there is one
Jordan block of size at least 2 which must have size exactly 2. Thus for the eigenvalue
7, there is one Jordan block of size 1 and one Jordan block of size 2.

Since dim ker(A — 3I) = 2, there are two Jordan blocks associated to the eigenvalue 3.
Since dim ker(A — 31)? — dim ker(A — 3I) = 2 — 2 = 0, there are no Jordan blocks of
size at least 2, so both Jordan blocks must have size 1. Therefore, the Jordan canonical
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form for A is, up to permutation of the Jordan blocks,

70000
07000
01700
0 0030
0 00O03

(b) Using the Jordan canonical form of A, the elementary divisors of A are x — 7, (x —7)?,
x — 3, (x —3). The minimal polynomial is the product of the largest power of x — 7
and x — 3, so the minimal polynomial is (x — 7)?(x — 3).

(c) The largest m, is the minimal polynomial, so m,(T) = (T — 7)?(T — 3). The polynomial
m,_1 is formed by taking the product of the next largest power of T — 7 and the next
largest power of T — 3, which is (T — 7)(T — 3). Therefore,

V = FIT)/((T — 7)(T - 3)) @ F[T]/((T — 7)(T - 3)).

9. Let K be the splitting field for x” — 11x + 11 over Q.

(a) Prove that there exist at least 7 automorphisms in Aut(K/Q). (That s, | Aut(K/Q)| >
7)

(b) Can there be exactly 10 automorphisms in Aut(K/Q)?

Solution:

(a) Let f(x) = x” — 11x + 11. The polynomial f is irreducible over Q using Eisenstein’s
criterion with p = 11. Since Q has characteristic 0, f is separable. Thus, K is the
splitting field of a separable polynomial over Q, which implies that K/Q is Galois.
Thus, | Aut(K/Q)| = [K: Q].

Letw € Kbe arootof f(x). ThenQ C Q(a) C Kand [Q(a): Q] = deg f(x) = 7. This
implies that
| Aut(K/Q)| = [K: Q] = [K: Q(v)] [Q(«): Q] = 7[K: Q(a)] = 7.

(b) Notice that (a) implies that 7 divides | Aut(K/Q)|. Since 7 does not divide 10, it is
impossible to have | Aut(K/Q)| = 10, i.e. there can never be exactly 10 automorphisms
in Aut(K/Q).
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10. Find the Galois group of the splitting field of x> — 41 over Q.

Solution: Let = ¢™/3 and p(x) = x> — 41. Then p(x) has three roots: v/41,{+v/41, and
{2V/41. The splitting field of p(x) over Q is the smallest field extension of Q containing these
three roots, which is E := Q(¢, V41 ). Note that  is a root of the irreducible polynomial
(over Q) m(x) = x* + x + 1, the third cyclotomic polynomial. Since Q(v/41) C R, {,{% ¢
Q(V/41). This implies that m(x) is irreducible over Q(~+/41) (since it has no root in the
field). Hence,

[E: Q] = [E: Q(V41)][Q(V41): Q] =3-2=6

Notice that E is the splitting field of a separable polynomial over Q, which implies that
E/Qis Galois. Thus, | Gal(E/Q)| = [E: Q] = 6.

Any o € Gal(E/Q) is completely determined by () and ¢(v/41). Note that o per-
mutes the roots of the irreducible polynomial x> + x + 1, s0 ¢({) = { or ¢({) = {? are the
only two possibilities for o(Z). Similarly, o(v/41) is a root of p(x), so either or(v/41) = v/41,
U(\S/éﬁ )= V41, or a(e/éﬁ ) = > v/41. Thus, there are only six possible automorphisms:

n(Q)=¢ (Vi) =v4
»() =0 (V) =7v4
03(0) =¢  o3(V41) =2V
04(0) = §2 o ( y 41) = V41
05(0) =% o5(VA) = VM
06(0) = 0s(VA) = PV4

Since |Gal(E/Q)| = 6, each ¢; is an automorphism. Observe that (03 o 04)(v/41) =
o(V41) = V41 and (04 0 02)(V/41) = 04(ZV/41) = 04(7)04(v/41) = {?V/41. This implies
that 03 0 04 # 04 0 03, so Gal(E/Q) is a non-abelian group of order 6. Up to isomorphism,
there is only one nonabelian group of order 6, namely Ss. Therefore, Gal(E/Q) = Ss.

OR

Show that [E: Q] = 6 and that E/Q is Galois as in the proof above. Observe that
Q(v/41)/Q is not Galois since p(x) does not split over Q(+v/41). Therefore, if H is the
subgroup of Gal(E/Q) which fixes Q(+v/41), then the Fundamental Theorem of Galois
Theory implies that H is not normal in Gal(E/Q). Hence, Gal(E/Q) is a nonabelian group
of order 6, so Gal(E/Q) = S;. O
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January 2011

1. Let P be the real vector space of polynomials p(x) = ap + a1x + - - - + a,x" of degree

< n, and let D denote the derivative Ix considered as a linear operator on P.

(a) Find the matrix of D with respect to a convenient basis, and prove that D is a nilpotent

operator.

(b) Determine all the D-invariant subspaces. Hint: Consider a polynomial of the highest

degree in a D-invariant subspace.

Solution:

(a) Let B = {1,x,...,x"}. Itis clear that B is a basis for P. Now D(x!) = ix'~! fori > 1.

(b)

In B-coordinates, this is the column vector with a 1 in the (i — 1)th position and zeroes
in the other positions. Also, D(1) = 0, so the matrix of D with respect to B is

01 0 0
0 0 1 0
00 0 ---1
00 o0 ---0

There are three ways to see that D is a nilpotent operator. First, note that D¥1(xk) =
0. This can be proven by induction on k. For k = 0, D(x°) = D(1) = 0. For
k = 1, D?>(x) = D(1) = 0. Now suppose this is true for some k < n and note that
DF2(x1) = DM ((k+1)x%) = (k+1)D*1(x%) = (k+ 1) -0 = 0. This proves the
claim. Thus, D"*! is the zero operator and D is nilpotent.

Another way is to note that the characteristic polynomial of D is c(x) = x"*1. Therefore,
the minimal polynomial of D is of the form m(x) = x* for some k < 1 + 1. This implies
that m(D) = D* = 0, so D is a nilpotent operator.

Another way is by direct matrix multiplication and induction.

The zero subspace is of course D-invariant. It is clear that a subspace of the form P, =
{p(x) € P: degp < k} U{0} is a D-invariant subspace (since for every nonconstant
p(x) € Px, deg(Dp(x)) < deg(p(x)); if p is constant, Dp = 0.) The claim is that every
nonzero D-invariant subspace is of this form.

Let P’ be a D-invariant subspace and let p(x) denote a polynomial of maximal degree in
P'. Since P’ is closed under scalar multiplication, it can be assumed that p(x) is monic.
Let k denote the degree of P. The claim is that every polynomial of degree at most k is
contained in P’. Consider the polynomial D¥p. In this polynomial, the only nonzero
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term is k!. Since P’ is closed under scalar multiplication, every constant polynomial
is contained in P'. Note that D*!(p(x)) = ax+b € P'. Then D¥/7!(p(x)) =
ax/t! + b(x), where a # 0 and degb < j. By the induction hypothesis, b(x) € P'.

Therefore,

L(DHI (p(x) — bx))) = 61 € P

Thus, {1,x,...,x/"1} C P, so every polynomial of degree at most j + 1 is in P’. By
induction on j, every polynomial of degree at most k is contained in P, so P’ = P.

O]

2. Let G be a group with a subgroup H (H need not be normal). The set G/ H of left cosets
of H in G is a left G-set by means of go xH = gxH, g,x € G.

(a) Prove that for each a € G, the G-sets G/H and G/aHa ! are isomorphic. Recall that a
map ¢ : X — Y of left G-sets is a homomorphisms if ¢(gx) = gp(x) forallg € G, x € X;
an isomorphism is a bijective homomorphism; and X, Y are isomorphic if there exists an
isomorphism X — Y. Hint: The right multiplication by a~! is a bijective map G — G.

(b) Let K be a subgroup of G. Prove that if the G-sets G/H and G/K are isomorphic, then
K = aHa ! for some a € G. Hint: If ¢ : X — Y is an isomorphism of G-sets, compare
the stabilizers of x € X and ¢(x) € Y.

(c) State the necessary and sufficient condition for the G-sets G/H and G/K to be isomor-
phic.

Solution:

(a) Let K = aHa ! and define ¢ : G/H — G/K via gH ~— ga 'K. First, we need
check that ¢ is well defined. If gH = ¢’H for some g,¢’ € H, then ¢7¢’ € H
so that ag~!¢’a™! € K. In other words, (ga~!)"!(¢’a"!) € K, which implies that
g¢a 'K = ¢g'a~1K. Thus, ¢ is well defined.

Forany g,¢' € G, ¢(g-8'H) = ¢(g¢'H) = gg'a 'K = g-g'a™'K = g- ¢(¢'H). Thus,
¢ is a homomorphism of G-sets.

If p(¢H) = ¢(¢'H), then ga 'K = ¢'a7'K, so ag~'¢’a! € K. Since K = aHa™!,
ag~l¢'a™l = aha=! for some h € H. This implies that g~'¢’ = h € H. Therefore,
¢H = ¢’H and ¢ is injective.

If ¢K € G/K, then ¢(gaH) = gaa 'K = ¢K so that ¢ is surjective. Thus, ¢ is an
isomorphism of G-sets and G/ H is isomorphic to G/K = G/(aHa™!).
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(b)

(©)

Since G/ H and G/K are isomorphic G-sets, there exists a homomorphism ¢ : G/H —
G/K. Now ¢(H) = gK for some g € G. Forany h € H, gK = ¢(H) = ¢(hH) =
h¢(H) = hgK, which implies that ¢~'hg € K. Thus, g"'Hg C K.

Since ¢ is an isomorphism, ¢! : G/K — G/H exists. Since ¢(¢"'H) = ¢ 1¢(H) =
¢ (gK) = K, ¢71(K) = ¢g7'H. Forany k € K, ¢'H = ¢ 1(K) = ¢ 1(kK) =
k¢~ (K) = kg~ 'H. Thus, gkg~! € H, so gkg~! = h for some i € H. This implies that
k = ¢ 'hg € ¢~ 'Hg. This shows that K C g"'Hg, so K = g7 'Hg. Take a = ¢! to see
that K = aHa !, as desired.

The G-sets G/ H and G/K are isomorphic if and only if K = aHa™! for some a € G.

O
3.
(a) Prove that no group of order 56 is simple.
(b) Prove that a group of order 77 is cyclic.
Solution:

(a)

(b)

The divisors of 56 are 1, 2, 4, 7, 8, 14, 28, and 56 and 56 = 23 -7. Let 1, denote the
number of Sylow p-subgroups of G. By Sylow’s Theorem, 1n,(G) = 1 mod p and
1n,(G) divides G. For n,(G), the only possibilities are 1,(G) = 1 or np(G) = 7. If
n2(G) = 1, then G contains a unique Sylow 2-subgroup, which is necessarily normal.
But then G is not simple. Otherwise, 12(G) = 7.

For n7(G), the only possibilities are n7(G) = 1 or n7(G) = 8. Again, if n7(G) = 1 then
G cannot be simple by the logic above. Otherwise, n7(G) = 8.

It remains to show that n(G) = 7 and n7(G) = 8 cannot occur. By Lagrange’s
Theorem, the intersection of any Sylow 2-subgroup and any Sylow 7-subgroup must
be trivial. Then there are 8 - 6 = 48 elements of order 7 (since the Sylow 7-subgroup
has order 7 and must be cyclic generated by any nontrivial element). Then there are
56 — 48 = 8 elements. Since all Sylow 2-subgroups have order 8 and are contained in
the complement of the set of elements of order 7, there must then only be one Sylow
2-subgroup, which is necessarily normal. Therefore, G cannot be simple.

Note that the divisors of 77 are 1,7, 11, and 77 and 77 = 7 - 11. By Sylow’s Theorem,
n7(G) =1 mod 7 and divides 77. Then it must be that n7(G) = 1. Similarly, n11(G) =
1. But the Sylow 7-subgroup and Sylow 11-subgroup account for only 7 +11 — 1 = 17
elements of G. By Lagrange’s Theorem, the remaining elements of G must have order
77. But then any of these elements are necessarily generators for G so that G is cyclic.
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4. Let A be the matrix of a real symmetric bilinear form ( , ) with respect to some basis.
Prove or disprove: The eigenvalues of A are independent of the basis.

Solution: Let V = R? and let {, ) denote the dot product. Matrix that represent the dot
product are of the form PTP, where P is an invertible 2 x 2 matrix. Take P = I,. Then
A = PTP = [, which has unique eigenvalue 1. Now take

20
*=(62)
Then A = PTP = P? = 4[,. Thus, the unique eigenvalue of A is 4. Then the eigenvalues of
the matrix of a bilinear form are not uniquely determined by the basis.
As another counterexample, let k be a field with characteristic not 2 with at least four
elements. Let (, ) be a real symmetric bilinear form on the vector space V := k given by

(x,y) = xy. Consider the basis {b}. Then we can represent (, ) by A = (b?). But we can
choose b, b’ € K so that b?> # b". O

5. Let R be a commutative ring and I an ideal of R.

(a) Let I[X] C R[X] be the subset of the polynomial ring consisting of polynomials with
coefficients in I. Prove that I[X] is an ideal of R[X].

(b) The quotients R[X]/I[X] and R[X]/(I, X) are isomorphic to (R/I)[X] and R/I, not
necessarily in that order. Decide which is which and prove your answers.

Solution:

(a) Itis clear that I[X] is nonempty. If p(x),q(x) € I[X]. Without loss of generality, assume
that the degree of p(X) is at least the degree of q(X). Writing p(X) = ¥ a;,X* and
gX)=x ijj, where ai, b; € I) and all but finitely many of the ay, b; are 0, it follows

that
p(X)+q9(X) =Y e X+ Y b;X =Y (a; 4+ b;) X"
k ] i

Since I is an ideal, a; + b; € I for all k < m. But then p(X) + g(X) € I[X].

Suppose p(X) € I[X], 7(X) € R[X]. Then p(X) = La, X" and r(X) = ¥ ¢; X/, where
ax € I, ¢; € R. Suppose that p has degree n and r has degree n. Then

p(X)r(X) = nin < loﬂjci—]) Xt

i=0 \j=
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(b)

Now fro every pair of indices i, j, since aj € I, ajci—j € I, which implies that } ajci—j € L.
Hence, p(X)r(X) € I[X]. Hence, I[X] is an ideal of R[X].

The claim is that R[X]|/I[X] = (R/I)[X]. Define ¢ : R[X] — (R/I)[X] via reducing
coefficients mod I, i.e.

apg+a X+ +a, X" —ag+a X+ +a, X"

It is clear that ¢ is a surjective ring homomorphism with kernel I[x]. By the First
Isomorphism Theorem, the claim is proved.

Define ¢ : R[x] — R/I via p(p(x)) = ¢(p(x))(0). Then ¢ is a surjective homomor-
phism (since it is the composition of two surjective homomorphisms). It is clear that
kerp = (I, X). Then by the First Isomorphism Theorem,

R[X]/(I,X) = R/L
0

6. Let A be a square matrix over the complex numbers. Assume that the minimal polyno-
mial of A is x?(x — 5) an the characteristic polynomial of A is x°(x — 5)2.

(a)
(b)

Give all the possible rational canonical forms for A.

Give all the possible Jordan canonical forms for A.

Solution:

(a) Note that the minimal polynomial is the largest invariant factor and that the product

of the invariant factors is the characteristic polynomial. Therefore, the possibilities for
the invariant factors are

x*(x —5),x*(x —5),x
x?(x —5),x(x —5),x,x.
Expanding each polynomial gives
x> —5x2,x3 — 5x%, x

¥ — 5x2, ¥ — 5x,x, x.

x3 —5x2: (
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Therefore, the two possible rational canonical forms, up to block permutations, are

000O0O0OGO0DP
100 00O0O0
0150000
00 0O0O0OO0OO
0001000
00001350
000O0O0OO0O
000O0O0OGO0DPO
100 0O0O0O0
0150000
00 0O0O0OO0OO
0001000
000O01S50
000O0O0OO0O

(b) There are two possible sets of elementary divisors, corresponding to the two possibili-
ties for the invariant factors:

x,xz,xz,x—5,x—5

x,x,x,xz,x—S,x—S.

Therefore, the two possible Jordan canonical forms are

000O0O0OGO0DP
00 0O0O0OO0OO O
0100000
00 0O0O0OO0OOQ O
0001000
00 0O0O0SVG5D0
00 0O0O0O0S?S5
000O0O0OGO0OTP
00 0O0O0OO0OO O
000O0O0OGO0OOP
00 0O0O0OO0OOQ O
0001000
000O0O0VG50D0
00 0O0O0O0S?S5

117



O]

7. An abelian group is generated by four elements {a,b,c,d}, subject to the relations
a+3b+3c+5d =0,2b+2c+2d = 0,and 3c = 0. Express this group as a direct sum of
cyclic groups.

Solution: The elements 4, b, ¢, and d satisfy a system of equations with a coefficient matrix

3 5
10
2 2
3 0

OO ==
ON -~ W

Performing the following row and column operations:

—R1+ Ry, — Ry
—C+C3 — G35
-3C1+C — G
—5C14+C4 — Cy
—C+Cy— Cy
R3+Ry, — R,
—Ry, — Ry

Ry +— R3

R3 +— Ry

obtains the following diagonal matrix

S O O

o N O
S W oo
W O OO

0
Hence, the given abelian group is isomorphic to
Z2]ZXZ]2Z X 2|32 X232 =7/27Z X Z/3Z X Z]3Z =737 X Z/6Z.
U
8. Let p be a prime integer and set f(x) = x” — 2 € Q[x]. Determine the splitting field of f

and the elements of its Galois group over Q. (You do not need to classify the structure of
the group up to isomorphism, just its elements.)
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Solution: Note that f is irreducible by using Eisenstein’s criterion with p = 2. Let { be a
primitive pth root of unity. Then the p distinct roots of f(x) in C are

V2,092,0202,...,007 2.

Therefore, any field that contains all the roots of f(x) must contain all powers of { and
{/2. This implies that the splitting field of f over Q is Q(%/2,7). Since Q has characteristic
0 and f is irreducible over Q, f is separable in Q({/2,). This implies that the extension
Q({’@, {)/Q is normal and separable so Q({’@, {)/Q is a Galois extension.

There are now two cases: if p = 2, then { = —1 € Q, so the splitting field of f over Q
is Q(v/2). Since m(x) = x> — 2 is the minimal polynomial of v/2 over Q, [Q(v/2): Q] = 2.
Let o € Gal(Q(v/2)/Q) be arbitrary. Since ¢ fixes Q, ¢ is uniquely determined by ¢(+/2).
Note that o permutes the roots of m(x) = x? — 2, so the only two possible automorphisms

of Q(v/2) and 07(1/2) = V2 and 02(1/2) = —+/2. Since Q(v/2)/Q is a Galois extension,
|Gal(v2)/Q| = [Q(v2): Q] =2,

so 01 and o, are the two elements of Gal(Q(v/2)/Q).
The other case is when p is an odd prime. In this case, { is a root of the irreducible

polynomial m(x) = x*~1 + xP~2 4 - - - + x + 1. Note that

[Q(¥2,4): Q] = [Q(¥2,4): Q(¥2)] [Q(V2): Q] = p[Q(¥2,7): Q(¥2)].

Since m(x) contains no real roots, 1(x) is irreducible over Q({/2). Hence, [Q({/2,7): Q(¥/2)] =
p—1and
|Gal(Q(V/2,2)/Q)| = [Ql(sqrt[p]2,£): Q] = p(p— 1)

Any o € Gal({/2,7)/Q is completely determined by o({/2) and ¢’({). Since o'({/2) is a root

of f(x), there are p possibilities: o({/2) = {¥{/2 fork = 1,..., p. Similarly, there are p — 1
possibilities for ¢(7): ¢({) = ¢/ for j = 1,...,p — 1. This implies that there are p(p — 1)
possible elements of Gal(Q(+/2,{)/Q), so each of these possible elements is actually an
element of Gal(Q(¥/2,2)/Q). O
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1. Let G be a group and let H, K be two normal subgroups of G with H N K = 1. Prove that
HK = H x K.

Solution: Let h € H, k € K. Since K is normal in G, there exist k' € K such that hk = k'h.
Since H is normal in G, there exists i/ € H such that hk = K’h = W'k'. Now h 10 =K'k~ ! €
HNK,soh W =Kk 1=1.Thus h =W,k =Kk, and hk = kh.

Define ¢ : H x K — HK via ¢((h,k)) = hk. It is obvious that ¢ is surjective. It suffices
to prove that ¢ is an injective homomorphism. Let (h,k), (W', k') € H x K. Using the
observation above,

o ((h, k) (W, K')) = @p(hl,kK') = hH'kK' = hki'K' = ¢((h,Kk))p((H, k).

Thus, ¢ is a homomorphism. If (i, k) € ker ¢, then ¢((h,k)) = hk = 1. Then h = k™! €
H N K so that h = k = 1. Thus, the kernel of ¢ is trivial which implies that ¢ is injective.
Therefore, ¢ is an isomorphism and HK = H x K. O

2. Let G be group of order p?>q where p, q are prime. Prove that G is not simple.

Solution: Suppose p = g. Then G is a finite p-group since |G| = p®. But by the Class
Equation, G must then have a nontrivial center. The center of a group is a normal subgroup
so that G cannot be simple.

Now the number of Sylow p-subgroups, 1,(G), divides g so that n,(G) = 1orn,(G) =
g. If n,(G) = 1, then the Sylow p-subgroup is unique and hence necessarily normal (so
that G is not simple). Assume then that n,(G) = g. But n,(G) =1 mod g so thatg > p.
The number of Sylow g-subgroups, 1,(G), divides p?>. Now if n,(G) = 1, then G is not
simple using the comments above. Assume then that 1,(G) > 1. Now n4(G) # p for then
p=1 mod g, implying p > g.

Then if G is simple, n,(G) = g and n,(G) = p®. Then the total number of non-
identity elements in the Sylow g-subgroup is p?(q — 1). Since the intersection of any two
distinct Sylow p-subgroups can have size at most p, the number of elements in the Sylow
p-subgroups is at least 2p*> — p. Then G contains at least

Pa-1+2p—p=p*+pp-1)>p%,

a contradiction. Therefore, at least one of 1, 114 is 1 so that G cannot be simple. O

3. Let G be a group of order 15 acting on a set of order 22. Assume there are no fixed points.
Determine how many orbits there are.

Solution: Let X denote the set of order 22 and x € X. Let G, denote the stabilizer of x in G
and Oy be the orbit of x. By the Orbit-Stabilizer Theorem, |Ox| = [G: Gy|. In particular,
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|O«| divides |G| = 15 for all x € X. Since there are no fixed points, |Ox| > 1, so the only
possibilities are |O,| = 3,5,15.

If there is an orbit with 15 elements, then the remaining orbits must have a combined
7 elements. However, this is clearly impossible. Therefore, the only possibilities are
|Ox| = 3, 5. It remains to solve the equation 3a + 5b = 22. Clearly, b < 4. Butfor 0 < b < 4,
this it must be that 3a is in {2,7,12,17,22}, a contradiction as each element in this set is not
divisible by 3. Then it must be that 4 = 4 and b = 2, meaning there are 6 orbits: 2 orbits
with 5 elements and 4 orbits with 3 elements each. O

4. Let T : V — V be a linear operator and let {vy,...,v,} be eigenvectors with distinct
eigenvalues. Prove that if 2101 + - - - + a,v, is an eigenvector, then exactly one of the coeffi-
cients is non-zero.

Solution: For each index i, let A; be the eigenvalue of v;. The first thing is to prove that
the set {vy,...,v,} is independent. We proceed by induction on n. For n = 2, suppose
b1v1 + byvy = 0 is a linear dependence relation on the v;. Then

T(b101 + bzvz) =0
blT(U1) + sz(Uz) =0
biA 101 + boAyvy =0

Also, A1 (b1v1 + byvp) = biA1v1 + bpA1vp = 0. This implies that

(bl)\lvl + bz/\zl&) — (bl}\ﬂ)l + bz)\ﬂ]z) =0
(/\2 — /\1)1)22)2 = 0

Since v, # 0 and A1 # A, it follows that b, = 0. But then byv; = 0 so that by = 0. Thus,
the claim is proved for n = 2.

Suppose the claim is true for n eigenvectors and consider the set {vy,...,v,41}. Let
b1v1 + - - + bp119,41 = 0 be a linear dependence relation. Then

T(byor + -+ 4 by10p41) =0
biA1o1 + -+ byriAn10a1 = 0.

Also, biAv1 + - - + by 1A10, 01 = 0. Thus,

(b1A1o1 + - -+ by An1Ung1) — (B1A 01 + - -+ by A0,41) =0
bz(/\z — /\1)02 + b3()\3 — )\1)03 +---+ bn+l(/\n+1 — /\1)Un+1 =0.

The induction hypothesis implies that all coefficients are 0. Since the A;’s are distinct,
by = b3 =--- =b,y1 =0. Then bjv; = 0 so that by = 0. This proves the claim.

121



Now suppose that a1v1 + - - - + a,0v, is an eigenvector of T with eigenvalue A. Then

Aaivg + - - - 4+ Aayo, = T(agor + -+ - + a,vy)
= alT(vl) + e + anT(Z)n)
= Ma1o1 + -+ - + Mayo,
This implies that
(A —=Ap)agor + -+ (A — Ay)ayo, = 0.

Since the set {v1,...,v,} is linearly independent, all of the coefficients are zero. Since
a1vy + - - - + a,v, is an eigenvector of T, it is nonzero and at least one 4; is nonzero. If
a; #0,then A = A If i # j, a, aj are both nonzero. But then A; = A = A;, a contradiction.
Therefore, only one coefficient is nonzero. O

5. Let W be a subspace of a Euclidean space V. (A Euclidean space is a finite dimensional
real inner product space.) Prove that W = W+,

Solution: If w € W and v € W+, then (w,v) = 0so thatw | vand w € W++. Hence,
W C Wt NotethatV =W W+ =WLtg Wt so

dimV = dim W + dim W+ = dim W+ + dim W+,
Therefore, dim W = dim W+L. Since W ¢ W11, this forces W = WL+, O

6. Let F be a finite field.
(a) Prove that the polynomial ring F[x]| contains infinitely many irreducible elements.
(b) Deduce from (a) that F[x] contains an irreducible element of degree greater than 1.

(c) Deduce from (b) that F is not algebraically closed, hence any algebraically closed field
is infinite.

Solution:

(a) Suppose F[x]| has finitely many irreducible elements. Let fi,..., f, denote the ir-
reducible elements of F[x]. Define p(x) = fi(x)--- fu(x) +1. Then p(x) # fr(x)
for any k. Thus, p(x) is reducible. Since F[x] is a UFD, p(x) can be factored into
a product of irreducible elements. If fi(x) | p(x) in F[x], then fi(x) also divides
p(x) — fi(x) -+ - fu(x) = 1in F[x]. But then fi is a unit in F[x], contrary to the assump-
tion that f; was irreducible. Thus, p(x) is a reducible polynomial which cannot be
factored into a product of irreducibles in a UFD, a contradiction. Therefore, there are
infinitely many irreducible elements in F|x].
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(b) Suppose |F| = q. Note thatif p(x) € F[x] has degree 1 or is constant, then p(x) = ax+b
for some a,b € F. Thus, there are only 4> elements of F[x] and only finitely many
elements that are constant or have degree 1, there must be an irreducible element of
degree at least 2.

(c) If F were algebraically closed, then every irreducible polynomial in F[x] would have
degree 1. From (b), there is an irreducible polynomial in F[x] of degree at least 2. Thus,
F is not algebraically closed and every algebraically closed field is infinite.

O

7. Let Q C F be a field extension. Assume it is a Galois extension with Galois group
isomorphic to the symmetric group S3. Prove that F is the splitting field over Q for an
irreducible cubic polynomial f(x) € Q[x].

Solution: Let G = Gal(F/Q) = S3 & D¢ = (0,7: 0° = 7> = 1,07 = 70?). By the
Fundamental Theorem for Galois Theory, there exists a bijective correspondence between
the subgroups of G and the subfields of F containing Q. Note that (7) is a subgroup of G.
This subgroup is not normal since o0~ ! = 010? = 0?1 ¢ (7).

Therefore, if L is the fixed field of (7), then L/Q is not a Galois extension. Notice that
[L: Q] = [G: (1)] =3.Foranya« € L\ Q,

3=[L: Q] =[L: Q(a)] [Q(a): Q].

Since [Q(a): Q] > 1 and 3 is prime, [Q(a): Q] = 3 and [L: Q(a)] = 1,s0 L = Q(a). If
my(x) is the minimal polynomial of a over Q, then m,(x) € Q[x] is an irreducible cubic
polynomial. Note that this polynomial is separable since Q has characteristic 0. Clearly, the
splitting field of m,(x) over Q contains Q(«) (since m,(x) = 0). If Q(«) was the splitting
field of m,(x) over Q, then Q(«)/Q would be a normal, separable extension, i.e. Q(«x)/Q
would be a Galois extension, which is a contradiction.

Therefore, the splitting field of m,(x) over Q is a field E such that Q(«) C E C F. Note
that [F: Q(«)] = 2 by the Fundamental Theorem of Galois Theory. Therefore,

2= [F: Q)] = [F: E] [E: Q(a)]

Since E # Q(«a), [E: Q(a)] > 1. Thus, [E: Q(«)] =2, [F: E] =1, and E = F. This proves
that F is the splitting field of m,(x), an irreducible cubic polynomial in Q[x]. O

8. Let A be an 18 x 18 matrix over C with characteristic polynomial equal to (x — 1)®(x —
2)(x — 3)® and minimal polynomial equal to (x — 1)*(x — 2)*(x — 3)3. Assume (A —I)
has nullity 2, (A — 2I) has nullity 3, and (A — 3I)? has nullity 4. Find the Jordan canonical
form of A.
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Solution: Since (A — I) has nullity 2, there are two Jordan blocks associated to the eigen-
value 1. One of these must have size 4 since (x — 1)* is an elementary divisor of A.
Therefore, the other must have size 2. Since (A — 2I) has nullity 3, there are 3 Jordan blocks
associated to the eigenvalue 2. One of these blocks has size 4 so the other two must have
size 1.

Since the nullity of (A — 31)? is 4, the nullity of (A — 3I) can be at most 4. If the nullity
of (A —3I) is 1, there is only one Jordan block associated to the eigenvalue 3, which is
impossible since there is a Jordan block of size 2 (determined from the minimal polynomial).
If the nullity of (A — 3I) were 3, then there would be one block of size at least 2. This block
must have size 3 (by the minimal polynomial). But then the remaining two blocks must
have size 1, impossible as 6 # 3 + 1 + 1. If the nullity of (A — 3I) were 4, then there would
be no blocks of size at least 2, a contradiction.

Therefore, the nullity of (A — 3I) is 2, which implies there are two Jordan blocks with
A = 3. Each of these blocks has size 3. Therefore, the Jordan canonical form of A is

_ WO O OO OO ODOODOC OO oo oo

SO OO OO OO OO O OO OCOO K
QOO OO OO DODDODOCDOODOCO IO
N eNeleNeleoNoNeloNoNeNeoNeNeol ) ol
SO OO OO OO OO O OO R OOO
SO OO O OO OO OO R P, OOOOo
SO OO O OO OO ODOO R, OOO oo
OO OO OO DODIODDOD OO P NODODOOOOo
OO OO OO ODODORFRNOODODODOOO
SO OO O OO R PNODODODOOOoOOoOOo
QOO OO OO ONIOODODODDODOC OO OO
QOO OO OO NODODDODOODOCDO OO O
OO DO OO O NOODODDODDODOODODODOCDOoO OO
QOO O R WOOODODODOOoODOoO oo oo
QOO R WO OO ODODODODOoODOoOOoO o oo
QO R WO ODODODDODIDODDODDOODODODODOo oo o
ORP WO O OO DODDODIODDODIDOOODODODOoOoOo oo
WO O OO OO DODODODDODODOC OO oo

9. Let R be a Noetherian integral domain with the property that any ideal that can be
generated by 2 elements can actually be generated by 1 element”. Prove that R is a Principal
Ideal Domain.

Solution: The ring R is an integral domain by assumption to it suffices to show that every
ideal of R is principal. Since R is noetherian, every ideal of R is finitely generated. Let I

7Such a ring is called a Bézout Domain.
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be an ideal of R and let n be the cardinality of the smallest generating set for I. Suppose
n > 1. Let {x1,...,x,} be such a generating set. Then the ideal (x1, x2) can be generated
by a single element, i.e. (x1,x2) = (x) for some x € I. Leta € I be arbitrary. Then there
existry,..., 1, such that

a=7rx—+r3xz+---+1ryXy,

soa € (x,x3,...,%,). This proves that I C (x,x3,...,x,) and itis clear that (x, x3,...,x,) C
I,sol = (x,x3,...,x,) can be generated by n — 1 elements, contrary to the choice of n.
Therefore, n = 1 and the ideal I is principal. Thus, R is a PID. O

10.

(a) Let R be a commutative ring with identity. Assume that Z is a subring of R. You
have seen that this makes R into a Z-module. Assume that R is a finitely generated
Z-module. Prove that R is not a field.

(b) Find a field F such that the additive group (F, +) is a finitely generated Z-module.

Solution:

(a) Since Z is a noetherian ring and R is a finitely generated Z-module, R is a noetherian
Z-module. Suppose for the sake of contradiction that R is a field. Then R contains
the field of fractions of Z, i.e. Q C R. Since R is a noetherian Z-module, this implies
that Q is a finitely generated Z-module. It suffices to prove that Q is not a finitely
generated Z-module.

If Q were a finitely generated Z-module, then Q = (%, -, %f), where m; € Z,
n; € N, and ged(m;, n;) = 1foreachi € {1,...,k}. Consider the rational number
I
1+ny---ng

By assumption, there exist a; € Z such that

1
nl...nk

mq my
=m— 4+ a—.
nq Ny

Clearing denominators via multiplication by n; - - - ny, we obtain

nl...nk

725111111”2...” +...+amn1...n__
E— k KMk k-1

This is a contradiction as the right side is an integer while the left side is clearly a

non-integer. But then Q cannot be a finitely generated Z-module, contradicting the
fact that R is noetherian. Therefore, R is not a field.
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(b) Take F = Z/3Z. Then (F,+) is a finite Z-module, which is necessarily finitely
generated.

O
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1. Show that a group of order 105 is not simple.

Solution: Let 2, denote the number of Sylow p-subgroups of G. By Sylow’s Theorems,
n, =1 mod 3 and divides 35. Then n3 is 1 or 7. Similarly, ns =1 mod 5 and divides 21
so that 15 is either 1 or 21. If either n3, n5 were 1, then the corresponding Sylow p-subgroup
would be unique, hence normal. But then G would not be simple. Assume then that
n3, ns > 1. By Lagrange’s Theorem, any Sylow p-subgroup and Sylow g-subgroup, p # g,
must intersect trivially. Then these two Sylow subgroups constitute 21(4) +7(2) +1 =99
elements of G. Since a Sylow 7-subgroup exists, these 7 elements must form a Sylow
7-subgroup, which is unique. But then G is not simple. O

2. Let G be a group with subgroups H and K.

(a) Letx,y € H with x(H N K) = y(H N K). Prove that xK = yK.

(b) Show that [H : HN K] < [G : K|, where [G : K] denotes the index of K in G.
(c) If [G: K] and [G : H] are both finite, show that [G : H N K] is finite.

Solution:

(a) Observe that x(H N K) C xK since HN K C K. Similarly, y(H N K) C yK. Since
x(HNK) = y(HNK), this implies that xK N yK is not empty. Since cosets partition the
group G, this implies xK = yK.

(b) Let G/K denote the set of left cosets of K in G and H/(H N K) denote the set of left
cosets of HN K in H. Define a function ¢ : H/(HNK) — G/Kvia HN K — xK.

Part (a) shows that ¢ is well defined. We claim that ¢ is injective. If x,y € H with
xK = yK, then x~'y € K, so x~ly € HN K. This implies that x(H N K) = y(H N K).
But then ¢ is injective. But then

[H: HNK] = |H/(HNK)| < |G/K| =[G: K],
as desired.

(c) Observe that
[G: HNK] = [G: H][H: HNK] < [G: H][G: K].

Therefore, [G: H N K] is finite since both [G: H| and [G: K] are finite.
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(a) Let G be a finite abelian group and assume that m divides |G|. Show that G has a
subgroup of order m.

(b) Give an example to show that the result in (a) is false if G is not assumed to be abelian.

Solution:

(a) We proceed by induction on |G|. If |G| = 1 or |G| = 2, then the result is trivial. Now
suppose that |G| = n and the statement holds for k < n. Let d be a divisor of n. We
can write d = kp for some prime p and k € IN. By Cauchy’s Theorem, there exists a
subgroup H < G of order p. Since G is abelian, we can form the quotient G/ H. Now
|G/H| < |G| so that by the induction hypothesis, G/ H contains a subgroup of every
order dividing |G/H|. In particular, k | |G/ H| so that there is a subgroup of G/H of
order k. By the Correspondence Theorem, this subgroup corresponds to a subgroup
Ksuchthat H < K < G,K/H < G/H, and |K/H| = k. Since H is finite, this implies
|K| = k|H| = kp = d. But then there is a subgroup of order d.

OR

The result is obvious if |G| = 1, so suppose |G| > 1. Note the conclusion holds if G
is cyclic. Suppose that |G| = p™ for some positive integer m and prime p. It is clear
that G contains a subgroup of order p” and 1. Any other divisor of |G| is of the form
pl, where 1 < < m. Fix] € {1,2,...,m}. By the Fundamental Theorem of Finitely
Generated Abelian Groups,

G=2Z/p"Z XZ/pPZ X --- x Z]p™Z,

wherea; <ap < -+ <arandajg+---+ap =m. Let N = max{i: oy +--- +a; < I}.
Then
Z/pNZL X - X Z]pMZ

is a subgroup of G of order p*1* TN _If ;4 - - - + ayy = I, then the proof is complete.
Otherwise by the choice of N,

ot Fantany >l = anp >1—a;— - —ay,

which implies that p'~* =~ divides p*¥+. Therefore, Z/p*N+'Z contains a sub-
group H of order p'~*1—~*~_ Thus,

HXZ/p"NZ x ---xZ/p"Z

is a subgroup of G of order p!~“1 "~ pmt+an — yl This proves the result in the
case where |G| = p™.
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Now if |G| = plf e p;(’ , where the p; are distinct primes and k; > 0, then by the
Fundamental Theorem of Finitely Generated Abelian Groups,

G = Gy, X Gp, X -+ X Gy,
where |G, | = pfi for eachi. If m | n, thenm = p]f e p{l, where j; > 0 for each i. By
the work above, each G,, contains a subgroup H,, of order p/. Then

H = Hp, X -+ X Hp,
is a subgroup of G of order p]f e p{l = m, as required.

(b) Take G = As. Note that |G| = 60 and that 30 | 60. If G contained a subgroup H of
order 30, then [G: H| = % = 2, which would imply that H is normal in G. But G is a

simple group so that this is impossible. Then G does not contain a subgroup of order
30.

O

4. Let A € M,(C) be a matrix over the complex numbers C with A* = —A, where A*
denotes the complex conjugate transpose of A. Let (x,y) = x*y be the usual inner product
on Col, (C).

(a) Show that the eigenvalues of A are purely imaginary.

(b) If A and p are distinct eigenvalues of A with eigenvectors v and w in Col, (C), respec-
tively, show that (v, w) = 0.

Solution:

(a) Let A € |C be an eigenvalue of A with eigenvector v € C". Notice that A*v = —Av =
—Av, which implies that —A is an eigenvalue of A* with eigenvector v. We compute
the quantity (v, Av) in two different ways:

(v, Av) = (v, Av) = A(v, V)

(v, Av) = (A*v, v) = (—Av, v) = —A{v, V).
Since v is nonzero, (v,v) is nonzero. Therefore, A = —A,ie. A+ A = 0. But then
Re A = )‘zi/\ = 0 so that A is purely imaginary.

(b) By (a), —A is an eigenvalue of A* with eigenvector v. Observe that since A is purely
imaginary, —A = —(—A) = A. We compute (v, Aw) in two different ways:

(v, Aw) = (v, p) = p(v, w)
) = (A%, w) = (—Av, w) = —A(v, w) = A(v, w).

(v, Aw
Therefore, u(v, w) = A(v, w). Since A # u, (v, w) = 0.
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5. Let A € M, (C) be a matrix over the complex numbers C.

(a) If A is similar to a diagonal matrix and f(x) € C[x] is a polynomial, show that f(A) is
similar to a diagonal matrix.

(b) If A?issimilar to a diagonal matrix, does it follow that A is similar to a diagonal matrix?

Solution:

(a) Let D € M,(C) be a diagonal matrix which is similar to A. Then there exist P € GL,(C)
such that PAP~! = D. Observe that D¥ = PA¥P~! is a diagonal matrix for all k € IN.
Write f(x) = a,x" 4+ - - - + a1x + ap. Then

Pf(A)P~! = P(a,A" + - +apgl)P~?
= a,PA"P 1 + - +agl
=a,D"+---4apl

is a sum of diagonal matrices so that Pf(A)P~! is a diagonal matrix. But then f(A) is
similar to a diagonal matrix.

(b) A need not be similar to a diagonal matrix. Take

00
4= o
Then A% = 0 so that A? is a diagonal matrix. But the characteristic polynomial of A is

ca(x) = x%. Since A # 0, the minimal polynomial of A is m(x) = x2. Since m(x) has a
repeated root, A is not diagonalizable.

O]

6. Let i € C be the square root of —1.
(a) Prove that Z[i] := {a+ bi: a,b € Z} is isomorphic to Z[x]/ (x> + 1).

(b) Let p € Z be a prime integer. Prove that p is a prime element in Z[i]. (a “Gaussian
prime”) if and only if x> + 1 is an irreducible element of F,[x]. (Here FF,, is the field
with p elements. You may use without proof the fact that IF,[x] is a PID.)

Solution:
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(a) Define a function f : Z[x] — Z]i] via p(x) + p(i),i.e. f is evaluation ati. It is clear that
f is ahomomorphism. For a + bi € Z[i], consider p(x) = a+bx. Then f(p(x)) = a+bi
so that f is surjective. Finally as i2 +1 = 0, it is clear that (x> + 1) C ker f. If
p(x) € ker f, write p(x) = r1(x) - - - r,(x) for irreducible polynomials rx(x) € Z[x]
(this exists since Z[x] is a UFD). The only irreducible polynomials in Z[x]| with i as a
root are a(x* + 1), where a € Z (since the minimal polynomial for i is x> 4+ 1). Hence,
x? + 1 divides p(x) and p(x) € (x> +1). But then ker f = (x> +1). By the First
Isomorphism Theorem, Z[x]/ (x> + 1) & Z[i].

(b) This follows by abstract nonsense:

p prime in Z[i] <= Z[i]/(p) is an integral domain

x*+1)

—————~— is an integral domain

——————= is an integral domain

<= Z[x]/(x* + 1, p) is an integral domain
Z[x]/(p)
(x24+1)
(Z/p)[x] . ) .

= G211y is an integral domain

<= F,[x]/(x* + 1) is an integral domain

is an integral domain

<= (x* 4+ 1) is a prime ideal of F, [x]
<= (x* + 1) is maximal ideal in F, [x]
<= x* + lisirreducible in FF[x]

where we have used that IF,[x] is a PID (so an ideal in IF[x] is prime if and only if it is
maximal).

O

7. Let w € C be a primitive 8" root of unity and set F = Q(w).
(a) Prove that there are exactly three subfields E C F with [E : Q] = 2.

(b) For each E above, find (with justification) an element a € E such that E = Q(«).

Solution:
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(a)

(b)

Since w is a primitive 8" root of unity, F contains all the 8 roots of unity, which implies

that F/Q is the splitting field of the separable polynomial p(x) = x® — 1. This implies
that F/Q is a Galois extension. Note that p(x) = (x* +1)(x? +1)(x + 1)(x — 1). Since
w ¢ {£1,+i}, it follows that the minimal polynomial of w is m(x) = x* + 1. Thus,
[F: Q] =4 =|Gal(F/Q)]|.

Without loss of generality, assume w = ¢2™/8 = /4, If ¢ € Gal(F/Q), then o is
uniquely determined by o (e™/4). Note that ¢ permutes the roots of m(x), so the
possibilities are

n(w)=w
n(w) =w®
n3(w) = w’
oy(w) = .

Note that 07 is the identity and that every other element has order 2. For example,
03 (w) = 0(w?) = 0(w)® = &’ = w, which implies that 03 = ¢7. Thus, Gal(F/Q) =
V=2 Z/27 x Z./27Z. Since F/Q is a Galois extension, the Fundamental Theorem of
Galois Theory implies that there is a bijection between the subgroups H C Gal(F/Q)
and the fields E such that Q C E C F. Since Gal(F/Q) contains three subgroups of
index 2, there are exactly three subfields E C F such that [E: Q] = 2, as required.

As in part (a), we can assume
_ o/t _ T (T 1 .1
w cos (—4) +1sin (—4) —ﬁ \/§

Therefore, F = Q(w) = Q (% + 1%) = ( 4+ ) \ﬁ—i— 1\/5) We claim

that F = Q(v/2,i). It is obvious that F C Q(+/2,i). Observe that
(V2+iv2) (W) =1

which shows that % € F. Hence, v/2 — i1/2 € F. This implies that

S [(Va+ivD) + (Vi-ivD)| = VieE.

Therefore,

leﬁ (V2+iv2) - (V2-iv2)| =i€F.

Thus, F = Q(\/E, i), as claimed. Therefore, the three subfields E1, E,, Es C F satisfying
[Ei: Q] =2fori € {1,2,3} are E; = Q(v/2), E2 = Q(i), and E3 = Q(iv/2).
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O]

8. Let R be a commutative ring and M an R-module. An R-submodule N of M is called
maximal if N # M and there are no proper R-submodules of M properly containing N.

(a)

(b)

Suppose M is finitely generated. Prove that there exists at least one maximal R-
submodule of M.

Prove that if N is a maximal R-submodule of M, then M/N = R/m, where m is a
maximal ideal of R.

Solution:

(a)

(b)

Let M denote the collection of all proper R-submodules of M. The set M is partially
ordered under the inclusion relation. Let C be a chain in M. It needs to be shown that
C has an upper bound in M. Let

L=[JC

ceC
The first claim is that L is a submodule of M. It is obvious that L is nonempty. If
x,y € L, then there exists C € C such that x € C and there exists C" € C such that
y € C'. In this case, either C C C’ or C' C C. Without loss of generality, assume that
C C C'. Then x,y € C’, which implies that x + y € C' C L. Therefore, L is closed
under addition. Now let x € L, r € R. Then there exist C € C such that x € C. Since C
is a submodule of M, rx € C C L. This shows that L is a submodule of M, as claimed.

We need now show that L is a proper submodule of M. Since M is finitely generated,
there exists a finite generating set {xy,..., x¢}. If L = M, then there exist submodules
C, € Csuch thatx, € C,. Let C be the maximal element of the set {C,,: n € {1,...,k}}.
Then {x1,...,x¢} C C,so C = M. This contradicts the assumption that C was a proper
submodule of M. Therefore, L is a proper submodule of M. Then an arbitrary chain C
has an upper bound in M. By Zorn’s Lemma, M has a maximal element, which must
be a maximal R-submodule of M.

By the Correspondence Theorem, the R-submodule of M/ N are in one-to-one corre-
spondence to the R-submodules of M containing N. Since the only R-submodules of
M containing N are N and M, the only R-submodules of M/N are 0 and M/N. In
other words, M/ N is a simple R-module.

Let x € M/N be nonzero. Then the R-submodule RX is nonzero. This implies that
M/N = Rx. Then the function f : R = M/N given by r — rX is surjective. By the
First Isomorphism Theorem, R/ ker f = M/N. Since R/ ker f is a simple R-module,
the Correspondence Theorem implies that ker f is a maximal R-submodule of R. Since
the R-submodules of R are exactly the ideals of R, ker f is a maximal ideal of R, as
required.
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9. Reduce the matrix

3 1 —4
A=112 =3 1
-4 6 -2

to diagonal form over Z and express the cokernel of A (that is, Cols3(Z)/image(A)) as a
direct sum of cyclic groups.

Solution: Perform the following row and column operations:

3R1+Ry — Ry
—6R1+R3 — R;
Rr + Rz — R3
C1+C3 — Cs
-3C+C — G
Co+C3 — Cs
Ri+— Ry

1 0 O
0 11 0
0 0 O

Therefore, i m A = Z x 11Z x 0 = Z x 11Z. Also, coker A = Col3(Z)/im A =2 Z/11Z x
2/7 xXZ/0Z =7 x Z./117Z. U

This obtains the matrix

10. Let F be a finite field. Prove that the multiplicative group F* of non-zero elements of F
is a cyclic group. (Hint: a polynomial of degree n over a field has at most 7 roots.)

Solution: It is clear that F* is a finite abelian group. Let C, denote the cyclic group with r
elements. By the Fundamental Theorem of Finitely Generated Abelian Groups,

FX=C, x-xCp,

forsomek > 1andry | rp | -+ | r¢. We claim that k = 1. Suppose to the contrary that k > 2.
Consider the polynomial p(x) = x™ — 1. Any element of F* is of the form (4,1,1,...,1)
and is clearly a root of p(x). This accounts for rq distinct roots of p(x). Since r; | r, and
C,, is abelian, C,, contains a subgroup H or order ri. Now every element of the form
(1,a,1,...,1) witha € H is a root of p(x). This implies that there are at least 2r; roots of
p(x), but p(x) has degree r1, a contradiction. Therefore, k = 1 and F*C,,. Thus, F* is a
cyclic group.
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OR

Let g = |F| so that |F*| = g — 1. Let m be the maximal order of the elements of F*. By
Lagrange’s Theorem, m | (g — 1). This implies m < g — 1. We claim m = g — 1 so that we
only need show g — 1 < m. In any finite abelian group, the order of every element divides
the maximal order of all the elements. Then every element x € F* satisfies x” = 1. Then
every element of F* is a root of x” — 1. The number of possible roots of x™ — 1 is m so that
g —1 < m. But then m = q — 1. Therefore, some element of F* has order g — 1. Hence, F*
is cyclic.

OR

We first prove that if G is a finite group with n elements such that for every divisor 4 of
n, the number of elements dividing d is at most d, then G is cyclic.

Suppose d | n and let G; be the set of elements of G with order d. If G; # @, there
isay € G;. Wehave (y) C {x € G: x¥ = 1}. But (y) has cardinality d. But then
(y) = {x € G: x* = 1}. Then G, is the set of generators of (y) of order d. Therefore,
#Gy = ¢(d).

We have shown G is either empty or possesses cardinality ¢(d) for each d | n. Then

n=#G =) #G; <) ¢(d) =n

d|n dln

Therefore, #G; = ¢(d) for each d | n. In particular, G, # @. But then G is cyclic.

Now in our case we have G = F*, a finite group. If |[F*| = nand d | n then x? = 1 if
and only if ¥/ — 1 = 0 as in the ring. This polynomial can have at most d roots. But then
the claim above applies so that F* is then a cyclic group.

OR

Suppose that |[F*| = n and d | n. Let ¢(d) denote the number of elements of order
d in F*. Suppose there exists an element x € F* of order d. Consider (x). Then every
element of (x) satisfies y? = 1. But the number of solutions of x? = 1 is at most d (since x
is a solution if and only if ¥ — 1 = 0). Then (x) = (x € F*: x¢ = 1}. But then ¢(d) = 0 or

$(d). But
;wd) =n= |Z4><d)
n dln

so that ¢(d) = ¢(d) for all d | n. In particular, ¢(n) = ¢(d), meaning there exists an
element of order n in F*.

OR
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Let G := F*. By the Fundamental Theorem of Finitely Generated Abelian Groups, we
have
G=Z/p'Z x---xXZ/p}'Z

where the p; are primes, not necessarily distinct, and 1, > 1. Each Z/p"Z is a cyclic group
of order p;". Let m = lem{p",...,p/"}. We know m < pi'---p}". If a; € Z/p}"Z, then

afil = 1, hence a" = 1. But then for alla € G, a™ = 1, i.e. every element of G is a root

of x™ = 1. But G contains p|* - - - p;" elements while the polynomial x — 1 has at most
m roots in F. Then m = p|'---p;". As the p; are distinct, the group G is isomorphic to
Z/mZ.

OR

Let G := F* and n = max{|y|: y € G}. Let |G| = N. Choose a € G so that |a| = n.
If we can show that n = N, then |a| = |G| which implies G = (a) and G is then cyclic.
Now a € Gso that [a| = n | Nand n < N. We need show n > N. In any abelian
group with elements of finite order 7, s, the group contains an element of order lem(, s).
Then G contains an element of order lem(|a|, |g]) so lem(n, |¢|) < n. But then |g| | n and
then ¢" = 1 for every ¢ € G. Then x — g is a factor of the polynomial x"* — 1 for every
g € G. Therefore, [Tgeq(x — g) divides x" — 1. However, [],cg(x — g) has degree N so
that N < n. O
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August 2012
1.

(a) Let G be a group and let g € G be an element of order n > 0. For any integer r, prove
that the order of ¢" is 5, where d = ged(n, 7).

(b) Find and describe up to isomorphism the group of automorphisms of a cyclic group of
order 8.

Solution:

(a) Since d divides r, ; € Z. Therefore,
(gr)n/d — g(rn)/d — (gn)r/d _ 1r/d —1.

If ( gr)k = grk = 1 for some k € N, then n divides rk. Therefore, & divides k. Since &
and % are relatively prime, % divides k, this impies k > 4. Thus, [¢"| = 4, as required.

(b) Note that any cyclic group of order 8 is isomorphic to Z/8Z. Consider ¢ € Aut(Z/8Z).
The homomorphism ¢ is completely determined by ¢(1 + 8Z). Now ¢ is an isomor-
phism if and only if ¢(1 + 8Z) has order 8. Since k + 8Z = k(1 + 8Z), part (a) implies
that this is only the case if (k,8) = 1. Therefore, there are four automorphisms of
Z/8Z:

¢1:1+8Z—1+8Z
¢r:1+8Z > 3+8Z
¢3:1+8Z > 5+8Z
$s:1+8Z — 7+8Z

Note that the element ¢; is the identity and that the order of every other element is 2.
Therefore, Aut(Z/8Z) = Vy = Z/27Z x Z/2Z, the Klein 4-group.

O

(a) Let T be a linear operator on a two-dimensional vector space V over a fixed field F.
Assuming T is not multiplication by a scalar, prove that there is a vector v € V for
which (v, T(v)) is a basis for V and describe the first column of the matrix of T with
respect to that basis.
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(b)

(b)

Let A = K Z} be a 2 x 2 matrix over a field F. Prove that there exists an invertible

2 x 2 matrix E for which B= EAE~! = [2 ﬂ ,unlessb=c=0and a = d.

Since V has dimension 2, it is sufficient to show that there exists a vector v € V such
that (v, T(v)) is linearly independent. Suppose to the contrary that this is not the case.
Then forallv € V, Tv = A,v, where A, € F depends on v. Let B = {ej,¢,} be a basis
for V. Then

T(e1+e2) =T(e1) + T(e2) = Aeje1 + Aeyer = Agytey + Aeyter2-

Since any vector in V can be written uniquely as a linear combination of e; and e, this
implies that A, = A¢, 4, = Ae,. Let A = A,,. Then for any v € V, v = aje; + azeqa for
some a1,a; € F. Now

T(v) = T(a1e1 + azexa) = a1T(e1) + axT(e2) = ajAe; + axAer = A(areq + azeza).

This implies that T is multiplication by a scalar, a contradiction. Therefore, there exists
v € V such that Tv # Av for all A € F, which implies that (v, Tv) is linearly dependent.
Thus, there exists v € V such that (v, Tv) is a basis for V. Let 5’ denote the basis. The
first column of T with respect to B’ is

T(@))s = [0-0+1-T(0)]s = (j’) .

6 2)

for any a € F. We claim that the linear transformation represented by A is not
multiplication by a scalar. Suppose to the contrary that Av = Av for some A € F and all
v € F2. Then A is an eigenvalue of A with multiplicity 2. Therefore, the characteristic
polynomial of A is c(x) = (x — A)? and the minimal poynomial of A is m(x) = x — A.
Now A is similar to the matrix AL. If A # 0, then A, € Z(GLy(F)), so A = AL. If
A = 0, then A is similar to the zero matrix, which implies that A is the zero matrix. In
either case, we have a contradiction. This proves the claim.

Suppose that A is not of the form

By part (a), there exists a basis of F? of the form (v, Av). Writing A as a matrix with
respect to this basis implies that A is similar to a matrix of the form

0 =*
o= (7 1),
so there exists an invertible matrix E such that B = EAE L.
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3.
(a)

(b)

A set X consisting of n elements is a left G-set, for some group G. Show that there
exists a homomorphism G — S;;, where S, is the symmetric group.

If n = 4 and G is a cyclic group of order 9, how many distinct structures of a left G-set
are possible on X? How many nonisomorphic G-sets are among them? Describe the
orbits for each of the G-sets.

Solution:

(a)

(b)

For every g € G, define a function 0y : X — X via 0g(x) := g - x. We claim that oy
is a permutation of X (a bijection X — X). If 04 (x) = 0¢(y), then g-x = g - y. After
multiplication by ¢! on the left on both sides, we have x = y. But then 0y is injective.
Now forx € X, 0g(g7'-x) =g- (g1 x) = (3¢ ') - x = x. Therefore, 0, is surjective.
Therefore, 0y : X — X is a bijection so that 0, is a permutation of X.

Let Sx denote the symmetric group on X, and define ¢ : G — Sx via g — 0;. For any
sheG xeX,

Ten(x) = (§h) - x =g - (h-x) = g ou(x) = g (on(x)) = (05 0 oy) (x).

Thus, Ogn = 00y, SO that ¢ is a homomorphism. Since Sx = S,,, there exists a homo-
morphism ¢ : G — S,,.

The number of distinct possible left G-sets on X is equal to the number of homomor-
phisms ¢ : G — S4. Let ¢ be a generator of G. Then ¢ is completely determined by
#(g). Notice that ¢(¢)? = ¢(¢°) = ¢(1) = 1, so |¢(g)| divides both 9 and 24. Hence,
either |p(g)| = 1or |¢p(g)| = 3. If |p(g)| = 1, then ¢(g) = 1 and the action is trivial, i.e.
every element of X is a fixed point.

If |¢(g)| = 3, then ¢(g) is a 3-cycle. Since there are (3) - 2 = 8 distinct 3-cycles in Sy,
there are a total of 9 distinct choices for ¢(g), so there are 9 distinct structures of a left
G-set on X.

Now write X = {a,b,c,d} and Y = {d,V/,c/,d'} and suppose ¢ : G — Sx and
¢ : G — Sy are homomorphisms such that ¢(g) = (a b c¢) and ¢(g) = (a’ b’ ¢’). Then
it is easy to see that the function

a—a b—b c—cd d—d

is an isomorphism of G-sets. Taking X = Y, it follows that there are only two non-
isomorphic G-sets on X: the trivial one and sending a generator to a 3-cycle.
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4.
(a) Prove that a group of order 85 is cyclic.

(b) Prove that a group of order 55 is generated by two elements x, y satisfying x!! = 1,1° =
1,and yxy~! = x”, for some r, 1 < r < 11. Show that r = 2 is not possible. You need
not render a decision about the possibility of » = 1 or 3 < r < 10. Is it a simple group?

Solution:

(a) Let n,(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
n17(G) =1 mod 17 and divides 5. Then ny; = 1. By similar logic, we have n5(G) = 1.
But then the Sylow 5-subgroup and the Sylow 17-subgroup are unique, hence normal.
Furthermore by Lagrange’s Theorem, the intersection of these groups must be trivial.
Call these subgroups H and K, respectively. Notice that HK is a subgroup of G of

order |HK| = |\I:1‘m|1§|| = 125 = 85. Let x € H and y € K be non-identity elements. We
have G = H x K, which is cyclic generated by (x,y). Alternatively, (xy) = G since
its order is lem(|x|, |y|) = 85. Alternatively, the unique Sylow 5-subgroup and Sylow
17-subgroup make up 17 +5 — 1 = 21 elements of G. The remaining elements of G

must be of order 85, any of which will generated G. Therefore, G is cyclic.

OR

We claim that G must be abelian and the result will follow: if G is abelian, by Cauchy’s
— [H[IK]
= JHAK]
x and y, respectively. But then xy is an element of G of order lem(5,17) = 85. But then
G is cyclic. We now need show that G is abelian.

Theorem (or considering |HK]| ), G must have elements of order 5 and 17, say

If G is nonabelian, we know Z(G) < G and must have order 1, 5, or 17 by Lagrange’s
Theorem. However, |Z(G)| # 5 or 17 since then G/Z(G) would be cyclic, implying
that G is abelian. By the Class Equation

Gl =1Z(G)| +|Cc(x1)| + -+ +[Co(xr)l,

where x1, .. ., x, are distinct representatives for the conjugacy classes of G. Let |Cg (x;)| =
n;. Wehave8 =14+ny+--- +n,.

Now let ¢ € G be a nonidentity element. If |g| = 85, then G is cyclic. If |g| = 5, then
Cg(g) has order at least 5 and dividing |G|. Since Z(G) = {1}, we have |Cs(g)| =
85/5 = 17. Mutatis mutandis, if |¢| = 17, then |Cs(g)| = 5. Then one of 1; is 5 and
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(b)

another 17. In particular, n; > 5 so that r < 16, i.e. G has at most 17 conjugacy classes.
By a result of Burnside’s in Representation Theory, if |G| is odd, then |G| = r mod 16,
where 7 is the number of conjugacy classes. In our case, (r +1) = 85 mod 16 and
r+1 < 17. Butthenr = 4. Hence 84 = 1+ ny + - - - + ngy with n; € {5,17}. This is
impossible since the left side is at most 69. But then it must be that G is abelian, and by
the work above, cyclic.

Let G be a group of order 55 = 5 - 11. Notice that n11(G) =1 mod 11 and divides 55.
This implies 111 (G) = 1. Therefore, G has a unique, hence normal, Sylow 11-subgroup.
But then G is not simple. Let P5 denote a Sylow 5-subgroup of G and P;; denote the
unique Sylow 11-subgroup of G. Both Ps and Pj; are cyclic, say Ps = (y) and P11 = (x).
Then |Ps N Pj1| = 1 by Lagrange’s Theorem, so

|Ps| |P11|

PsPy| = 21—
‘ 5 11| |P5ﬂP11|

55.

Therefore, PsP;; = G, which implies that xy generates G. Since Pj; is normal in G,

yxy~! € Py; which implies yxy~! = x” for some r, 1 < r < 11. Note that » = 11 is not

possible since |x"| = |yxy~!| = |x| = 11 # 1. Suppose r = 2, then x?> = yxy . Since
5 _

y=1

x=yxy = ytyxy Ny
— a2y
= Pyxdy 2
=y (yxry )y
= Pty
= Pyxty Ly 2
=y (yxy )y
_ 2,82

= yaloy~ = (yay1)16 = 132 = 410,

Thus, x° = 1, a contradiction to the fact that |x| = 11. Then r = 2 is not possible,
leaving 3 < r < 11.

O]
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5. Prove that an n X n complex matrix A is Hermitian if and only if X*AX is real for all
complex vectors X; here * denotes the conjugate transpose.

Solution: Assume that A is Hermitian, i.e. A* = A. Forany X € C",
(X*AX)* = X*A*X*™ = X*AX.

Viewing X*AX as a complex number in the obvious way, this implies X*AX = X*AX.
Hence, X* AX is real.

Now assume that X*AX is real for all X € C". Let {ey,...,e,} denote the standard
basis for C". Let A = (aij). By assumption, e; Ae; is real for each index i. Since a;; = e} Ae;,
a;isreal for1l <i <wmn,ie. a; = a;.

Now take X = e; + ¢; for indices i, j. By hypothesis, X* AX is real. Notice that

X*AX = (81' + e]')*A(ei + 8]) = e;"Aei + e;‘Aej + e;‘Aej -+ E;FAEZ' = aji + ajj + ajj + aj;.

Furthermore by assumption, ¢; Ae; and e; Ae; are real. This implies that a;; + aj; is real.
Thus, Im(a;;) = —Im(aj;).
Take X = ie; + ¢; for indices i, j. By assumption, X*AX is real. Now
X*AX = (iei + ej)*A(z'ei + ej)

= —iej Aie; — iej Aej + e Aie; + ¢j Ae;

= ¢; Ae; +e; Aej +i(ej Ae; — ef Aej)
By assumption, e/ Ae; and e} Ae; are real, so i (e}“Aez- — e Ae;) is real. This implies i(a;; — a;;)
is real. But then Re(a;; — a;;) = 0 which implies Re(a;;) = Re(a;;). Since Re(a;;) = Re(aj;)

and Im(a;;) = —Im(aj;), a;; = aj; forany 1 < i,j < n. But then A = A*, i.e. A is Hermi-
tian. ]

6. Determine whether each of the following ideals is a maximal ideal in C[x, y]. Each is
worth 5 points.

@ (x=1)+y* =L (x+1) > +y* = Lx* +(y—1)* =L+ (y +1)* = 1)
(b) <x2+y2—9,x2+(y—4)2—25,x2+(y+4)2—25)

Solution:

(a) Graphing thecircles (x —1)2+1y2 =1, (x+1)?>+y*=1, 22+ (y—1)2=1,x>+ (y +
1)2 = 1 gives Figure 1, seen below.
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Figure 1: Graphical representations of the ideal ((x —1)2 +y*> — 1, (x + 1)2 +y> — 1, x> +
(y—1P2-1Lx*+ (y+1)*-1).

(b)

Since these circles intersect at the origin, the ideal is the ideal (x, y), which is maximal
since C[x,y]/(x,y) = C is a field. Alternatively, note that (x, y) is contains the given
ideal. Observe
(P +y-17-1) = (P +(y+1)?-1) = 4y
(k=124 =1) = ((x+ 1) +y* - 1) = —4x
But then (x,y) is contained in the given ideal. Therefore, (x,y) = ((x — 1)?> + y* —

L(x+1)2+y>—-1,x>+(y—1)2?-1,x>+ (y+1)> — 1) and (x,y) is maximal as
Clx,y]/(x,y) = Cis afield.

Graphing the circles x> +y? = 9, x2 + (y — 4)? = 25, and x% + (y + 4)? = 25 gives
Figure 2, seen below.
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Figure 2: Graphical representations of the ideal (x> +y* — 9,x% + (y — 4)? — 25,x% + (y +
4)2 — 25).

The circles intersect at the points (3,0) and (—3,0). This implies that the given ideal is
(3+x,y) N (3 — x,y) which is not maximal since it is properly contained in the ideal
(34 x,y).

O

7. Let R be a commutative ring with identity and let I be a nonzero ideal of R. This makes
I into an R-module. Prove that I is a free R-module if and only if I is a principal ideal
generated by an element that is not a zero divisor.

Solution: Suppose that I is a free R-module. There exists a basis B for I. Recall that if
B is a basis for I, every element in I can be written uniquely as a linear combination of
elements of B. We claim |B| = 1. If |B| > 1, then we can choose distinct x,y € B. Then
0=0-x+0-y=y-x+ (—x) -y, a contradiction to the fact that 3 is a basis. Therefore,
|B| =1,i.e. B={x} forsome x € I. Itis clear that I = (x). If rx = 0 for some r € R, then
rx = 0 = Ox, a contradiction to the fact that B3 is a basis. Hence, x is not a zero divisor.
Suppose that I = (x) is a nonzero ideal, where x is not a zero divisor. We claim that
{x} is a basis for I as an R-module. It is clear that every element of I is of the form rx for
some r € R. It remains to show that this expression is unique. If rx = sx for somer,s € R,
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then

rx —sx =20
(r—s)x=0

Since x is nonzero and not a zero divisor, r —s = 0. Thus, r = s, proving uniqueness.
Therefore, I is a free R-module. O

8. A 9 x 9 matrix M with complex entries has characteristic polynomial equal to (x —
1)*(x —2)°.

(a) List all the possible minimal polynomials for M.

(b) Of all the possibilities in (a) which one(s) lead to the largest number of possible Jordan
Canonical forms for M?

Solution:

(@) The minimal polynomial need have roots x = 1 and x = 2, i.e. divisors x — 1 and x —2
and divide the characteristic polynomial. Then there are 20 possibilities: {(x — 1)i(x —
2):1<i<4,1<j<5}

(b) Let m(x) denote the minimal polynomial of M. The number of possible Jordan canoni-
cal forms is the same as the number of possible elementary divisors. For (x — 1), let k
denote the power of (x — 1) in m(x). Note that k is the largest power of (x — 1) that
can be an elementary divisor. If k = 1, there is only one possibility for the elementary
divisors associated to the eigenvalue 1: (x — 1) four times. If k = 2, there are two possi-
bilities: (x — 1), (x — 1), (x —1)? or (x — 1)? twice. If k = 3, then the only possibility for
the elementary divisors is (x — 1), (x — 1)%. If k = 4, then the only possibility for the
elementary divisors is (x — 1)*. Therefore, the most possible Jordan canonical forms
will occur when k = 2.

Let j denote the power of (x —2) in m(x). If j = 1,4, or 5, then there is only one
possibility for the elementary divisors (similar reasoning to above). If j = 2, then there
are two possibilities: (x —2)?, (x —2)%, (x —2) or (x —2), (x — 2), (x —2). If j = 3,
then there are two possibilities: (x —2)3, (x —2)% or (x — 2)3, (x —2), (x — 2).

Thus, the largest number of possible Jordan canonical forms occurs when k = 2 and
j = 2 or j = 3. Thus, the two minimal polynomials that leads to the largest number
of Jordan canonical forms is m(x) = (x — 1)?(x — 2)? and m(x) = (x — 1)?(x — 2)3,
which each lead to 4 possible Jordan canonical forms.

O]
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9. Find a primitive element for the following field extensions. Be sure to prove it is a
primitive element. Q C Q(v/2,). As usual i* = —1.

Solution: We claim Q(v/2,i) = Q(v/2 +1i). Since v2,i € Q(v/2,i), V2 +i € Q(V/2,i).
Since Q C Q(\/Zi), it follows that Q(ﬁ+ i) C Q(\@,i). Observe that

(V2+1i) (ﬁ;i) 2l

3

Therefore, ‘/%_i € Q(v/2+1). It follows that v/2 — i € Q(v/2 +i). Thus,

%((\fz+i)+(\f2—i)) =V2e€Q(V2+i)
%((\@H)_(\Fz—i)) =ieQ(V2+i)

Since Q(v/2 + i) contains Q, v/2, and i, Q(v/2,i) C Q(v/2 + i). Since the reverse contain-
ment holds, Q(v/2,i) = Q(v/2 +1i), i.e. /2 + i is a primitive element for the given field
extension. O

10. Let F C E be a finite extension of fields of characteristic 0.
(a) Prove that there exists a field K D E such that F C K is a finite Galois extension.

(b) Prove that there are at most finitely many distinct fields L with F C L C E.

Solution:

(a) Since F C E is a finite extension of fields, E = F(ay, ..., &,) for some n € IN and some
collection w; € E algebraic over F. Fori = 1,...,n, let m,, (x) denote the minimal
polynomial of a; over F. Let

m(x) = Hm<>

and let n = degm(x). Let K be the splitting field of m(x) over F. Note that E C K since
F C Kandw; € Kfori=1,...,n. The extension F C K is finite since [K: F] < n! < co.
Since F and K are fields of characteristic 0, the extension F C K is separable, and this
extension is also normal since K is the splitting field of a polynomial m(x) € F|x].
Hence, F C K is a normal, separable extension, which implies that F C K is a Galois
extension, as required.
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(b) Let K be as in (a) and let G = Gal(K/L). Then
|G| = [K: L] < o0

so that G is a finite group. This implies that G has finitely many subgroups. By the
Fundamental Theorem of Galois Theory, there is a bijection between subgroups of G
and fields L such that F C L C K. Hence, there are only finitely many such fields. In
particular, there are only finitely many distinct fields F C L C E.

O]
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January 2013

1. Let G be a finite group and p € Z a prime integer.

(a) Write down the characteristic equation for G and explain the notation.

(b)

(©)

If |G| = p for k > 1, show that | Z(G)| # 1, where Z(G) denotes the center of G.
If |G| = p?, show that G is abelian.

Solution:

(a)

(b)

(©

The Class equation for G is

Gl = 1Z(G)| + é[c: Colar)

where the Z(G) is the center of G, C(x) is the centralizer of x in G, and the summation
is over ay, . .., a, representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G: Cg(a;)] > 1 since a; ¢ Z(G).

The Class equation for G can be rewritten as

r

1Z(G)| = |G| - ;[Gi Cc(a;)].

Each term on the right hand side is a divisor of |G| = p*. Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so
that |Z(G)| # 1.

By part (b), |Z(G)| # 1. Since |Z(G)| divides p?, either |Z(G)| = p or |Z(G) = p>.
Therefore, either |G/Z(G)| = p or |G/Z(G)| = 1. In the former case, G/ Z(G) is then
cyclic by Lagrange’s Theorem so that G is abelian, and in the latter case Z(G) = G so
that G is abelian.

The fact that G/Z(G) is cyclic implies G is abelian deserved a proof: if G/Z(G) is
cyclic, there is a generator Z(G) for some « € G. Leta,b € G. Thena = a"z, b = o™z’
for some n,m € N, z,z' € Z(G). Thus,

ab = a"za"7 = a"a"zz' = a7’z = a7 0"z = ba,

which implies that G is abelian.
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2. Show that there is no simple group of order 30.

Solution: Let 2, denote the Sylow p-subgroup. By Sylow’s Theorem, n5 =1 mod 5 and
divides 30, so that it must be 1 or 6. Similarly, n3 = 1 mod 3 and divides 30 so that
np is 1 or 10. If either ns or n3 is 1, then the Sylow 5-subgroup or Sylow 3-subgroup,
respectively, is unique, hence normal.By Lagrange’s Theorem, the intersection of any Sylow
5-subgroup and Sylow 3-subgroup is trivial. But if n5,n3 > 1, then G contains at least
4.6+2-10+ 1 = 45 elements, a contradiction. Then one of #ns, 13 is 1 so that G contains a
normal subgroup and cannot be simple. O

3. Assume V is a finite dimensional vector space over the complex numbers C with a
(positive definite) Hermitian form ( , ) and let B = {v1,v,...,v,} be an orthonormal
basis for V. Assume T : V — V is a linear transformation. What condition must the matrix
of T with respect to B satisfy in order for (T(u), T(v)) = (u,v) forallu,v € V.

Solution: Let A denote the matrix of T with respect to B. Then for any indices 7, j,
1, i=j,
0, otherwise

(A(vi), A(v))) = (vi, vj) = {

On the other hand, if a; denotes the i column of A, then

(A(vi), A(v))) = (ai,a;).

Combining these two observations, it follows that the columns of A must form an orthonor-
mal basis for V. Therefore, A is an orthogonal matrix. O

4. Let V be a finite dimensional vector space over a field F and let T : V — V be a linear
operator.

(a) If f € F[x] is a polynomial with f(T) = 0, show that every eigenvalue of T is a root of
f.

(b) If ¢ € F[x] splits over F and g(T) is not an isomorphism, show that at least one root of
g is an eigenvalue of T.

Solution:

(a) Suppose f(x) = a,x" +a, 1x""1 + .- +a1x + ap. Let v be an eigenvector of T with
eigenvalue A. Then

0= f(T)v=a,T"(v) +a, 1T" 1 (v) 4+ +a;T(v) + ap.
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The claim is that T*o = Ao for all k € IN and we proceed by induction. The result is
clear for k = 1. Suppose it holds for k € N. Then T"*1(v) = (T o T¥)(v) = T(A*v) =
ART (v) = AF+1y. But then the claim follows by induction. Then we have

0=f(T)v=a,A"v+ Ay A" o4 4 aAv + ago
= (@ A"+ a, AV a A+ ag).

Since v # 0, f(A) = ayA" +a, A" 14+ ajA +ag = 0.

(b) Without loss of generality, assume that g(x) is monic with degree n. Let ay,. .., ay,
denote the roots (not necessarily distinct) of g(x). Then

g(x) = (x —ar) -+ (x — )

Now g¢(T) is not an isomorphism so that ker g(T) # 0. Let w € ker ¢(T) be nonzero.
Then

0=[(T—al)o(T—wapl)o---o(T —a,I)](w).
If (T —a,l)(w) =0, then Tw = a,w and w is an eigenvector of T with eigenvalue .
Since a,, is a root of g(x), this would complete the proof.

Now suppose (T — «;)(w) # O for ay, ..., a,. Define m = min{k € {1,...,n}: [(T —
apl) o (T —agiql) oo (T —anl)[(w) # 0} and v = [(T — aml) o (T — apy1l) o

-+ o (T —ayl)](w). Then (T — a,—1)(v) = 0 with v # 0 by the choice of m. Thus,
Tv = a,,—1v and v is then an eigenvalue of T with eigenvalue «,,_1. Thus, at least one
root of g(x) is an eigenvalue of T.

O]

5.LetV=C*andlet T: V — V be given by T(v1,v2,v3,04) = (v3,v1,02,03). Find all the
eigenvalues for T and for each eigenvalue, find a basis for its characteristic space.

Solution: Let ¢; denote the i standard basis vector and write T as a matrix relative to the
bases B = {ey, ..., es}:

A= [T(el)g T(EZ)B T(€4)B]
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Now,

ca(x) = det(xI — A)

X 0 0o -1
-1 x 0 0
= det 0 -1 x 0

-1 «x 0 X 0 O
=det{ 0 -1 x | +xdet|—-1 x O
0 0 -1 0 -1 «x

=144

This implies that the eigenvalues are the roots of c4(x) = x* — 1, which are 1, —1,i, and —i.
Since the multiplicity of each root of c4(x) is 1, each characteristic space has dimension 1.

For the eigenvalue 1, a basis is (1,1,1,1) since T(1,1,1,1) = (1,1,1,1). For the eigen-
value —1, a basis is (—1,1, —1,1) since T(—1,1,-1,1) = (1,—1,1,—1) = —1(—1,1,—1,1).

For the eigenvalue i, a basis is (1, —i,—1,i) since T(1,—i,—1,i) = (i,1,—i,—-1) = i-
(1, —i,—1,i). For the eigenvalue —i, abasisis (1, —i,1, —i) since T(1, —i,1, —i) = (—i,1,—i,1) =
—i-(1,—i,1,—i). =

6. Consider the ring Z[x]. For each pair of given ideals I and ], determine whether (i)
I CJ, (i) ] €I, ({ii) I =], or (iv) none of (i), (ii), or (iii)

@ I=(3x),]=3x)

(b) I=(3,x),]=3-—x3+x)
() I=(3,x),] =(6,9,2x,3x)
Solution:

(a) Since 3x = 3-x, 3x € (3,x). This impliesthat ] C I. Nowx+3 € I. If x+3 € ],
then x + 3 = 3xp(x) for some p(x) € Z[x]. Comparing degrees, it must be that p(x) is
constant, i.e. x + 3 = 3xp for some p € Z. By comparing leading coefficients, it follows
that 3p = 1, a contradiction since p € Z. Therefore, x + 3 € I \ ], which implies that

I1¢7.
(b) Clearly,3+x € Isothat] C I. Now 3 € [ and weclaim 3 ¢ J. If 3 € |, then
3=p(x)(3—x)+q(x)(3+x) =3(p(x) +q(x)) + x(q(x) — p(x))

for some p(x),q(x) € Zx]. The right hand side of the above equation must be
constant. But then gq(x) — p(x) = 0so that p(x) = g(x). But then 3 = 3(p(x) +g(x)) =
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3(p(x) + p(x)) = 6p(x). By degree comparison, it must be that p(x) is constant, i.e.
p(x) = p € Z. But then 3 = 6p, a contradiction since p ¢ Z. Therefore, 3 ¢ | implying
that [ ¢ J.

(c) Noticethat6 =2-3€1,9=3-3€[,2x=2-x € [,and 3x = 3 x € I. Therefore,
JCIl.Since3=9—-6¢c¢Jandx=3x—2x€ [, CJ. Thus, [ =].

O]

7. Let G be a finitely generated abelian group. Use additive notation so g" is written as mg.
Prove that G is infinite if and only if there exists g € G such that mg # 0 for all nonzero
me Z.

Solution: Suppose that there exists ¢ € G such that mg # 0 for all0 # m € Z. If G were
finite, then for n = |G|, ng = 0, a contradiction. Therefore, G is infinite.
Now suppose that G was infinite. By the Fundamental Theorem of Finitely Generated
Abelian Groups,
G=Zeoz/py e -oZ/pY,

forsomel > 0,a; > 1, and the p; (not necessarily distinct) primes. Since G is infinite, it must
be that! > 1. Letg = (1,0,...,0) € G via the isomorphism above. Then mg = (m,0,...,0)
form € Z. If m # 0, then mg # 0, as required. O

8. A 15 x 15 matrix M with complex entries has characteristic polynomial equal to
(x — 1)7(x — 2)8. Find all possible minimal polynomials for M such that the characteristic
and minimal polynomials together completely determine the Jordan canonical form of M
up to ordering the blocks. Give the Jordan canonical form for each of these.

Solution: The Jordan canonical form is completely determined by the elementary divisors.
If (x — 1)7 is the largest power of (x — 1) that is an elementary divisor, then no other power
of (x — 1) can be an elementary divisor. If (x — 1)° is the largest power of (x — 1) that is an
elementary divisor, then the only other elementary divisor must be (x — 1). If (x — 1)° is
the largest power of (x — 1) that is an elementary divisor, then there are two possibilities:
there could be two (x — 1) elementary divisors or one (x — 1)? elementary divisor. The
remaining possibilities are summarized below:

(x —1)*: Could have (x —1)3, 1)(x — 1)?> —not unique
(x —1)3: Could have (x — 1)3(x — 1), (x — 1)?(x — 1) — not unique
(x — 1) Could have (x —1)(x — 1)(x — 1)

e

(x—1)(x—1), (x—1)2(x—1)3(x — 1) —
not uniqu

(x —1): Only possibility is (x = 1)(x —1)(x = 1)(x —1)(x = 1)(x — 1)

(x —
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Using a similar reasoning, the powers of (x — 2) that uniquely determine the (x — 2)-
elementary divisors are (x —2)%, (x —2)7, and (x — 2). This means there are nine minimal
polynomials that uniquely determine the Jordan canonical form of M:

1.

8.
9.

N o gk » DN

m(x) = (x —1)7(x —2)8

m(x) = (x — 1) (x — 2)7
m(x) = (x— 1) (x ~2)

m(x) = (x — 1)(x ~2)°
m(x) = (x —1)(x —2)7
m(x) = (x—1)(x - 2)

m(x) = (x — 1)8(x — 2)8
m(x) = (x— 1)5(x — 2)7
m(x) = (x—1)5(x — 2)!

We now compute the Jordan canonical form in each case.

1. c(x) = (x —1)7(x — 2)8 = m(x). The two elementary divisors of M are (x — 1)” and
(x —2)8 so there are two Jordan blocks. The Jordan canonical form of M, up to reordering
of blocks, is

2. m(x) =

O OO DD D DODIDODDODDODDODDODODOO =
S OO OO OO OO OO K
SO O OO O OO OO O OO
[N eNelelNelNoloNeoloNoNoll >R
SO OO OO OO OO P OOOoO

SO OO OO OO R F,FOOOCOo

DO DO DD O DODOO R R OOOOOo

OO OO DO DODIONODODODOCDOO OO
OO OO O NP ODODODODOOO O
OO OO O NP OODODODODOOOoOo
QOO ON PR OODODODO OO OO
QOO NP OODODODODODODODOOOC O
QO NP OODODODODODOOoOOoOOoo
ON P OO DODODDODDODDODDODOOO O
NP, OOOODOODODOOoOOo o oo

(x —1)”(x — 2)”. The elementary divisors of M are (x — 1)7, (x —2)7, and
(x —2), so there are two Jordan blocks. The Jordan canonical form of M, up to reordering
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of blocks, is

1 000 O0OOOOOOTOTG OGO

01100O0O0O0O0OO0OO0OO0OTO0OO0OO®O

1

110 0 0 0 0 O0O0O0O0OO0OO
0o 001 100O0O0O0OO0OO0OTO0OO0OO@O

0

0

1 0 000 0 0 O0 0O

0o 00001 1 O0O0O0O0O0O0O0O0
0 000 001 0O0OO0OO0OO0OO0OO0OTPO0
0o 0o0000OO0O21U0U0UO0O0O00O0
0 000 00 00O 2100000
0 0000000 O0O210000O0
0O 0000 0 0OO0OO0OO0OZ21O000O0
0 000 00 OO O0OO0OO0ODZ2T1TUO0TO0
0o 0o0o00O0O0OO0OO0OO0OO0OO0OZ2T1F@©0
0 000000 O OO0OO0OOO0OZ2P0
o oo 000O0OOOO0OO0OOTO0OTQO0O 2

0 0 0 01

(x —1)7(x — 2). The elementary divisors of M are (x — 1)7, (x — 2) with
multiplicity eight. So there are nine Jordan blocks. The Jordan canonical form of M, up

to reordering of blocks, is

3. m(x)

1000 O0O0OOOOOOTOTO0OTGO

1
0
0

10 000 0 O0OO0OOO0OUOTOO

1
0

10 000 0 0 0 O0O0O0OTPO

0o 001 100O0O0O0O0OO0OTO0OO0OF®O

1

1 000 0 0 O0O0O0O

0o 00001 1 O0O0OO0OO0O0O0O0O0
0O 0o000O1T 0O0OO0OO0OO0OTO0OOQO0OO
0o 000000 2000O0O0O0°0O0
0O 00000 O0OO0O200UO0O000
0o 00000 O0OO0OO0O20UO0O0O00

0 0 0 01

0o 000 00O 0O O0OO0OO0ODZ2O0O000O0

0O 000 00O O O0OO0OO0OZ2U0O00O0
O 0000 0 0OO0OO0OO0OO0OOZ2U00DO0
0 000 00O O O0OO0OO0OOTOOZ20P0
o 0000 0O O0OO0OO0OOOOTOTQO0O 2

4. m(x) = (x —1)(x — 2)8. The elementary divisors of M are (x — 1) with multiplicity

seven and (x — 2)8, so there are eight Jordan blocks. The Jordan canonical form of M,
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up to reordering of blocks, is

10 0 00 O0OOOOOOO0OO0OO
0100 0 0O OOOOOOTOTG OO0
0o 01 00 0O0O0OO0OO0OO0OOTO0OO0OO®O
0 001 000 0 0O O0OO0OOO0OTGOF QO
0o 00 01 00O0O0OO0OO0OO0OTO0OTQO0OO©O
0 000 01 00 0OO0OO0OO0OO0OTGO0OTP O
0 0000001 00 0 O0O0O0OO0OTPO0
0o 0000 00 21000000
0 000 00 O 0O 2100000
0O 00000 O0OO0OO0O21U0O000
0 000 0 00 O0OO0OO0ODZ21O000O0
0o 00000 O0OO0OO0OO0OO0OZ21T0@P0
0 0000000 O0OO0OO0OO0OZ2T10P0
0o oo 000OO0OO0OO0OO0OO0OO0OTO0Z21
0o 000 00O OOO0OOOTOTG O 2

5. m(x) = (x — 1)(x — 2)”. The elementary divisors of M are (x — 1) with multiplicity

seven, (x —2)7,and (x — 2), so there are nine Jordan blocks. The Jordan canonical form

of M, up to reordering of blocks, is

10 0 00 O0OOOOOOO0OO0OO
0100 0 0 0O O0OOOOOT OTU OO0
0o o1 00O0O0O0OO0OO0OO0OO0OTO0OO0OO@O
0 001 00 0 0 0O O0OO0OOTO0OTGOFP 0
0o 0001 00 0 O0O0OO0OO0OTO0OO0OUPO
0 00001 0O0O0OO0OO0OO0OO0OTGO0OTP O
0O 000001 O0O0OO0OO0OO0OTO0OO0OO
0 0000 0 0 21000000
0O 000 00 00O 2100000

0o 0000 0 0OO0OO0O21000O00O0
0 000 00O O0OO0OO0ODZ21O000O0
0o 0o0o00O0OO0OO0OO0OO0OZ21TU0@P0
0 000 00O OO0OO0OO0OO0OZ2T10P0
0o oo 000OO0OO0OO0OO0OO0OO0OTO0TZ21

0 000 00O 0O OO0OOOTO0OTG O 2

6. m(x) = (x —1)(x —2). The elementary divisors of M are (x — 1) with multiplicity seven
and (x — 2) with multiplicity eight, so the Jordan canonical form of M, up to reordering

155



of blocks, is

100 00 0 0O O O0OO0OOOTOTG OO0
0100 0O0O0OO0OOO0OO0OOO0OO0OO®O
0 0100 0 0 0O O0OO0OOOTOTG OO0
0O 001000 0O0O0O0O0O0OO0O©O0
0 0001 000 0 0O O0OO0OO0OTO0OTP O
0o o0 001 O0O0O0OO0OO0O0OTO0OO0OO
0 000 001 0O0OO0OO0OO0OO0OO0OTPO0
0O 000000 2000O0O0O00O0
0 000 00O OO 2000000
0O 000 00OOOO0O2 00000
0O 0000 0 0OO0OO0OO0OZ2O0O000O0
0 000 00 OO O0OO0OO0OZ2TO0O00O0
o 0000 00O O0OO0OO0OO0OOZ2U00DO0
0 000000 O OO0OO0OOO0OZ2P0
o oo 000O0OOOO0OO0OOTO0OTQO0O 2

(x —1)%(x — 2)% The elementary divisors of M are (x — 1), (x — 1), and

(x — 2)8, so the Jordan canonical form, up to reordering of blocks, is

7. m(x)

100 000 O0OOO0OOOOTOTG OO
01100 0 O0OO0OOOOOTOTG OO0

1000 0 0 O0OO0OO0OTO0OTGO

0 1
0 001 1000 0O0O0OO0OO0OTO0OTP O
0 0 0 01

0

1000 0 0 O0O0O0 O

1 0 0 00 0 0 0O

0 0 0 0 01

0O 000001 O0O0OO0OO0OO0OTO0OO0OO®O
0 000000 21000000
0o 0o000O0OO0OO0O21U0UO0O0O00
0 000 00 0O O0OO0OZ210000O0
0O 0o0000O0OO0OO0OO0OO0OZ2T1TU0O0O0
0o 0000 00O O0OO0OO0OO0ODZ2T1TTUO0TPO0
0o 000 00O 0O O0OO0OO0OO0OZ2T10
0O 0000 00OO0OO0OOOOTO0OZ21
0o 000 00O 0O OO0OO0OOTO0OTO0O 2

8. m(x) = (x — 1)®(x — 2)”. The elementary divisors of M are (x — 1), (x — 1), (x — 2),
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and (x —2)7, so the Jordan canonical form, up to reordering of blocks, is

10 0 0 0 O0O0OOOOOOO0OO0O

10 00 00 O0OO0OO0OO0OTO0OTO0OTGO

1
0 1
0 0 0 1

0
0

10 00 0 0 O0O0O0OO0OO0OO

10 0 0 0 0 0 O0O0OO0OTO

10 000 0 0 0 0 O

0 0 0 0 1

1 0 000 0 0 0O

0 0 0 0 01

0 000001 0O0OO0OO0OO0OO0OTGO0OTPO0
o 0000 0 0 2 00O00O0O0O00O0
0 000 00 OO 2100000
0o 00000 O0OO0OO0OZ21U0O000
0 00000 00O O0OO0OZ21000O0
0o 00000 O0OO0OO0OO0OO0OZ21T0@P0
0 0000 00O O0OO0OO0ODO0OOZ21P20
0o 0o 000OO0OO0OO0OO0OO0OO0OTO0Z21
0o 0000000 OO0OO0OOTO0OTG 0O 2

(x —1)%(x — 2). The elementary divisors of M are (x — 1), (x — 1)%, and (x —2)

with multiplicity eight, so the Jordan canonical form, up to reordering of blocks, is

9. m(x)

10 0 00 0 0 0O O0OO0OO0OOTOTGOTD O

10 000 0 O0OO0OO0OO0OOTG OO

1
0 1

0
0

10 00 0 0 0 O O0O0OO0OTGO

0o 0o01100O0O0O0OO0O0OTO0OO0OO©O

0 0 0 0 1

1 0 000 0 0 O0 0O

0o 000011 O0O0OO0OO0O0O0O0O0
0 0000 01 0O0OO0OO0OO0OO0OTO0OTPO0
0o 00000 O0O2000UO0O0O00O0
0 000 0 0 00O 2000000
0 000 00O OO0O2 00000
0o 000 00O 0OO0OO0OO0OZ20O00O00O0
0 000 00O OO0OO0OO0OZ2UO0O00O0
0o 0000 00O O0OO0OO0OO0OO0OZ2U00DO0
0O 000 00 OO O0OO0ODOOTOOZ20P0
o 0o 0o 000 O0OO0OOOO0OOTO0OTO0O 2

9. Prove that a field extension is finite if and only if it is both finitely generated and alge-

braic. Show by example that neither finitely generated no algebraic alone implies finite.
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Solution: Suppose that E/F is a finite extension of fields. Then E has finite dimension
as an F-vector space. Let B = {by,...,b,} be a basis for E as an F-vector space. Then
E = F(by,...,by) so that E is finitely generated. Let « € E. Since E has dimension #n as
an F-vector space, the set {1,«,..., a1 a} is linearly dependent over F, i.e. there are
ag,...,a, € F,not all zero, such that a,a” + a,_1a" ' + - - - 4+ a9 = 0. But then « is a root
of the nonzero polynomial p(x) = a,x" + a,_1x" "1 + - - - + ag so that a is algebraic over F.
But then all « € E are algebraic over F so that E/F is algebraic.

Now suppose that E/ F is a field extension which is both finitely generated and algebraic.
Since E is finitely generated over F, E = F(wy,...,&,) forsomeay, ..., a, € E. Furthermore,
each «; is algebraic over F since the extension E is algebraic over F. For each i, let a; = deguw;.
Then [F: E] < aay---a, < o, 0s E/F is a finite extension.

Now the extension Q/Q is algebraic, by definition. To see the extension is infinite,
suppose Q/Q were finite and let n = [Q: Q]. Define m = n + 1 and let &« € Q by a root
of f(x) = x™ — 2. By Eisenstein with p = 2, f(x) is irreducible in Q[x] since f € Z[x]
and Q is the quotient field of Z. Then f is the minimal polynomial of « in Q[t]. Then
m = degf = [Q(a): Q] < [Q: Q] = n = m — 1, a contradiction. Therefore, algebraic
extensions need not be finite.

Now consider the field extension Q(77)/Q. This extension is generated by {1, e}. If this
extension were finite, then e would be algebraic over Q, a contradiction to the fact that e is
transcendental. Therefore, finitely generated extensions need not be finite. O

10. Let F C E be an extension of fields of characteristic 0. Let L and K be two intermediate
fields sothat F C K C Eand F C L C E. Assume that KN L = F and that K and L are both
finite Galois extensions of F. Define KL to be the smallest subfield of E containing K U L.

(a) Prove that the definition of KL makes sense; that is, prove that there does indeed exists
a unique smallest subfield of E containing K U L.

(b) Prove that KL is a finite Galois extension of F.

Solution:
(a) Define
KL = ﬂ F'.
KULCF'
F’ field

It is clear that K U L C KL and thatif KUL C F/, then KL C F'. It remains to show that
KL is a field. The intersection of commutative rings is a commutative ring (when the
intersection makes sense), so it suffices to show that every nonzero element of KL is a
unit. Let x € KL be nonzero. Then x € F/ for all F/ > KU L. But then x~! € F for all
F’ O KU L. Therefore, x~! € KL. But then KL is a field.
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(b) Since K is a finite extension, K = F(ay,...,ay) for some ay,...,a, € K, where each «;
has finite degree over F. Similarly, L = F(B1,...,Bn) for some B, ..., Bm € L, where
each B; has finite degree over F. Then F(ay,..., &y, B1,...,Bm) is a field containing
KUL,soKL C F(aq,...,&n,B1,--.,Bm). However, any field containing K U L must
contain each «; and each ,B]-, SO

KL:P(lxl,...,an,ﬁl,...,ﬁm>.

Therefore, KL is a finite extension of F.

Since K is a Galois extension, K is the splitting field of some separable polynomial
f(x) € F[x]. Now KL is the splitting field of the polynomial f(x)g(x). Now f(x)g(x)
need not be separable. By removing repeated roots, there exist polynomials f, § so
that ¢ has no repeated roots and KL contains all the roots of f§. But then KL is the

splitting field of a separable polynomial. Therefore, KL is Galois.
O
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August 2013

1. Setw = (123---n) € S,, the symmetric group on n letters. Compute:

(@) The size of the conjugacy class containing w.

(b) The order of the centralizer of w.

(c) The order of the normalizer of (w), assuming that n = p is prime.

Solution:

(a) Two elements of S, are conjugate if and only if they have the same cycle type. Therefore,

the size of the conjugacy class of w is the number of n-cycles in S,,. Thisis (n — 1)!.

(b) Suppose 0 € Cs,(w). Then cw(k) = wo (k) forallk € {1,...,n}. Note that w(k) =

(©)

k+1 mod n, so this implies o(k+1) = o(k) +1 mod n. Then o is completely
determined by o(1). Since there are n choices for o (1), the order of the centralizer of w
is n.

OR

Let S, act on itself by conjugation. The stabilizer of w is the centralizer of w and the
orbit of w is the conjugacy class containing w. By the Orbit-Stabilizer Theorem and
part (a)
n!
n—1)!=[5,:Cs,(w)] = 75—
( ) [ n Sn( )] |C5n(w)|

Therefore, |Cs, (w)| = (ﬂﬁi'l)' =n.
Notice that (w) is a cyclic group of order p. Let Inn({w)) denote the inner automor-
phism group of (w). Then

Ns,((@))/Cs, ({w)) = Inn((w)) = Inn(Z/pZ),

where Ng, (H) denotes the normalizer of H in S,,. Note that (Z/pZ)* = Aut(Z/pZ)
via the map a — ¢,, where ¢, (b + pZ) := ab + pZ. Since Z/pZ. is abelian, any two
elements are conjugate if and only if they are equal. Therefore, if ab + pZ = b + pZ,
then ab — b € pZ. This implies that b(a — 1) € pZ, so eitherb € pZora—1 € pZ
(this is Euclid’s lemma: if p | ab then p | a or p | b). Since this must hold for any b, it
can be assumed that b ¢ pZ. Thus,a —1 € pZanda =1 mod p. Therefore,a =1
and the only inner automorphism of Z/ pZ is the identity. Hence, | Inn(Z/pZ)| =1
and [N, ((«))] = [Cs, ({«))] = n.
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2. Let G be a group of order 231 =3 -7 - 11.

(a)
(b)

Prove that G has a unique Sylow-11 subgroup.

Prove that the Sylow-11 subgroup is contained in the center of G.

Solution:

(a)

(b)

Let n, denote the number of Sylow p-subgroups of G. By Sylow’s Theorem, n1; = 1
mod 11 and divides 231. But the only divisor of 231 congruent to 1 mod 11 is 1.
Therefore, n, = 1 and the Sylow 11-subgroup of G is unique, hence normal. Note that
G cannot be a simple group.

Let S denote the Sylow 11-subgroup of G. Since |S| = 11, S is cyclic. By the remarks
in (a), S is normal in G. In particular, S is fixed under conjugation by elements of G.
Let ¢y : S — S be given by a — xax~!. Note that ¢, is an automorphism of the cyclic
group S forall x € G>Forany x,y € Ganda € S,

(pxo¢y)(a) = pu(yay ") = xyay 'x " = (xy)a(xy) ™" = puy(a).

In particular, the function f : G — Aut(S) given by g — ¢, is a group homomorphism
(noting also 1 — ¢1, = 15). But this holds if and only if x € C¢(S). Since S is cyclic of
order 11, we have S = Z /117 so that Aut(S) = (Z/11Z)*, a group with 10 elements.

By the First Isomorphism Theorem, % divides both 231 and 10. Since 231 and 10
are relatively prime, IC%(%‘?)\ = 1s0|Cg(S)| = 231. But then G = C(S). Therefore, the

elements of S commute with every element of G. Therefore, S C Z(G).

O]

3. Let Q denote the quaternion group of order 8.

(a)
(b)
(©)

Prove that Q is isomorphic to a subgroup of Sg.
Prove that Q is not isomorphic to a subgroup of S, forn < 7.

Prove that C; x Cy4 is isomorphic to a subgroup of Se.

Solution:
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(a) Let Q act on itself by left multiplication — defining ¢ - x = gx for all g, x € Q. For each
g € Q, there is a permutation 0 : Q — Q via x — gx. It remains to show that the map
¢ : Q — Sg given by g — 0y is an injective group homomorphism. Observe that for

any g, h € Q, ¢(gh) = og, = 04 0 0y, since
ogn(x) = (gh)(x) = g(hx) = gon(x) = vg(on(x))-

This shows that ¢ is a group homomorphism. To show that ¢ is injective, note that
g € ker ¢ if and only if gx = x for all x € G. In particular, g(1) = 1 so that ¢ = 1. This
implies that ¢ is injective, as required. Since |Q| = 8, we must have Sy C Ss.

(b) Letn <7and ¢ : Q — S;, be a homomorphism. The claim is that ¢ is not injective. The
existence of a homomorphism ¢ is equivalent to the existence of a group action of Q
on the set S of n elements. For any orbit O, of the group action,

8
7> 10, =10: = —,
= | X | [Q Qx] ‘Qx|
where Q, is the stabilizer of x in Q (note that the inequality above makes use of the
Orbit-Stabilizer Theorem). This implies that |Q,| > 1. We claim that —1 € Q, for all

x €8S.

It is clear that there is at least one non-identity element in Q.. Note that
P ==k = (i = (P = (k=

If =1 € Qy, then there is nothing left to prove. If i € Qy, then i? = —1 € Q, since Qy is
a group. Mutatis mutandis, if any of j, k, —i, —j, —k are in Q,, then —1 € Q, since Qy is
closed under multiplication. Therefore, —1 - x = x for all x € S; therefore, —1 < ker ¢
which implies that ker ¢ # {1}. Therefore, ¢ cannot be injective. But then there are
no homomorphisms ¢ : Q — S, for n < 7 is injective, which implies that Q is not
isomorphic to a subgroup of S, forn < 7.

(c) Let a be a generator of C, and let b be a generator of Cs. Let ¢((a,1)) = (1 2) and
$((1,b)) = (3 4 5 6). Since C; x Cy4 is generated by (4,1) and (1,b), these choices
completely define ¢:

¢((1,6*)) =(3456)(3456)=(35)(46)
¢((1,6%)7=(3456)(35)(46)=(3654)
¢((a,b)) =(12)(3 45 6)
¢((a,b%) = (1 2)(3 5)(4 6)
¢((a,0°)) = (1 2)(3 6 5 4)
¢((1,1)) =1

It is clear that ¢ : Co x C4 — Sg is an injective group homomorphism.
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4. Prove that the following conditions on an n x n real matrix A are equivalent:
(i) ||AX]|| = || X]| for all X € R", where || - || is the usual Euclidean norm

(i) AX-AY =X -Yforall X, Y € R"

(iii) ATA=1
Solution:
(i)=(@i): If |AX]|| = ||X]| then clearly |AX]]?> = [|X]|*>. Let X,Y € R". We compute

(A(X+Y),A(X+Y)) in two different ways:

(AX+Y),AX+Y)) = (X+Y, X+Y) = (X, X) +2(X,Y) + (Y, Y)
(A(X+Y),A(X+Y)) = (AX + AY, AX + AY) = (AX, AX) + 2(AX, AY) + (AY, AY)
= (X, X) +2(AX, AY) + (Y,Y)

Therefore for any X, Y € R",
(X, X)+2(X,Y)+(Y,Y) = (X, X) + 2(AX, AY) + (Y, Y),
which implies that (AX, AY) = (X, Y).
(ii)=(iii): Write ATA = (a;;). Then (Ae;, Ae;) = el ATAej = aj;. On the other hand,
(Aej, Aej) = (ei,ej), s0
aij = (ei,¢j) = {(1): z;;
Therefore, ATA = 1.
(iii)=-(i): Suppose ATA = I. Then for any X € R”,
|AX|]? = (AX, AX) = (AX)T(AX) = XTATAX = XTX = (X, X) = | X|]%.
Thus, || AX]| = || X]]. O

5. Let V be a Hermitian space (a finite-dimensional complex vector space carrying a posi-
tive definite Hermitian form). Let T : V' — V be a linear operator with adjoint T*. Prove
that ker T = (im T*)*.

Solution: Let x € ker T so that Tx = 0 which implies that (y, Tx) = 0 for ally € V. But
then (T*y,x) = 0 forally € V. Thus, x € (ImT*)*. But then ker T C (ImT*)*.
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Ify € (ImT*)*, then (T*x,y) = 0 for all x € V. Take x = Ty, then (T*Ty,y) = 0, which
implies that (Ty, Ty) = 0. Since the Hermitian form is positive-definite, this implies that
Ty = 0. Thus, y € ker T and ker T = (ImT*)". O

6. Let R be a nonzero commutative ring with identity and let F be a finitely generated
R-module.

(a) Give the definition of when F is a free R-module

(b) Suppose that every nonzero ideal I of R is a finitely generated free R-module. Prove
that R is a PID.

Solution:

(a) Fis a free R-module if there exists a subset B C F such that every element of F can be
written uniquely in the form ryx; 4 - - - + r,x, for some r; € Rand x; € B.

(b) There are two things to show: R is an integral domain and every ideal of R is principal.
Let I be a nonzero ideal of R. By hypothesis, I has a basis B. We claim | 3| = 1. Suppose
|B| > 1and let x,y € B be distinct (taking note that x, y are certainly nonzero). Then
0 = 0x + 0y = (—y)x + (x)y are two unique ways of writing 0, which is certainly in
every ideal generated by any basis B, contradicting the fact that B generates a free
R-module. But then |B| = 1. Then every ideal is principal.

Suppose that 0 # a is a zero divisor in R, i.e. there is a nonzero b € R such that ba = 0.
We claim a cannot be contained in a basis for an ideal I of R. Since 0 € I for any ideal I
and I is free, if a were a basis element then 0 = 0a = ba can be written in two different
ways, contradicting the fact that I is free. Now let I = (a). Since a # 0, I is nonzero. By
assumption, I has basis B which by the work above we can write B = {x} for some x.
We know that a # x. Now (x) = I so that (x) = (a). But then x = ra for some r € R.
But xb = (ra)b = r(ab) = 0, implying that x € B is a zero divisor, a contradiction. But
then no element of R can be a zero divisor. Therefore, R is an integral domain.

O

7. Denote by C|[x] the ring of polynomials in the variable x with coefficients in the field of
complex numbers C.

(a) Describe the maximal ideals of C|x].

(b) Describe the simple C[x]-modules up to isomorphism. First, give the definition of a
simple module.

(c) Let S be an arbitrary simple C[x]-module. What is the dimension as a vector space
over C?
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(d)

(a)

(b)

(©)

Let S be an arbitrary simple R[x]-module. What is the dimension of S as a vector space
over R?

Since C|x] is a PID, every ideal is principal. If p(x),q(x) € C[x] and (p(x)) C {(g(x)),
then g(x) divides p(x) (since p(x) € (g(x))). Note that (p(x)) = C[x] if and only if
p(x) is a unit if and only if p(x) is a nonzero constant polynomial. Therefore, the
maximal ideals are precisely the ideals of the form (p(x)), where p(x) is an irreducible
polynomial. Since C is algebraically closed, every polynomial in C[x] splits completely.
Therefore, the only maximal ideals of C[x] are (p(x)), where p(x) has degree 1.

An R-module M is simple if it contains no proper, nontrivial submodules. Note that
if M is a simple C[x]-module, then for any nonzero m € M, the module C[x|m is a
nontrivial submodule of M, so it must equal M. Furthermore, the function ¢ : C[x] —
C[x]m given by p(x) — p(x)m is a surjective C[x]-module homomorphism. By the
First Isomorphism Theorem, C[x|/ ker ¢ = C[x]m. Since C[x|m is a simple module,
it contains no proper, nontrivial submodules. By the Correspondence Theorem, the
only submodules of C[x] containing ker ¢ are ker ¢ and C[x]. In other words, ker ¢ is a
maximal submodule of C[x]. But then ker ¢ is a maximal ideal in C|[x].

By part (a), ker ¢ = (p(x)), where the degree of p(x) is 1. But M = C[x]/(p(x)), where
the degree of p(x) is 1. Let a be the unique root of p(x). We claim that C[x]/(p(x))
is isomorphic to C, where scalar multiplication is defined by f(x) -a = f(«)a for all
f(x) € C[x]. There is a homomorphism ¢ : C[x] — C given by f(x) — f(«). This is
a surjective homomorphism with kernel (p(x)). By the First Isomorphism Theorem,

Clx]/(p(x)) = C.

By part (b), S is isomorphic to C as a module over C[x]. The restriction of scalar
multiplication to C is just the usual multiplication of complex numbers. Therefore, the
dimension of S as a C vector space is 1.

Let S be a simple R[x]-module. Then the same argument as above shows that S =
R[x]/(p(x)), where p(x) is an irreducible polynomial in R[x]. If p(x) has degree
1, then again the same arguments used above implies that S is a one-dimensional
R-vector space. If p(x) has degree 2, then as a set

R[x]/(p(x)) = {a +bx+ (p(x)): a,b € R}.

It is easy to see that this has dimension two as a vector space over R (for example, a
possible basis is {1+ (p(x)), x + (p(x))}). Any polynomial of degree at least 3 over
R is reducible (every polynomial in R[x| can be written as the product linear and
quadratic polynomials). Therefore, S either has dimension one or two as a vector space
over R.
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8. A square matrix M with complex entries has characteristic polynomial
c(x) = (*+3)(x* —4x +5)(x +1)*

Denote by m(x) the minimal polynomial of M.

(a) Isit possible that m(x) = (x? +3)(x —2 —i)(x +1)??

(b) Suppose m(x) = (x*+3) (x> — 4x + 5)(x + 1)2. List all possible Jordan canonical forms
for M.

Solution:

(a) Observe x? —4x +5 = (x — (2+1))(x — (2 — i)). Recall every divisor of c(x) is also
a divisor of m(x). For this choice of m(x), (x — (2 —i)) is a divisor of ¢(x) but not a
divisor of m(x). Therefore, the given m(x) is impossible.

(b) For the given m(x), there are two possibilities for the invariant factors
(x+1), (x+1), (x+3i)(x = 3i) (x — 2+ 1)) (x — (2— 1)) (x +1)?
(x 4+ 1), (x +3i)(x = 3i) (x — (2+1i))(x — (2 —1))(x +1)?

In the first case, the elementary divisors are x + 1, x + 1, (x + 1), x + 3i, x + 31, x — 3i,
x — (2+1i),and (x — (2 —i)). Then the Jordan canonical form is

-1 0 0 0 0 0 O 0
0 -1 0 O 0 0 O 0
0O 0 -1 0 0 0 O 0
o 0 0 -1 0 0 O 0
o 0o 0 0 =3 0 O 0
0O 0 0 0 0 3 O 0
O 0 0 0 0 0 247 O
0O 0 0 0 0o 0 0 2—i

In the second case, the elementary divisors are (x + 1)2, (x+1)%, x+3i, x — 3i, x —
(241i),and x — (2 — i). Then the Jordan canonical form is

-1 0 0 O 0 0 O 0
0O -1 0 O 0 0 O 0
0O 0 -1 0 0O 0 O 0
o o0 0 -1 0 0 O 0
o 0o 0 0 =3 0 O 0
O 0 0 0 0 3 0 0
0O 0 0 0 0 0 2+:i O
O 0 0 0 0o 0 0 2—i
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9. Let F C E be a field extension.
(a) Give the definition of when the extension is finite.
(b) Give the definition of when the extension is algebraic.

(c) Give an example of an algebraic extension that is not finite and prove that it is not finite.

Solution:

(a) A field extension E/F is finite if E, viewed as an F-vector space, is finite dimensional,
i.e. [E: F]is finite.

(b) An element a € E is algebraic over F if a is the root of a polynomial in F[x]. The
extension E/F is algebraic over F is every element of E is algebraic over F.

(c) Let F = Q, E = Q, the algebraic closure of Q, where we view E as a subfield of
C. The field E is algebraic over F by definition. It remains to show that E is not a
finite extension. Note that the polynomial p(x) = x" — 2 is irreducible over Q by the
Eisenstein criterion with p = 2. The polynomial p(x) is thus the minimal polynomial
of /2 over Q. Since v/2 € Q for all #, it follows that

[Q: Q= [@: Q(V2)][Q(V2): Q] = [Q: Q(V2)]n > n
for all n € N. But then [Q: Q] = os.

10. Consider the field extension Q C Q(~/3, v/2).
(a) Compute the degree of the extension.
(b) Compute the group of automorphisms of the extension.

(c) Is this a Galois extension?

Solution:

(a) We claim Q(+/3,v/2)/Q is a degree 6 extension since [Q(v/2): Q] = 3and [Q(v/3): Q]
2.8 By the Eisenstein criterion with p = 2, p(x) = x> — 2 is irreducible over Q. Ob-
viously, p(v/2) = 0. Therefore, p(x) is the minimal polynomial of v/2 over Q. This
implies that [Q(+v/2): Q] = 3. Mutatis mutandis, [Q(+/3): Q] = 3.

8This holds more generally, if K1 /F is an extension of degree 1 and K,/ F is an extension of degree m, with
(n,m) =1, then K1 K,/ F is an extension of degree nm, where K;Kj is the compositum of Ky, K.
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(b)

(©

We claim that g(x) = x? — 3 is irreducible over Q(+/2). If not, then g(x) splits in Q(+v/2),
which implies that /3 € Q(+v/2). This implies that Q(+/3) C Q(~+/2). Therefore,

3=[Q(V2): Q] = [Q(V2): Q(v3)] [Q(V3): Q] =2[Q(V2): Q(V3)]

which is impossible since the right side is even. Then g(x) is the minimal polynomial

for v/3 over Q(+/2). Therefore, [Q(\/3,v/2): Q(v/2)] = 2. But then
[Q(V3,v2): Q] = [Q(V3,V2): Q(vV3)] [Q(V3): Q] =23 =6.

Note that Q(v/3,v/2) C RR. Viewed a function on R, p(x) is increasing (p’(x) = 3x* >
0). Therefore, p(x) has a unique real root, namely 2. [Alternatively, by Descartes Rule
of Signs, p(x) can have at most one real root — one positive root and no negative root —
and since p(v/2) = 0, v/2 is the unique real root of p(x).] For any ¢ € Aut(Q(+/3,v/2)),
the function ¢ is completely determined by (1), c(1/3), and ¢(v/2). Since ¢ is a
nonzero homomorphism, (1) = 1. Note that 0(1/3)> = ¢(3) = 3 so there are two
choices for o(1/3). Finally, observe that o(v/2)® = ¢(2) = 2 so that ¢(v/2) = /2.
This implies there are only two automorphisms: the identity map and ¢ given by
c(1) =1, o(v/3) = —/3, and a(\s/i) = /2 and extending by linearity. Therefore,
Aut(Q(V3,V2)) = {1,0} 2 Z/2Z.

This is not a Galois extension since | Aut(Q(v/3,v/2)/Q)| = 2 # 6 = [Q(+/3,V/2): Q.
O

168



January 2014

1. Let A be a finite multiplicative abelian group. Let a,b € A and suppose m is the order of
a and n is the order of b. Prove the following:

(a) If 1 is the greatest common divisor of m and 1, then mn is the order of ab.

(b) There exists an element ¢ € A whose order is the least common multiple of m and n.

(c) Suppose a is an element of maximal order in A. Then the order of every element of A

is a divisor of m.

Solution:

(a)

(b)

(©

If a = 1, then |ab| = |1b] = |b| = 1 n, so the claim holds when a = 1. By symmetry,
this also holds when b = 1. Suppose a,b # 1. This implies that m,n > 1. Since A is an
abelian group, it follows that (xy)* = x*y* for any x,iy € A and k € Z. But then

(ab)ml/l — amnbmn — (am)n(bn)m — 171171’! — 1

Now suppose |ab| = k < mn. Then k divides mn, say mn = kl. Note that (ab)* =
akb* = 1 so that a* = b=, But then |a*| = [b=*| = |b*|. Now (aX)! = a¥ =" =1 =
a"" = (a¥)" so that |a*| divides both I and m. Similarly, |b*| = [b~*| = |a*| divides
both [ and # so that |a¥| = |b¥| divides both m and n. This implies |a*| = |b*| = 1
so a* = b¥ = 1. Since |a| = m, m divides k. But |b| = n implies n divides k. Hence,
mn = lem(m, n) divides k, a contradiction. Therefore, |ab| = mn.

Note that the least common multiple of m and 7 is ( ) where (m, n) is the ged of m

and 7. We claim the order of b("") ig (m ik

Ifk < ( ) then (m,n)k < n which implies (b""))k 5 1, which proves the claim. Now

mn
(mn)”

observe ) and m are relatively prime. By part (a), ab("") has order m (m”n) =
which is the least common multiple of m and n.

Suppose b € A has order n and does not divide m. Then lem(m,n) > m and by part
(b), there exist ¢ € A such that the order of ¢ is lem(m, n), contradicting the maximality
of m. Therefore, the order of every element of A is a divisor of m.

O

169



2. Prove that a finite subgroup of the multiplicative group formed by the nonzero elements
of a field is cyclic.

Solution: Solution: It is clear that F* is a finite abelian group. Let C, denote the cyclic
group with r elements. By the Fundamental Theorem of Finitely Generated Abelian
Groups,

F*=Cy x - xCy
forsomek > landr | rp | -+ | .. We claim that k = 1. Suppose to the contrary that k > 2.
Consider the polynomial p(x) = x" — 1. Any element of F* is of the form (4,1,1,...,1)
and is clearly a root of p(x). This accounts for rq distinct roots of p(x). Since r; | r, and
C,, is abelian, C,, contains a subgroup H or order ri. Now every element of the form
(1,a,1,...,1) witha € H is a root of p(x). This implies that there are at least 2r; roots of
p(x), but p(x) has degree r1, a contradiction. Therefore, k = 1 and F*C,,. Thus, F* is a
cyclic group.

OR

Let g = |F| so that |[F*| = g — 1. Let m be the maximal order of the elements of F*. By
Lagrange’s Theorem, m | (g — 1). This implies m < g — 1. We claim m = q — 1 so that we
only need show g — 1 < m. In any finite abelian group, the order of every element divides
the maximal order of all the elements. Then every element x € F* satisfies x™ = 1. Then
every element of F* is a root of x™ — 1. The number of possible roots of x™ — 1 is m so that
g —1 < m. But then m = q — 1. Therefore, some element of F* has order 4 — 1. Hence, F*
is cyclic.

OR

We first prove that if G is a finite group with n elements such that for every divisor d of
n, the number of elements dividing d is at most d, then G is cyclic.

Suppose d | n and let G, be the set of elements of G with order d. If G; # @, there
isay € G;. We have (y) C {x € G: x? = 1}. But (y) has cardinality d. But then
(y) = {x € G: x¥ = 1}. Then G, is the set of generators of (y) of order d. Therefore,
#Gg = ¢(d).

We have shown G is either empty or possesses cardinality ¢(d) for each d | n. Then

n=#G =) #G; <) ¢(d)=n

dln dln

Therefore, #G; = ¢(d) for each d | n. In particular, G, # @. But then G is cyclic.

Now in our case we have G = F*, a finite group. If |[F*| = nand d | n then x? = 1 if
and only if x¥ — 1 = 0 as in the ring. This polynomial can have at most d roots. But then
the claim above applies so that F* is then a cyclic group.
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OR

Suppose that |[F*| = nand d | n. Let ¢(d) denote the number of elements of order
d in F*. Suppose there exists an element x € F* of order d. Consider (x). Then every
element of (x) satisfies y? = 1. But the number of solutions of x¥ = 1 is at most d (since x
is a solution if and only if ¥ — 1 = 0). Then (x) = (x € F*: x? = 1}. But then ¢(d) = 0 or

¢(d). But
Y v(d) =n=Y) ¢

dn dn

so that (d) = ¢(d) for all d | n. In particular, ¢(n) = ¢(d), meaning there exists an
element of order n in F*.

OR

Let G := F*. By the Fundamental Theorem of Finitely Generated Abelian Groups, we
have
G=Z/p'Z x--- X Z/p}'Z

where the p; are primes, not necessarily distinct, and 1, > 1. Each Z/p}"Z is a cyclic group
of order p!". Let m = lem{p}",...,p/"}. We know m < p{*---p}". lf a; € Z/p}"Z, then

afil =1, hence a" = 1. But then for alla € G, a™ = 1, i.e. every element of G is a root
of x™ = 1. But G contains p|' - - - p;" elements while the polynomial x” — 1 has at most
m roots in F. Then m = p|'---p;". As the p; are distinct, the group G is isomorphic to

Z./mZ.

OR

Let G := F* and n = max{|y|: y € G}. Let |G| = N. Choose a € G so that |a| = n.
If we can show that n = N, then |a| = |G| which implies G = (a) and G is then cyclic.
Now a € Gso that [a| = n | Nand n < N. We need show n > N. In any abelian
group with elements of finite order 7, s, the group contains an element of order lem(, s).
Then G contains an element of order lem(|a|, |g]) so lem(n, |g|) < n. But then |g| | n and
then ¢" = 1 for every ¢ € G. Then x — g is a factor of the polynomial x"* — 1 for every
g € G. Therefore, [Toeq(x — g) divides x" — 1. However, [T,cg(x — g) has degree N so
that N < n. O

3. For a positive integer 11, denote by Z,, the ring of residue classes module n and by Z;
the multiplicative group of units of Z,,.

(a) Prove that the group of automorphisms of a cyclic group of order n is isomorphic to
zx.
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(b) Determine (up to isomorphism as in the Fundamental Theorem of Finitely Generated
Abelian Groups) the groups of automorphisms of the following groups

(i) A cyclic group of order 6.
(ii) A cyclic group of order 12.
(iii) A cyclic group of order 29.

Solution:

(a) Note that any cyclic group of order n is isomorphic to Z/nZ, viewed as an abelian
group. Therefore, it suffices to consider automorphisms of Z/nZ. Any homomorphism
¢ : Z/nZ — Z/nZ is completely determined by ¢(1 + nZ) since ¢p(k + nZ) =
k¢(1 + nZ). Therefore for any k € {0,1,...,n — 1}, define a homomorphism ¢y :
Z/nZ — Z/nZbya+nZ — ak+nZ) =ka+ nZ.

We need show that ¢y is well defined: if a + nZ = b+ nZ, then a — b € nZ which
implies k(a — b) = ka — kb € nZ and thus ka + nZ = kb + nZ. Therefore, ¢y is well
defined for k € {0,...,n —1}. Itis clear that ¢ is a group homomorphism. Since
Z/nZ is finite, ¢ is an automorphism if and only if ¢ is injective (recall a map
between finite sets is injective if and only if it is surjective). We claim ¢y is injective
if and only if k 4+ nZ is a unit in Z/nZ. If ¢y is injective, it is surjective (hence an
automorphism). Then there exists a +nZ € Z/nZ such that ¢(a + nZ) = 1 + nZ.
Now ¢p(a+nZ) = ka+nZ = (k+nZ)(a +nZ) so that (k+nZ)(a+nzZ) =1+ nZ.
Therefore, k + nZ is a unit in Z/nZ. Now if k + nZ is a unit, to show ¢y is an
automorphism, it suffices to show that ¢ is injective. Suppose ¢y (a + nZ) = 0 then
(k+nZ)(a+nZ) =ka+ nZ = 0+ nZ. Therefore, a + nZ = nZ since a unit is never
a zero divisor. But then ker ¢, = {0+ nZ} so that ¢y is injective.

Let Aut(Z/nZ) denote the group of automorphisms of Z/nZ and define ¢ : (Z/nZ)* —
Aut(Z/nZ) by k + nZ — ¢x. By the work above, ¢ is a well defined surjective func-
tion. We need show that ¢ is an injective homomorphism. To show it is a map, let
a+nZ,b+nZ € (Z/nZ)*. Then

9((a+nZ)(b+nZ)) = plab+nZ) = gu, = o o hy = P(a+nZ) o (b +nZ),

since ¢y (k + nZ) = abk + nZ = a(bk) + nZ = (¢o 0 ¢p)(k +nZ) for all k + nZ €
Z/nZ. Now if (a+nZ) =1+ nZ, then ak + nZ = k+nZ for all k + nZ € Z/nZ.
In particular, this is true for k = 1, which implies that a + nZ = 1 + nZ. Therefore,
kerp = {1+ nZ}. Therefore, i is injective and is then an isomorphism of groups.

(b) (i) By part (a), the group of automorphisms of a cyclic group of order 6 is isomorphic
to (Z2/62)* = {1+ 62,5+ 6Z}. This is a group of order 2, so it is isomorphic to
Z/27Z.
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(ii) By part (a), the group of automorphisms of a cyclic group of order 12 is isomorphic
to (Z2/12Z)* = {1+127Z,5+ 127,74+ 127,11 + 12Z}. This is the Klein 4-group,
ie. Z/27 x Z./27Z.

(iii) By part (a), the group of automorphisms of a cyclic group of order 29 is isomorphic
to (Z/29Z)*. Because 29 is prime, the unit group of Z/29Z is all nonzero
elements of Z /297, which is a group of order 28. Therefore, (Z/29Z)* =
Z/287.

O

4. Let p be the smallest prime divisor of the order of a finite group G. If H is a subgroup of
G of index p, prove that H is a normal subgroup.

Solution: Define an action of G on the set of left cosets of H in G by ¢ - aH = gaH for all
g,a € G. Since [G: H| = p, there are p left cosets of H in G so that the above action of G
induces a group homomorphism ¢ : G — S,. We claim H is the kernel of ¢. Note that
$(g) = o, where 0y (aH) = gaH. If 0, = 1, then 0, (1H) = gH = H, which implies g € H.
Therefore, ker ¢ C H.

Then using the First Isomorphism Theorem, p = [G: H| = 161 6]

= <
[H| = [ker¢|

= |im¢|. In

particular, “ﬁ‘ m divides [S,| = p!. Factoring ‘kﬁ‘ 7l into prime numbers, it follows that
% = p1---p;, where p; < p. However, each p; divides |G| and each p; < p. This
implies i = 1 and p; = p. Therefore, ‘k|eGr| 5] = Psas claimed.

Now since G is finite and [G: H] = [G: ker ¢, it follows that |H| = | ker ¢|. Because
ker¢ C H and H is finite, it must be that H = ker ¢. Thus, H is the kernel of a group
homomorphism, implying that H is a normal subgroup of G. O

5. Denote by R" the n-dimensional Euclidean space with the usual dot product. Prove that
if the columns of an n X n real matrix A form an orthonormal basis for R”, then the rows
do too.

Solution: Notice that the columns of A are linearly independent since they are orthogonal.
Thus, A is invertible. Let x; denote the i" column of A. Since {x;:i = 1,...,n} is an

orthogonal basis for R”,
1, i=j
T 7
e {o, i

Therefore, this is equivalent to the assertion that AT A = I. Multiplying both sides of this
equality on the right side by A~1, it follows that A=! = AT. Therefore, AAT = I. Denoting
the columns of AT by y;, the (i, j) entry of I is the dot product, (y;,y;) = y]y;. Therefore,
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the columns of AT are orthogonal, implying that the rows of A are orthogonal. Since
there are n orthogonal rows of A and the dimension of R" is 7, the rows of A form an
orthonormal basis for R". O

6. Find an ideal I C R[x, y] such that

Write down the isomorphism explicitly and prove it is an isomorphism.

Solution: Let I = (x?,? +1).” Note throughout the proof for simplicity, we will ignore
‘bars’, e.g. we say 1 € R[x, y|/I instead of 1. In the quotient, R[x,y]/I, y*> + 1 = 0 so that
y? = —1 (neglecting this is in the quotient). This also implies the largest power of y with a
nonzero coefficient in the quotient R[x, y]/I is 1. Define

¢ :Rlx,y]/1 — Clz]/ (%)

by ¢(p(x,y) +I) = p(z,i) + (z%). We claim that ¢ is a ring isomorphism. We need check
that ¢ is a ring homomorphism: for p,q € R[x],

o((p(x,y) + 1)+ (q(x,y) + 1)) = ¢((p(x,y) +4(x,y)) + 1)
= (p(z,i) +q(z,1)) + (%)
= (p(z,i) + (z%) + (q(z,1) + (%))

¢(p(x,y) +1) +¢(q(x,y) + 1)

and
o((p(x,y) +D(q(x,y) +1)) = d(p(x,y)q(x,y) + ).

Now write p(x,y) = ag + a1x + a2y + asxy and q(x,y) = by + b1x + bay + bsxy, where
a;,b; € R (noting in the quotient any higher powers of x,y disappear so we need only
consider terms of at most degree 2). Then

p(x,y)q(x,y) = aoho + (aoby + arbo)x+(agh + azbo)y + ar1b1x* + azboy?
+(agbs + arby + agby + azbo)xy + (arbs + asby)x*y-+(azbs + azbr ) xy? + azbsx*y?

Therefore, noting y* = —1 and the only power of x which survives in the quotient is x,

p(x,y)q(x,y) + I = (aobo — azb2)+(aoby + a1bo — azbs + asba)x
+(a0b2 + azbo)y—i—(aob;g + a1by + ab1 + ag,bo)xy + 1.

9The idea is that R[y] / (y*> + 1) = C so R[x,y]/ (y* + 1) = C[x] and then we simply map tread x as z.
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But then

¢(p(x,y)q(x,y) +I) = (aobo + azbz) + i(aoba + azbo) +
z[(aoby + a1by — axbs — azby) + i(aghs + arby + axby + azby)] + (22).
Now observe that
d(p(x,y) + Dop(q(x,y) + 1) = (ap + a1z + azi + aziz) (by + b1z + bai + bsiz)
= (aobo — Zabz) + i(aobz + a2b0)+
zZ [aobl + bpay — arbz — azby + i(azbl + bsag + asby + Ellbz)] + (22).

It remains to show that ¢ is bijective. Suppose p(x,y) + I € ker ¢ (written as above).
Then p(z,i) + (z2) = (z?), i.e. z? divides p(z,i). But then either x> divides p(x,v), i.e.
p(z,i) # 0, or y*> + 1 divides p(x,y), i.e. p(z,i) = 0. In either case, p(x,y) € (x%,y>+1),
which implies that ker ¢ = {0 + (x?,y?> + 1) }. To show that ¢ is surjective, let p(z) + (z2) €

Clz]/(z?). Write p(z) = wg + w;z for some wy, w; € C. Write wg = ag + iby, w1 = ay + iby
for ag, by, a1, b1 € R. Define q(x,y) = ao + boy + a1x + byxy. Then

o(g(x,y)+1) =q(z,i)+ (zz) = ag + boi + a1z + briz + (zz) = wy + w1z + (22).

Therefore, ¢ is surjective. But then ¢ is an isomorphism of rings. O

7. Recall that an abelian group is a Z-module in a natural way.

(a) Let Q be the group of rational numbers under addition. Prove that Q is not a free
Z-module.

(b) Let Q* be the group of nonzero rational numbers under multiplication. Prove that Q*
is not a free Z-module.

(c) Let Q" be the group of nonzero positive rational numbers under multiplication. Prove
that Q" is a free Z-module of infinite rank.

Solution:

(a) Suppose that Q were a free Z-module. Let B be a basis for Q over Z. If |B| > 1, let
x,y € B be distinct. Then x = p1/q1 and y = p2/q2 for some p1, p2, 41,92 € Z with
91,42 > 0. This implies that

1 2

(@1p2) 2+ (—q2p1) 2

1 q2

But then 0 can be written as a linear combination in two distinct ways, contradicting
the fact that B is a basis.

=p1p2 — p1p2 = 0 = 0x + Oy.
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(b)

If |[B| =1,then B= {p/q} for some p € Z, g € N. Since B is a basis for Q, there exists
m € Z such that m - g = 2177, then mp = % But this contradicts the fact that p,m € Z.
Therefore, B is not a basis for Q, proving that Q does not have a basis as a Z-module.

Thus, Q cannot be a free Z-module.

Suppose that Q* were a free Z-module and B were a basis for Q*. Notice that
—1 € Q%, implying that —1 = alil .- .ak", where a; € Band k; € Z for all i. Without
loss of generality, assume k; # 0. Therefore,

1= (-1)2=a"...g2% =4,

This implies that the representation of 1 as a linear combination of basis elements is
not unique, contradicting the fact that B is a basis. But then Q* is not a free Z-module.

Let B denote the set of all positive prime integers. We claim that B is a basis for Q"
as a Z-module. Since there are infinitely many primes, B is infinite and proving B
is a basis proves the result. For any rational x > 0, there exist p,q € IN such that
x=p/qand (p,q) = 1. Write p = pi' - - - pi» and g = 4" - - - glr, where the p; and g;
are distinct primes and k;, I; > 1 (these factorizations are unique). Since (p,q) = 1, the
factorizations share no common primes. Therefore,

_ k ky ,—h -1
_x_pl ...pn”ql ...qmm

is a linear combination of basis elements. Since this expression is unique up to reorder-
ing, B is a basis for Q.

O]

8. Let A be a n X n matrix over the complex numbers and let AT be its transpose.

(a)
(b)

Prove that A and AT have the same Jordan canonical form.

Explain why (a) implies that A and AT are similar to each other.

Solution:

(a)

Let | denote the Jordan canonical form of A. Since the Jordan canonical form of
A is unique, up to reordering of blocks, it suffices to prove that AT is similar to J.
Now since A is similar to ], there exists a matrix P such that PAP~! = J. Taking
transposes, (P~1)TATPT = JT. Observe that (P~!)T = (PT)~! since PP~! = I implies
(PHIPT =T =1.
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This implies that AT is similar to JT. It remains to show that J7 is similar to J. Con-
jugating | by a block diagonal matrix, where the size and order of the blocks are the
same as the size and order of the Jordan blocks of |, with each block of the form

00 --- 1
01 0
10 0

we see that | and JT are conjugate.

(b) Any matrix is similar to its Jordan canonical form. If | is the Jordan canonical form
of A (choosing an ordering of blocks), then part (a) implies that A and AT are both
similar to J. Since similarity of matrices is an equivalence relation, this implies that A
and AT are similar.

O

9. Let F C K be an extension of fields. Assume that we have an infinitely long strictly
increasing sequence of fields FC F; C F, C F3 C --- withall F; C K.

(a) Prove that F C K is not a finite field extension.

(b) Show by example that F C K could be an algebraic field extension.

Solution:

(a) We need show [K: F] = co. We claim [F,: F] > 2" for every n € IN. For n = 1 and
since F; # F, [F1: F] > 2. Suppose the claim holds for n. Then

[Fyi1: F] = [Fus1: Fu] [Fo: F] >2-2" =21
The claim then follows by induction. Now for any n € IN,
[K: F| = [K: F,][F,: F] > [K: F,]2" > 2",
which implies that [K: F] = oo.

(b) Consider F = Q, K = Q (viewed as a subfield of C). Since K is the algebraic closure
of F, K is algebraic over F. Let F; = Q(+/2) and F, = F,_1(3/2). With this choice of
F, Fand K satisfy F C F; C F, C --- with F; C K, but K is algebraic over F (as noted
above).
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O]

10. Let F C K and F C L be two field extensions. Let ¢ : K — L be an isomorphism of
fields such that g(f) = f for all f € F. Prove that g induces an isomorphism of Galois
groups § : Gal(K/F) — Gal(L/F).

Solution: For o € Gal(K/F), define §(¢) = gog~!. We need check that §(o) € Gal(L/F).
It is clear that gog~! : L — L is an isomorphism as it is the composition of isomorphisms.
Furthermore since ¢(f) = ¢ !(f) = o(f) forall f € F, (gog™1)(f) = f forall f € F.
Therefore, grg~! € Gal(L/F).

Let 01,0» € Gal(K/F). Then

2(01)§(02) = goig 'gmg ™ = grnmg ™" = F(102).

This shows that ¢ is a group homomorphism. Let 1x and 1; denote the identity functions on
K and L, respectively. If ¢ € ker §, then gog~! = 1;, which implies that go = g. Multiply
both sides on the left by ¢!, we obtain ¢ = 1x. Thus, ker § = {1k}, which implies that ¢
is injective.

Now we need only show § is surjective. Let ¢ € Gal(L/F). Define ¢’ = ¢~ log. Itis
clear that ¢’ € Gal(K/F). Furthermore,

g(o) =go'g ' =g og)g " = (gg o(gg™!) =0

Therefore, § is surjective. But then § is an isomorphism of Galois groups. O
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August 2014

1. Let K be a field. A square matrix A over K is called unit upper triangular if it has 1s on the
diagonal and 0Os below the diagonal; that is, A = [ai]-], where

{1, i=j
ajj = .
0, 1>

The unipotent group U, (K) is the set of all n x n unit upper triangular matrices over K with
the usual matrix multiplication.

(a) Prove that U, (K) is a subgroup of GL,(K).

(b) If K = FF, is a field of order g = p", where p is a prime number, show that U, (F,) is a
Sylow p-subgroup of GL, (IF,).

Solution:

(a) Itis clear that U, (K) is a subset of GL,(K) as det A = 1 for A € U, (K) as the determi-
nant of a triangular matrix is the product of its diagonal elements. Let A = [a;;] and
B = [bl]], where A,B € U, (K) Then AB,‘]' = Zzzl aikbkj. But aij, bl] =0fori > ] Then
itis clear from the matrix product that AB € U, (K). So U, (K) is closed under products.
It is also clear that AB;; = 1 from the definition of a matrix product. Therefore, U, (K)
is closed under matrix products. It is tedious to show that if AB = [ and A is upper
triangular, then B is upper triangular. But it is nevertheless true. This shows that U, (K)
is closed under inverses. Therefore, U, (K) < GL,(K).

(b)

2. Let G be a finite group with center Z. Let p be a prime number. Prove the following
statements:

(a) If |G| = p* for some e > 1, then Z is nontrivial.

(b) If G is nonabelian and |G| = p°m for some e > 1 and some m with p > m, then G is
not a simple group. (You will want to use the previous part.)

Solution:

(a) Let |G| = p" for some n > 0. If n = 0, the result is trivial. If p = 1, then G = Z/pZ,
which is abelian. So suppose p > 1. The Class equation for G is

4

Gl = 12(G)| + ;[Gr Co(a;)]

179



where the Z(G) is the center of G, Cg(x) is the centralizer of x in G, and the summation
is over ay, ..., a, representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G: Cg(a;)] > 1since a; ¢ Z(G).
The Class equation for G can be rewritten as

r

1Z(G)| = |G| - ;[Gi Cc(a)].

Each term on the right hand side is a divisor of |G| = p". Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so
that |Z(G)| # 1.

(b) If m = 1, then G is a p-group so that by (a), G cannot be simple. Assume then that
1 < m < p. Inparticular, (p,m) = 1. Let n, denote the number of Sylow p-subgroups
of G. By Sylow’s Theorem, n, = 1 mod p and n, | m, i.e. n, = 1+ kp for some k
and (1+kp) | m. Asp >m,1+kp > mifk > 1, a contradiction. Then k = 0 so that
np = 1. Therefore, the Sylow p-subgroup is unique, hence normal. But then G cannot
be simple.

O]

3. Let T be a self-adjoint (that is Hermitian) linear operator on a finite-dimensional inner
product space V and assume that T" = idy for some 1 > 1. Prove that T? = idy.

Solution: Since T is a Hermitian (or self-adjoint) linear operator on V, we can only inter-
pret V as being a hermitian inner product product space. Then by the Spectral Theorem,
there is an orthonormal basis of V consisting of eigenvectors of T. As V is finite dimen-
sional, there are finitely many such eigenvectors, call these vy, v,, - - - , v, with eigenvalues
A1, Ag, -+, Ay, respectively. We know also by the Spectral Theorem, A; € RR. It suffices
to show that T? fixes v; fori = 1,2, - - ,n. By induction, we know T"(v;) = A'v;. But by
assumption, T"(v;) = v;. Therefore, A'v; = v; so that A! = 1implying A; = &1, depending
on n. However, then T?(v;) = A?v; = v;. O

4.

(a) Let V be a finite dimensional real vector space with nondegenerate bilinear form (, ).
Let T : V — V be a linear operator. Prove that there exists an adjoint for T; that is, a
linear operator T* : T — V such that (v, T*w) = (Tv,w) for all v,w € V. You may
assume that V has an orthonormal basis B.

(b) Let V be the real vector space of all polynomial functions f(t) with inner product
(f,g) = folf(t)g(t) dt. Let D : V. — V be the derivative D(f) = f’. Prove that there
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does not exist an adjoint D* for D. (Hint: consider D*(1).)

Solution:

(a)

(b)

Let B = {v1,vy,- -+ ,v,} be a orthonormal basis for V. Given a linear operator T on
V, there is a unique u € V such that T(v) = (u,v) for all v € V. To see this, let
u=y",(T(v;i))*v;. Define T, on V by T,(v) = (u,v). Then

n

Tu(vi) = (u,05) = (Y (T(v:)) " vi,05) = iT(vi)@j/ vi) = T(v;)

i=1 i=1

As T and T, agree on the basis for V, T(v) = T,(v) for all v € V. To see uniqueness,
suppose u, u’ are two such vectors in V with the above property. Then T, (v) = (u,v)
and T,y (v) = (1, v) so that (u — u’,v) = 0. As v was arbitrary, choose v = u — u’. Then
(u—u',u—u") =0, as this form is positive definite, we know u — u’ = 0 so thatu = u’.

Now given T, define L, by L,(v) = (u, Tv). This function is clearly linear so that by
the previous part, we know that there is a unique 1’ € V such that L, (v) = (#/,v). But
then (u, Tv) = (u’,v). Define T* : V. — V by T * (u) = u'. The mapping is unique as
u’ is unique for any given u. So that if T*'u = u' = T*u, then (T* — T)(u) = 0 so that
T* = T*. That is, we define T* as (T*u,v) = (u, Tv). Then T* has the desired property.
We need only show that T* is linear. But for u1,u3,v € Vand a,b € C, we have

(T*(auy + buy),v) = {auy + buy, Tv)
=a*(uy, Tv) + b*(u, Tv)
=a"(T*uy,v) + 0" (T"uy,v)
= (aT"u; + bT uy,v)

We can do this quickly by noting {v;} is an orthonormal basis for V so that the elements
of T are given by a;; = (v,, Te;j). Define T* to have elements b;; = @;;.

Suppose there were an adjoint D* for D. Then on this real vector space, D* = D. Then
we also have (Df, g) = (f, D*g) = (f, Dg). Take f(x) = x and g(x) = 1. Then

(Df,g) = (x,1) = /ledx:;
1
<f,Dg>:<x,o>:/0 0dx =0

a contradiction. Notice here the previous part “fails" as the space is not finite dimen-
sional.

181



5. Let R # 0 be a commutative ring with identity.

(a) Let I be an nontrivial ideal of R. Prove that I is a free module if and only if it is a
principal ideal generated by a nonzerodivisor.

(b) Prove that if every finitely generated R-module is free, then R is a field.

Solution:

(a) Suppose that I < R be a free R-module. Let {x,}, be a basis for I, not necessarily
countable. Observe that if we choose a,b € {x,},, where 4, b are distinct, we have
ab + (—ab) = 0 is a nontrivial relation, contradicting the fact that {x,}, is a basis.
Then it must be that I = (x) for some x € R. We only need show that x is a non-
zerodivisor. Suppose that x were a zero divisor, then thereisa 0 # y € x such that
xy = 0, contradicting the fact that {x} is a basis for I. Then I = (x) is a principal ideal
generated by a non-zerodivisor.

Now assume that I = (x) is a principal ideal generated by a non-zerodivisor. The
result is then immediate as I = Rx so that {x} serves as a basis for I so that I is free.
To confirm this, observe that if ax = 0 for 0 # a € R, then x is a zero divisor, contrary
to the assumption.

(b) If R has no nonzero ideals, then R = {0} or R is a field for otherwise if 0 # x € R had
no inverse, then Rx is a proper (as 1 ¢ Rx) nonzero ideal. Suppose that every proper
ideal I of R were free. Let I be a proper ideal of R. Then R/ is a finitely generated
R-module spanned by 1. If I were not the zero deal, then R/ is not isomorphic to R"
for any n.

O
6. Let A be a 3 x 3 matrix with entries in Q such that A% = I. Prove that A* = I.

Solution: Let p4(x) denote the characteristic polynomial for A. By the Cayley-Hamilton
Theorem, pa(A) = 0. Write g4(x) = x® — 1. By assumption, g4(A) = 0. Since
Q[x] is a Euclidean domain (Q is a field), we can find a ged of pa(x),ga(x): da(x) =
ged(pa(x),qa(x)). Since da(x) = r(x)pa(x) +s(x)ga(x) for some r(x),s(x) € Q[x], we
know

da(A) =r(A)pa(A) +5(A)ga(A) =r(A)-0+5s(A)-0=0.

But we know also that

gax) =3 —T=(*-DA+D) = -DEP+D(A D) = (x—D(x+ D+ (2 +1).
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Now da(x) is a factor of pa(x) and ga(x) of degree at most 3. Furthermore as Qx|
is a UFD, we know that d4(x) is relatively prime to x* + I. But then d4(x) must di-
vide (x —)(x+ 1)(x>+1) = (x> =1)(x*+1) = x* = I. Asds(A) = 0, we must have
A*—1=0,ie A*=1 O

7.Leta = v/2and B = v/2. Let E = Q(a, B). Prove that [E : Q] = 12.

Solution: Now that p,(x) := x> — 2 is irreducible over Q (it is Eisenstein with p = 2) and
pa(a) = 0. Furthermore, pg(x) := x* — 2 is irreducible over Q (it is Eisenstein with p = 2)
and pg(B) = 0. Therefore, p,(x), pg(x) are the minimal polynomials for &, B, respectively.
So [Q(a): Q] =3 and [Q(B): Q] = 4. Generally, if Ky, K; are finite extensions of a field F,
say of degree n, m, respectively, then [K1Ky: F|] < [K;: F][Ky: F]. Suppose (n,m) = 1. Now
[K1K3: F] is divisible by both [K;: F| and [K;: F] as K3, K, € K;K,. However, (n,m) =1
so that [K1K;: F] is divisible by nm. Therefore, [K1Ky: F| = nm.

Let K; := Q(a) and K; := Q(p). Note that [K;: Q] =3 and [Kz: Q] =4and (3,4) = 1.
By the work above, [K1K;: Q] = 34 = 12. It only remains to show that K;K, = E.
But this follows by abstract nonsense: K;K; is the smallest field containing K; = Q(«)
(the smallest field containing Q and «) and K; = Q(B) (the smallest field containing
Q and pB) while E = Q(a, B) is the smallest field containing Q, «, and B. Therefore,
Q(w, B) = E = KiKo. O

8. Let F be a field and let f € F[x] be an irreducible polynomial of degree n. Let E be a
splitting field of f. Prove that [E : F] < n!'

Solution: If f(x) has degree 1, then f is irreducible. If f(a) = 0 then « € F. But then
the splitting field of f is F and [F: F| = 1 < 0! = 1. Assume the result holds for n = k.
Let f € F[x] be an irreducible polynomial of degree k + 1. Let a be a root of f. Since f
is irreducible, f is the minimal polynomial for a. In particular, [F(«): F| = k+ 1. Now
F(a) contains a root of f, namely «, so that F(«) C E. Furthermore, f factors in F(«)|x]
as f = (x —w)g(x) for some polynomial g(x) of degree k. By considering F' = F(«), the
inductive hypothesis says [E: F(a)] < k!. But then

[E: F] = [E: F(a)][F(a): F] <k!-(k+1)=(k+1).
Therefore, the result holds by induction. O

19This holds, in some sense, more generally: if f(x) € F[x] is a polynomial of degree 1, adjoining a root of
f(x) to F generates an extension F; of F of degree at most n (equal to # if and only if f(x) were irreducible).
Over F, the polynomial has at least one linear factor so that any other root of f(x) satisfies a polynomial of
at most degree n — 1 over the field F;. Adjoining such a root to F; forms an extension F, of at most degree
n — 1. This process can continue at most # times (since deg f = 1) and each time produces an extension of at
most degree i at the ith stage. Note F C F; C --- C F,. Since [F;: F] = [Fy: Fy_1][Fi—1: Fa—a] -+ [F1: F] <
n-(m—1)----- 1=nl
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9.

(a) Let R be a commutative ring with identity. Assume that Z is a subring of R. You
have seen that this makes R into a Z-module. Assume that R is a finitely generated
Z-module. Prove that R is not a field.

(b) Find a field F such that the additive group (F, +) is a finitely generated Z-module.
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January 2015

1. Show that a group of order 24 cannot be simple. [Hint: If | Syl,(G)| = 4, then there is a
group homomorphism from G to Sy.]

Solution: We know that 24 = 2% - 3. Let 1, denote the number of Sylow p-subgroups. It is
clear by Sylow’s Theorem and the fact that G has order 24 that n, # 4 and n3 7 9. Then
ny € {1,3} and n3 € {1,4}. If either ny, n3 are 1 then the Sylow p-subgroup is unique,
hence normal. Assume that neither are unit. Then as n, = 3, the action of G by conjugation
on its Sylow 2-subgroups determines a map ¢ : G — S3. The image of G under ¢ in S3 acts
transitively on these subgroups. Therefore, im ¢ # 0. By the First Isomorphism Theorem,
im ¢ = G/ ker ¢. So we know that ker ¢ # G. If ker ¢ = {1}, then im ¢ = G. But then
24 = |G| = |im ¢| < |S3| = 6, impossible. Then ker ¢ is a nonempty proper subgroup of
G. But ker ¢ <1 G. Therefore, G is not simple. O

2. Let G be a group. For an element w € G, let [w] denote its conjugacy class in G and let
Cg(x) denote its centralizer in G.

(a) If Gis a finite group and x € G, show that | [x] | = [G : Cg(x)].

(b) If N <G with [G: N] =2and y € N, show that [y] is either a conjugacy class of N or
the union of 2 conjugacy classes in N.

Solution:

(a) We create a bijection between [x] and left cosets of Cg(x). If y € [x], then y = axa~! for
some a € G. Define a map ¢ from [x] to the set of left cosets of Cg(x) be y = axa™! —
aCg(x). We need show that this map is well defined. Suppose y = axa~! = bxb~ .
Then b~ lax = xb~'a so that b~'a commutes with x. But then b~'a € Cg(x). But then
b~1aCg(x) = Cg(x) so that aCs(x) = bCg(x). Therefore, ¢ is well defined.

It is immediate that this map is onto so it only remains to show that it is injective.
Suppose ¢(a) = ¢(b). Then aCg(x) = bCq(x). But then ak = b for some k € Cg(x).
But then k = a~'b € Cg(x). Therefore, a~'b commutes with x so a~bx = xa~'b. But
then this shows that axa=! = bxb~1.

(b)

3. Let G be a finite group and P be a Sylow p-subgroup. Let H = Ng(P) = {g €
G | g7'Pg C P} be the normalizer of P in G. Prove that for any ¢ € G, ¢ 'Hg = H if and
onlyif ¢ € H.

Solution: We prove that Ng(Ng(P)) = Ng(P): we have P < Ng(P) < Ng(Ng(P)). Now
P is a Sylow p-subgroup of Ng(P) and Ng(Ng(P)). If ¢ € Ng(Ng(P)), then gPg~! <
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gPg~1 = Ng(P). Since all Sylow p-subgroups are conjugate, there exists 1 € Ng(P) such
that gP¢~! = hPh~!. Since h € Ng(P), it must be that hPh~! = P so that gPg~! = P.
Therefore, § € Ng(P) showing that Ng(Ng(P)) = Ng(P). The result then follows from
the fact that:

¢ 'Hg=H <= H=gHg ! <= ¢ & Ng(H) = Ng(Ng(P)) = Ns(P) = H
O

4. Let V and W be vector spaces and let f : V — W and g : W — V be linear transforma-
tions with f o ¢ = 1. Prove that V decomposes as the direct sum of subspaces

V =img @ ker f
where im(g) is the image of ¢ and ker(f) is the kernel of f.

Solution: Let x € V and consider the element x — gf(x). Observe that

flx=gf(x)) = f(x) = (fef)(x) = f(x) = (fe) f(x) = f(x) = f(x) =0

so that x — gf(x) € ker f. That is, there is a k € ker f such that k = x — gf(x). But then
x = gf(x) + k. Then every element of V is the sum of some element in the image of g,
namely ¢f(x), and an element k € ker f. We need now only show that the sum is direct.
Lett € imgNker f. Ast € im g so that thereis a w € W such thatt = g(w). Ast € ker f,
we know that f(t) = 0. But then 0 = f(t) = fg(w) = 1(w) = w. But then t = g(w) = 0.
Therefore, the sum is direct. O

5.

(a) Prove that in a UFD (unique factorization domain), any ascending chain of principal
ideals must stabilize.

(b) Give an example of a UFD that is not noetherian.

Solution:

(a) Suppose
(1) € (a2) € (a3) & -+~
is a chain of principal ideals in a UFD. As g; is in a UFD, it has a unique prime
factorization. We know that a; € (ay). It is then clear that a, | 4;. Similarly, we know
that a; € (a;11) so that a;11 | a;. So the prime factors of a;,1 appear in the prime
factorization of a;. But then the prime factors of a; appear in a; for all i.

186



Suppose that a; = py'py? - - - pi' is the prime factorization for a;, where the p; are prime.
As the containment of each ideal is proper, 4,1 must have one less prime (counting
multiplicity) than a4;. But as a; has finitely many primes (counting multiplicity) —
namely, N = Y/ ; r; — it must be that the chain stabilizes in at most N + 1 steps.

(b) The UED [];2, Z/2Z is such an example. Easier to see is k[x1, x2, - - - ], where k is a
field. Let R = k[x1,xp,- - -]. Note that k[x1,...,x,] is a UFD for all n € IN since k is
a field. Note given f € R, f must involve finitely many variables, say the largest
subscript occurring in f is N. Then f € k[xy,...,xn], a UFD. Then f factors uniquely
in k[x1,...,xn]. But the only possible nontrivial factorizations in R for f can only
involve these variables. Then f factors uniquely into irreducibles in R so that R is a
UFD. However, R cannot be noetherian as it contains a non finitely generated ideal
(x1,x2,- - ) (since any finite generating set contains a x; with maximal subscript, say
xn, so that xy1 is not generated by the chosen finite subset) or that

(x1) < (x1,x2) < (x1,x2,x3) < -
is an infinite ascending chain of ideals of R.

O

6. Prove from the definition that any nonzero prime ideal in a PID (principal ideal domain)
is maximal.

Solution: Let R be a PID. We need only consider a prime ideal generated by a single prime
as we are in a PID. Let P = (p) be a nonzero prime ideal. Suppose M = (m) is a maximal
ideal with M D P. We want to show that M = Ror M =P. AsM D P,p € M = (m).
Therefore, p = rm for some r € R. But as P is a prime ideal and p is prime, r € (p) = P
orm € (p) = P. If m € P, then M = P and we are done. Suppose then that r € P. So
r = ps for some s € R. But then p = rm = psm = p(sm). This shows that sm =1 (as R is
a domain). Now as R is a PID, it must be that m is a unit. So 1 = sm € P. However, this
implies that P = R. O

7. If G is a finite abelian group with the property that
HxeGlx"=1}<n
for all n > 1, show that G must be cyclic.

Solution: Let |G| = n and let S; be the set of elements of G of order d. Suppose there were
more than ¢(d) elements of d. If g € S, the cyclic group (g) has ¢(d) elements of order
d. But then by assumption, there exists i € G \ (g) of order d. But then there are at least
|(g)| +1 = d + 1 solutions to g" = 1, a contradiction.
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Then we have #5; < ¢(d). Observe that G = L, S4. However,
n=|Gl=) #5; <) ¢(d) =n

dn dn
But then it must be that #S; = ¢(d) for all d | n. In particular, #5; > 1 for all 4 | n. But then
G must contain an element of order n. Therefore, G is cyclic.

OR

Suppose that [{x € G | x" = 1}| < n for all n. Consider a prime p | |G|. If there
were more than one Sylow p-subgroup of G, then there would be more than p” solutions
to g¢¥' = 1, where r is the largest power of p dividing |G|. A Sylow p-subgroup is cyclic
as g¢” ' = 1 has less than p” solutions so that there exists an element g with g = 1 and
g"’r_1 # 1. Therefore, each Sylow p-subgroup of G is unique, hence normal and cyclic
(by the work above). But then the group G is cyclic since G is the product of its Sylow
p-subgroups if each Sylow p-subgroup is unique.

OR

Suppose |G| = p" for some prime p and r > 1. By Lagrange’s Theorem, any nonidentity
element ¢ € G has order p“ for some 1 < a < r. Choose r to be maximal. The elements
1,8,¢%...,8"" 1 are p* distinct solutions to x”* = 1. By assumption, these are all the
solutions. Then if i € G, then its order is p!, where t < r. Therefore, W= (lﬂ")pH =1.
But then i = ¢’ for some i. But then G = (g). Therefore, G is cyclic.

Now since G is a finite abelian group, by the Fundamental Theorem of Finitely Gener-
ated Abelian Groups, wehave G = S, © Sy, @ - - - @ Sp,, where the p; are the distinct prime
divisors of |G| and the S, are the Sylow p-subgroups of G. Through this isomorphism,
we can write uniquely as ¢ = 515 - - - 5, where s; € §;. Any solution x” = 1in S, is also
a solution of x" = 1 for x € G. By the work above, it must be that each S, is cyclic. Let
gi be a generator for S,,. We claim ¢ = ¢1--- g is a generator for G. It is sufficient to
show that |G| | |g1- - - k|- Since G is abelian, (g1 ---gx)" = g1 --- g} = 1. Butif m is the
order of g, then g™ = ¢"- - - ¢}' = 1. Since every element of G is unique represented as a
product of the s;, it must be that g/* = 1. But then |S,,| | m for alli = 1,..., k. But then

Gl = 1Sp,| - [Sps| -+ Sp| | m. But |m| | |G| so that |G| = m. Therefore, g generates g
and G is cyclic. O
8.
A1 0 -0
oA 1 -0
@QIfM=|. . . .| is a Jordan block with A € C. What is the Jordan
00 -+ -+ A

canonical form of M? over C?
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(b) If A is a matrix such that A and A? have the same Jordan canonical form, what are the
possible Jordan forms of A?

9. Let L © K 2 F be field extensions, not necessarily of finite degree, with K algebraic over
F.If « € L is algebraic over K, prove that « is algebraic over F.

Solution: As « is algebraic over K, we know there is a polynomial equation
A + a0t a4+ ag=0

where a; € K. Consider F* = F(ag,a1,-- - ,a,). As K/F is algebraic, a, - - - ,a, are algebraic
over F. So F*/F is a finite extension as F* is generated by a finite number of algebraic
elements. Then a generates an extension of degree at most n as the minimal polynomial
for « must divide a,a™ 4+ a,_1a" 1 + - - - + ay& + ao. But then

[F* : F| = [F(a,a9,a1,- - ,an) : F(ag,a1,--- ,a,)]] [F(ao, a1, ,an) : F]

is finite. So F(a,ag,- - - ,a,)/F is an algebraic extension so that « is algebraic over F. O

10. Consider the number « = v//2 — 1 and the field extension Q(w) of Q.
(a) Find the minimal polynomial of & over Q.

(b) Find the degree [Q(«) : Q] of the field extension.

(c) Find the Galois group Gal(Q(«)/Q).

Solution:

(a) We know

a=1/vV2-1
2 =v2-1
24+1=v2

(a?+1)2=2

ot 20> —1=0
So we suspect that the minimal polynomial for « is f(x) = x* + 2x — 1. The only
rational roots can be &1 by the Rational Root Theorem. Both are easily seen not to
be zeros. But then f(x) has no rational roots so that it must be irreducible over Q.

Then f(x) is an irreducible polynomial with root a. Therefore, f(x) is the minimal
polynomial for a.
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(b) The degree of the extension is the same as the degree of the minimal polynomial, which
we found in the previous part. Therefore, [Q(«) : Q] = 4.

(©
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August 2015

1. Let p, q be primes, not necessarily distinct. Show that a group of order pgq is not simple.

Solution: If p = g, then |G| = pg = p?. We have a more general result: any p-group (a
group of order p") cannot be simple for n > 1. Suppose |G| = p" for n > 1. Recall the
Class Equation:
Gl =1Z(G)|+ ). |G: Ca(8il,
81781

where Z(G) is the center of G, C5(g;) is the centralizer of g;, and g, ..., g, are represen-
tatives for the distinct conjugacy classes of G with more than one element (for otherwise
it is in the center). The centralizer of g;, C;(g;), is a subgroup of G so that by Lagrange’s
Theorem its order must divide |G|. Since |G| = p", |Cs(g:)| = p* for some k < n (it cannot

be that k = n for then C5(g;) = G and then g; € Z(G)). Then |G: Cg(gi)| = % = p" K,
Now we have |G| — |G: Cs(gi)| = |Z(G)|. Since p divides the left side, we must have
p | |Z(G)|. In particular, Z(G) is non-trivial. But Z(G) is always a normal subgroup so
that G cannot be simple. The result then follows with n = 2.11

Now if p # g, without loss of generality, assume that p > g. Let n, denote the number
of Sylow p-subgroups. We know that n, =1 mod p and thatn, | g. Asn, | p, it must be
thatn, € {1,9}. Butasn, =1 mod p,n, =1+ np forsomen €0,1,2,---.If n > 1, then
(14np) > p > qsothat1+ np { g, a contradiction. Therefore, n = 0 so that 11, = 1. Then
the Sylow p-subgroup is unique, hence normal, so that G is not simple. O

2. Let G be a group with subgroup H (the subgroup need not be normal). The set G/ H of
left cosets of H in G is a left G-set by means of ¢ - xH = gxH, where g,x € G.

(a) For a € G, compute the stabilizer G,y of aH.

(b) Let X, Y be left G-sets. A map ¢ : X — Y is a homomorphism if ¢(gx) = g¢(x) for all
g € G, x € X, and it is an isomorphism if there exists a homomorphism ¢ : Y — X
satisfying ¢ = 1x and ¢y = 1y. The G-sets X, Y are isomorphic if there exists an
isomorphism X — Y. For x € X, denote G, the stabilizer of x.

(i) If ¢ : X — Y is a homomorphism of G-sets, prove that G, < G¢(x), x € X.

(i) If ¢ : X — Y is an isomorphism, prove that Gy = G(y), x € X.
(c) Let H, K be subgroups of G.

HSince n = 2, the group must be abelian for there are only two groups up to isomorphism of order p? for
any prime: Z, & Zp or Z/ p>Z, neither of which are simple since they have nontrivial center by the work
above. You should be able to prove this classification. Note that a p-group need not be abelian. Take p = 2 and
n = 3 so that |G| = 8. The dihedral group of order 8 is non-abelian nor is the quaternion group. Finally in the
case of n = 1, the group is isomorphic to Z/pZ and is simple.
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(i) If G/H and G/K are isomorphic G-sets, prove that H and K are conjugate sub-
groups of G. Hint: use (a) and part (ii) of (b).

(ii) Prove the converse of (i). Hint: Use a relevant theorem, or construct an isomor-
phism explicitly: if H = aKa~! for some a € G, right multiplication by 4 is a
bijective map G — G.

Solution:

(a)

g€ Gy & gaH =aH

a'gaH=H

(a'ga)H = H

algnc H

a~'ga = hforsomeh ¢ H
g = aha™!

g € {aha™' | h € H}

g € Nu(H)

rrreeee

(b,i) Let g € G so that gx = x. But then

P(x) = P(gx) = gp(x)
so that g € G¢(x). But then G, < G¢(x).

(b,ii) Let ¢ : X — Y be an isomorphism with inverse ¢ : Y — X. By the previous part, we

know that G, < G¢(x). But also by the previous part, we have G¢(x) < G¢(¢(x)), but
G¢(¢(x)) = Gx. Therefore, Gx = G<p(x)'

(ci) Suppose that G/H = G/K. Then there is a map ¢ : G/H — G/K that is an

isomorphism with inverse ¢ : G/K — G/H. Then there is a g € G (not necessarily
unique) such that

¢(1H) = ¢(H) = gK
Now let h € H. Then

8K =¢(H) = ¢(hH) = h¢(H) = hgK

But then /1 € Ggk so g~ 'hg € K. But then g7'Hg < K <+ H < gKg~'. Applying
this same logic to ¢ and K gives §(K) = ¢~ 'H so that gKg¢~! < H. This shows that
H = ¢Kg~! for some ¢ € G (again, not necessarily unique). But then H and K are
conjugate subgroups.
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(c/ii) Suppose that H, K are conjugate subgroups in G. Then thereisa g € G (not necessar-
ily unique), such that H = ¢Kg~!. Define ¢ : G/H — G/K be given by rH + rgK.
We need show that this map is well defined, a homomorphism, injective, and sur-
jective. Suppose that rH = sH. Then H = r~sH so that r~'s € H. Thatis, r s = h
for some i € H. This shows s = rh. Then ¢(sH) = ¢(rhH) = ¢(rH) so that ¢ is well
defined. We need see that ¢ is a homomorphism. But this follows easily asif g € G
and rH € G/H, then

¢(grH) = grgK = g(rgK) = g¢(rH)

To see injectivity, suppose that ¢(rH) = ¢(sH). Then rgK = sgK so that K =
¢ 'r71sgK. But this shows that g71r"!s¢ € K. Then there is a k € K such that
¢ 'r71sg = k. Therefore, r's = gkg~!. By assumption, gkg~! € H so that there
is an h € H such that r~!s = h. This shows that s = rh. This finally shows
sH = rhH = rH. Therefore, ¢ is injective. Now let sK € G/K. Take r = sg~! and
observe ¢(rH) = rgK = sg~1¢K = sK so that ¢ is surjective. Therefore, ¢ is an
isomorphism and G/H = G/K.

O]

3. Let ¢ : F" — F™ be left multiplication by an m x n matrix A. Prove that the following
are equivalent:

(i) A has a left inverse, a matrix B such that BA = 1p»
(ii) ¢ is injective

(iii) The rank of A is n.

Solution: Choose a basis of F", say {ej, e, ...,e,} (there must be n basis elements since
dim F" = n) and let A be the matrix of ¢ with respect to that basis. We show each is
equivalent to the others directly. [Choosing an ordering of the if and only if certainly gives
a short more direct proof.]

(i) <= (ii) Let A have a left inverse B. Suppose ¢(X) = ¢(Y) for X,Y € F", ie. AX = AY.
Then we have X = 1(X) = BAX = BAY = 1(Y) = Y so that X = Y. But then ¢ is
injective.

Now let ¢ be injective. We know that {¢(e1), ¢(e2), ..., ¢(es)} are linearly indepen-
dent and can be extended to a basis of F"", say by adding vectors fi, fo, ..., fu—n € F"
(it must be that n < m by linear independence) to {¢(e1), p(e2),...,¢(en)}.

For every basis {vy, ..., v, } of F™ and collection of vectors wy, . .., w, (wWhich need
not be distinct—they will not be how we use them below), there is a linear transfor-
mation sending each v; to w;: simply take the map sending each v; to w; and extend
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by linearity. By the linear independence of the {v;}, this linear transformation must
also be unique.

Now we have basis {¢(e1), p(e2),...,¢(en), f1, f2,---, fu—n} of F™. Let I be the
unique linear transformation sendmg ¢(e;) toe; for1 < i < nand I(f;) = O for
1 < j < m —n. By construction, I¢(e;) = e; for all i and is linear. But then I = 1px.
Since ! is a linear transformation, we may represent it as a matrix L (using the chosen
basis, so L = (I(e1) I(e2) - - - I(ey))). But then taking B = L gives the result.

(ii) <= (iii) Let ¢ be injective. We know rank A < n. Note n is the number of columns of A.
Without loss of generality, we can assume that A is in reduced-row echelon form
(applying row reduction does not change the rank of A or injectivity). Since ¢ is
injective, AX = 0 has at most one solution. But then there are no free variables, i.e.
A has a pivot in every column. But A has n columns so that rank A > n. Therefore,
rank A = n.

Let the rank A be n. We know row operations do not affect the injectivity of multi-
plication by A (that is, the injectivity of ¢) and do not affect the rank of A. So again
without loss of generality, we may assume that A is reduced-row echelon form. Then
A has a pivot in every column since rank A = n. Therefore, there is at most one
solution for every system AX = B. But then ¢ is necessarily injective.

O]

4. Let V denote the vector space of real n x n matrices.
(a) Prove that (A, B) = trace(A”B) defines a positive definite bilinear form on V.

(b) Find an orthonormal basis for this form.

Solution:

(a) We first show that this is indeed a bilinear formon V. Letc € Rand A, B,C € V. Then
we have (using the fact that the trace is linear)

(cA, B) = trace((cAT)B) = ctrace(ATB) = c (A, B)
(A, cB) = trace(AT(cB)) = ctrace(ATB) =c (A, B)
(A+B, C) = trace((A + B)TC) = trace((AT + BT)C) = trace(ATC + BT()
— trace(ATC) + trace(BTC) = (A, C)+ (B, C)
(A, B4 C) =trace(AT(B+C)) = trace(ATB + ATC)
( {

— trace(ATB) + trace(ATC) = (A, B) 4+ (A, C)
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so that (-, - ) is bilinear. To see that it is positive definite, observe that
T = 5
(A, A) =trace(A"A) = Zai,]- > 0.
1%

Butasa;; € R and aizl j = Oif and only if 4;; = 0, clearly the sum is 0 only if 4;; = 0
for all 7,j. But then A is the zero matrix. Furthermore, if A is the zero matrix, clearly
(A, A) =0. Then (-, -) is positive definite.

(b) An obvious choice of basis would be { M; ; }1<; j<n, Where M; ; is the matrix with 1 in
the ith, jth entry and 0 elsewhere. Clearly, this is a basis for V. We need only show that
it is orthogonal. Observe MiT,jMi,]- = M, so that

(M;j, M; ;) = trace(szMi,j) = trace(M;,;) =1

Finally suppose M, # My,

(Map, Myy) = trace(MTbe,y)

= Z(MTbe y)

—_

I
™= T
M:

Il
A
—.
Il
—

(Ma b)zj(Mx,y)j,i

I
™=
M:

Il
—_
<.
Il
—_

84,j0b,i0x,0y,i

(e}

where ¢ is the Kronecker delta. [Observe the above is truly zero unlessa = j, b = i,
x=j,y=isothata =x =j,b=y=isothat M,, = M,,.] But then {M;;}1<; <y is
an orthonormal basis.

O]

5. Let R be a commutative ring.
(i) If P and Q are prime ideals of R, determine when P N Q is again a prime ideal of R.

(ii) If A, B, and I are ideals of R with I C A U B, show that I is contained in either A or B.

Solution:
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(i) We show that PN Q is a prime ideal if and only if P contains Q or Q contains P.
Clearly, PN Qis an ideal of R as P, Q are ideals. Let P N Q be a prime ideal. Suppose
that P C Q and Q C P. Then there exists p € P\ Qand g € Q \ P. Now pgq € P since
p € P and P is an ideal. Similarly, pg € Q. But then pg € PN Q. Since P N Q is prime,
either p € PN Q orq € PN Q. Without loss of generality, assume p € PN Q. But then
p € Pand g € Q, a contradiction. Therefore, either P C Qor Q C P,i.e. PNQ =P
orPNQ=Q.128

Now suppose that P, Q are prime with one containing the other. Assume one ideal
contains the other. Without loss of generality assume P C Q. Now P N Q is an ideal
and since PN Q = P and P is prime, P N Q is a prime ideal.'*

(ii) Suppose that the statement is false. Then there are a,b € I such thata € Abuta ¢ B
andb € Bbutb ¢ A. As lisasubring, a+b € I. Butthena+b € AU B so that
a+be Aora+be B. Ifa+be€ A then (a+b)—a =0>b € A, acontradiction.
However, ifa +b € B then (a + b) — b = a € B, a contradiction.

O]

(i) Find the minimal polynomial of & = v/ V3 — 1 over Q.
(ii) Find the Galois group Gal(Q(«)/Q).

Solution:

12Note this did not require that either P or Q be prime but just that P N Q was prime. But the work shows
that PN Q = Por PN Q = Q so that one is merely assuming P or Q is prime. The second part will use P, Q
prime — trivially.

13Note the intersection of prime ideals is not generally prime. Take R = k[x,y], where k is a field. Since
R/(x) = k[y] and R/(y) = k[x], (x), (y) are prime ideals. However, (x) N (y) = (xy). But (xy) cannot be
prime since R/ (xy) has zero divisors as ¥ - ¥ = 0in R/ (xy).

4Note one can easily verify that the intersection of ideals is an ideal. But kernels are always ideals and I N |
is the kernel of the map ¢ : R — R/I x R/] givenby x — (x mod I,x mod J). Now if I, ] are prime ideals,
R/1,R/] are integral domains since I, | are prime. But then R/I x R/] is never a domain unless one of the
summands is zero. Since R/ ker ¢ = im ¢, one would need either this image to ‘be in only one summand’.
However, we have ker ¢ = I N J. This gives intuition how one would come to the conclusion that one ideal
must contain the other.
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(i) We have

a=1/vV3-1
a2 =+3-1
24+1=+3
(a*4+1)>=3
at+a’+1=3

a2 -2=0

So that a is clearly a root of the polynomial p(x) = x* + 2x2 — 2. However, observe
that p(x) is Eisenstein with p = 2 so that it is irreducible over Q. But then p(x) is the
minimal polynomial for a. Note as p(x) is irreducible, we know that |Q(«) : Q| =

degp(x) = 4.
(ii) Notice that p(x) = x* +2x? — 2is even. Now as p(a) = 0, we know that p(—a) = 0.

Let B = v —v/3 — 1. Observe that
aﬁ:\/\/ﬁ—1 \/—\@—1=¢(\f3—1)(—f3—1)=\/3—f3+f3+1=x/1:2

so that af € Q(a). Butas a € Q(a) and Q(«) is a field, this implies ™! € Q(a).
Therefore, a~! - «f = B € Q(a). This shows that +a,+8 € Q(a). But the same
computation that showed w is a root of p(x), shows that § is a root of p(x). Since
p(x) is even, —p is a root of p(x). But then +a, £ € Q(a) must be all the roots
of p(x). Therefore, Q(«) is a splitting field for p(x). Then Q(«)/Q is Galois. Then
|Gal(Q(a)/Q)| = [Q(«) : Q] = 4. There are only two groups of order 4 up to
isomorphism: Z /47 and Z./27 x Z./27Z.

(i) Let A be a matrix over the complex numbers C with elementary divisors f; =
(x —2)% fo = (x —2)%(x +3)%,and f3 = (x — 2)*(x + 3)2. Find the Jordan Canonical
Form of A.

(ii) Let R be a PID and M an R-module. If f : M — R is an R-module homomorphism,
show that there exists a submodule X of M such that M = X @ ker f.

8. Let F = Z, be the integers module a prime p.

(a) If n > 0, show that there is a field K of order p" containing F.
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(b) Show that F|[x] contains an irreducible polynomial of degree n.

(i)

(i)

If R is an integral domain with field of fractions K # R, show that K is not finitely
generated as an R-module.

True or False: “A unique factorization domain must be Noetherian.” Justify your
answer.

Solution:

(i)

(ii)

Suppose that K were finitely generated as an R-module. Let (ki,kz,--- ,k,) be a
generating set for K, where k; = a;/b;, where a;,b; € R. Then given r € R, there are

r; € R such that
L e S
r b Ph " by
Obtaining a common denominator on the left shows that given » € R, there are

a,b € R such that
1 a

r b
That is, given r € R, there are 4,b € R such that ar = b. In particular, this is true for
r = b%. But then we have ar = ab?> = b so that b(ab — 1) = 0. But as R is an integral
domain, we have ab — 1 = 0 so that ab = 1. But then every element of R is invertible.
But then if x,y € R with xy = b, then axy = 1 € R. But then R = F, a contradiction.

The statement is false. The UFD []2; Z/2Z is such an example. It is simpler to
justify the following answer: let k be a field. Then R = k[x1, xp, - - - | is a UFD: note
that k[xi,...,x,] is a UFD for all n € N since k is a field. Note given f € R, f
must involve finitely many variables, say the largest subscript occurring in f is N.
Then f € k[xy,...,xn], a UFD. Then f factors uniquely in k[x1, . .., xy|. But the only
possible nontrivial factorizations in R for f can only involve these variables. Then
f factors uniquely into irreducibles in R so that R is a UFD. However, R cannot be
noetherian as it contains a non finitely generated ideal (x3, x, - - - ) (since any finite
generating set contains a x; with maximal subscript, say xy, so that xyy; is not
generated by the chosen finite subset) or that

(x1) < (x1,x2) < (x1,x2,x3) < ---

is an infinite ascending chain of ideals of R.
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January 2016
1. Let G be a group of order 351 = 32 - 13. Prove that G is simple.

Solution: Let 17, denote the number of Sylow p-subgroups of G. If n3 = 1, then the Sylow
3-subgroup is unique, hence normal. Similarly, if n;3 = 1, then the Sylow 13-subgroup
is unique and hence normal. In either case, G would not be simple. Assume then that
n3,n13 > 1. Asnz =1 mod 3 and n3 | 13, we must have n3 = 13. Furthermore as 113 = 1
mod 13 and 113 | 3%, we must have ny3 = 27. By Lagrange’s Theorem, the intersection of
any distinct Sylow 13-subgroups must be trivial for any non-identity element would be
a generator for the subgroup. Then there are 27 - 12 elements of order 13. But then there
are |G| — 27 - 12 = 27 elements of G not of order 13. But then there are 27 elements of G
having order a power of 3. But this contradicts the fact that there are 13 distinct Sylow
3-subgroups. Therefore, either n3 = 1 or n13 = 1 so that G contains a normal subgroup
(hence cannot be simple). O

2. Let G be a group with subgroups H and K. Consider the action of H on the coset space
G/K by left multiplication: h - aK = haK for all h € H and a € G. Recall that the set
HaK = {b € G | b = hak for some h € H,k € K} is called a double coset.

(a) Prove that the orbit of a coset K € G/K under the action of H is the set of left cosets
of K in G which are contained in the double coset HaK.

(b) Compute the stabilizer of aK.
(c) If G is finite, prove that |HaK| = |K| |H : HNaKa™!| for every a € G.

Solution:

(a) Let Ouk denote the orbit of aK. Observe that Uyxcp,, XK is contained in HaK. Now if
hak € HaK, then hak € haK. However, haK = h - aK so that hak € haK € O,k. But then
ak € Uyke, XK. Therefore, HaK = U,kco,, XK. Since the set of cosets partition G, the
sets xK are disjoint. Therefore,

HaK = |_| xK
xKeO,x

Then if aK € G/K, the orbit is precisely the set of left cosets aK in G contained in the
double coset HaK.

(b) We claim stab aK = HNaKa™!. If h € HNaKa™!, then h = aka™! for some k € K.
But then /- aK = aka™' - aK = aka 'aK = akK = aK so that h € stab aK. Then
HnNaKa=! C stabaK. Let h € stabaK. Then aK = h-aK = haK. Then there
exists k € K so that ak = ha. But then h = aka—! so that h € H N aKa~!. Therefore,
stab aK C H NaKa~!, showing that stabaK = HNaKa™1.
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(c) By (a), we have
|HaK| = card ( | ] xK) = Y |xK|[=|K[[|Ou|.
xKeO,x xKeOnx

By the Orbit-Stabilizer Theorem, |O,x| = |H: stab aK|. But by (b), stabaK = HN
aKa~!. But then

\HaK| = |K||Oux| = |K| |H: stab aK| = |K||H: HNaKa™}|

as desired. Note that considering the action of K on G/ H (proving everything mutatis
mutandis), we would obtain

|HaK| = |H| |K: KNaHa™ |

3. Let S5 denote the symmetric group on five elements.

(a) Find a representative for each conjugacy class of S5 and compute the number of
elements in each class.

(b) Find all elements of S5 that commute with the 3-cycle (123).

4. Let A be a real symmetric n X n matrix, and let T : R” — IR" be the linear operator given
by left multiplication by A.

(a) Prove thatker T = (im T)* with respect to the usual Euclidean dot product on R".
(b) Prove that R" = kerT®imT.

5. Let E be a finite field extension of F and let f € F[t] be an irreducible polynomial.
Assume that the degree of f and [E : F| are relatively prime. Prove that f has no roots in E.

Solution: Note that if f had a root « € F, then t — a € F[t] would be a factor of f so that f
would be reducible, a contradiction. Suppose that f had a root « € E. By the preceding
remarks, « € E\ F. Since f is irreducible in F[t| and f(«) = 0, then f is the minimal
polynomial of . Now F(«) C E. Furthermore,

[E: F] = [E: F(0)][E(a): F] = deg f[E: F(a)]

Let p be a prime dividing deg f. Since p | deg f[E: F(«)], it must be that p | [E: F|. But
[E: F] and deg f are relatively prime. Then no prime divides deg f so that deg f = 1. But
then o € F, a contradiction. Therefore, E contains no root of f. O

6.
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(a)

(b)

Construct a splitting field for the polynomial > + 2t + 1 over the field F; with three
elements.

Construct a splitting field for the polynomial #> + #* + t + 2 over Fs. It is isomorphic to
the splitting field constructed in part (a)?

Solution:

(a)

(b)

The polynomial p(t) = t3 + 2t + 1 is reducible over F; if and only if p(t) has a zero
in F3. However, p(0) =1, p(1) = 1, and p(2) = 1. Therefore, p(t) is irreducible over
F3[t]. We claim F = F3[t]/ (> + 2t + 1) is a splitting field for p(t). Now p(t) has a root
in F by construction, namely = t + (t> 4 2t + 1). However, observe

p(F+1) = (F+1)P2+2(f+1)+1=F +142F+2+1=F +2f+1=0.

Therefore, p(t) has two roots in F so that the third (f — 1) must also be in F. Therefore,
F is the splitting field for p(t).

The polynomial q(t) = # + t? + t + 2 is reducible over F; if and only if g(¢) has a
zero in F3. However, g(0) = 2, g(1) = 2, and g(3) = 1. Therefore, ¢(t) is irreducible
over F3[t]. We claim F' = F3/(f® + t?> + t + 2) is a splitting field for g(t). Now g(t)
has a root in F’ by construction, namely t = ¢ + (£ + t> + t + 2). Moreover, since F’
has characteristic 3, Frobenius is an automorphism, i.e. the map Frob: x — x3is an
automorphism (it is an injective map between finite fields). Since f is a root of 4(t) over
F/, we have F’ a root of q(t) over F'. [Note that P # t over F/ as then f(f2 —1)=0so0
that t € {0,+1}, a contradiction.] But then the third root of g(t) must also be in F'.
Therefore, F’ is a splitting field of g(t).

Now F = F3[u]/(u®+2u +1) = {au® + bu +c: a,b,c € F3} is a field with cardinality
33 = 27. Similarly, F’ is a field with cardinality 3> = 27. Let ¢ : F — F’ be given by
7 — t and extending by linearity. The map ¢ is clearly a homomorphism. Since 1 — 1,
the map is nonzero. Since maps between fields are either injective or the zero map,
it must be that ¢ is injective. But then ¢ is a injective map between finite sets, hence
surjective. But then ¢ is an isomorphism.

O

7. Let R be a PID and let M be a finitely generated torsion-free R-module.

(a)

(b)

Let S be a finite set of elements generating M. Prove that S contains a maximal linearly
independent subset.

Prove that M is free by showing that it is isomorphic to a submodule of a free R-module.
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8. Let R = C[x, y] be the polynomial ring in two indeterminates over the complex numbers.
Let I = (x,y). Prove or disprove: I is a free R-module.

Solution: We prove something stronger: let I be an nontrivial ideal of a commutative ring
R with identity. Then I is a free module if and only if it is a principal ideal generated by a
nonzerodivisor. We proceed with this proof:

Suppose that I < R be a free R-module. Let {x,}, be a basis for I, not necessarily
countable. Observe that if we choose a,b € {x,},, where a,b are distinct, we have ab +
(—ab) = 0is a nontrivial relation, contradicting the fact that {x, }, is a basis. Then it must
be that I = (x) for some x € R. We only need show that x is a non-zerodivisor. Suppose
that x were a zero divisor, then there isa 0 # y € x such that xy = 0, contradicting the fact
that {x} is a basis for I. Then I = (x) is a principal ideal generated by a non-zerodivisor.

Now assume that I = (x) is a principal ideal generated by a non-zerodivisor. The
result is then immediate as I = Rx so that {x} serves as a basis for I so that I is free. To
confirm this, observe that if ax = 0 for 0 # a € R, then x is a zero divisor, contrary to the
assumption.

This proves the claim. Now in our case, R = k[x, y], where k is a field, is a commutative
ring with identity. Clearly, I is an ideal of R (in fact it is maximal as R/ (x, y) = k, a field).
It then suffices to show that (x, y) is not principal.

Suppose (x,y) were principal, i.e. (x,y) = (f) for some polynomial f € R. Then g
would divide x, y, both of which are irreducible and not associated. But then ¢ would be a
unit so that (x,y) = R, a contradiction.

OR

If (x,y) = (f) for some f € R = k[x,y], then for g(x,y),h(x,y) € R, there exists
m(x,y) € R so that gx + hy = mf. But then x = m; f and y = m, f for some my, my € R. In
particular, f is a polynomial of at most degree 1in x and y. Hence, f = ax + bc + ¢ for some
a,b,c € k. BUt then x = my (ax + by + ¢), implying b = 0. Similarly, y = my(ax + ¢) so that
a = 0. But then f has degree 0, i.e. f € kis a unit. But then (x,y) = (f) = R =k[x,y|, a
contradiction.

OR

For principal ideals I, ] in an integral domain, I C ] if and only if ] | I. Now as x is
irreducible, the only principal ideal containing (x) is (1) = R = k[x,y|. But (x,y) # 1 as
evaluating at x = y = 0 would give a contradiction. Therefore, (x,y) cannot be princi-
pal. O

9. Prove that every square matrix with entries in the field of complex numbers is similar to
its transpose. Hint: A theorem about a certain canonical form for matrices may come in
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handy.

Solution: Let A be a square matrix over C. Consider the Jordan canonical form for A, J.
If the Jordan canonical form for A consists of a single Jordan block, its transpose consists
of the eigenvalue A along the diagonal and 1’s directly underneath each A (except the
bottom-right most A). Let P be the matrix with P;; = 1if i + j = n and 0 otherwise. Left
multiplication by P reverses order of the rows while right multiplication by P reverses the
order of the columns. But then JT = PJP~!. [Note that P~! = P.] Now A is similar to J,
which is similar to JT, which is similar to AT. Since similarity is transitive, A is similar to
AT

Now if the Jordan canonical form for A is the diagonal matrix consisting of Jordan
blocks [4, ..., J;. For each Jordan block J;, construct P; as above so that ]Z-T =P ]iPi’l. But
then let P be the block diagonal matrix consisting of Py, ..., P,. We have JT = PJP~!. Now
A is similar to |, which is similar to ]T, which is similar to AT. Since similarity is transitive,
A is similar to AT. Therefore, A is similar to A.

OR

Let A be a square matrix over C. The Smith normal form over C[x] of XI,, — A and
X1, — AT are the same by symmetry. But then A and AT have the same invariant factors.
But then A and AT must have the same rational canonical form. Hence, A and AT have
the same Jordan canonical form. Since a matrix is similar to its Jordan canonical form and
similarity is transitive, A and AT are similar. O
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May 2016
1. Let G be a finite group and H, K subgroups.

(a) Prove that the number of distinct conjugates of K by elements of H is |H : H N Ng(K)]|,
where Ng(K) is the normalizer of K in G.

(b) Take H = G in part (a) to conclude that G is not the union of all the conjugates of K.

2. Consider As, the alternating group on 5 letters, a simple group of order 60 = 22 -3 - 5.

(a) Prove that every element of A5 has prime-power order, and conclude that As is the
union of its Sylow subgroups.

(b) Compute the number of Sylow p-subgroups for p = 3, 5.

3. Write (, ) for the standard Euclidean dot product on R"”, and || || for the standard
Euclidean norm, so that ||x||*> = (x,x). Let A be an 1 x n real matrix. Prove that the
following conditions (for A to be orthogonal) are equivalent.

(i) ATA = I, the n x n identity matrix.
(i) [|Ax| = ||x| for all x € R™.
(iii) (Ax, Ay) = (x,y) forall x,y € R".

(iv) The columns of A are orthonormal.

Solution:
(i)—(ii): Observe for all x € R”,

|Ax||? = (Ax, Ax) = (Ax)T(Ax) = xTATAx = xTLx = xTx = (x,x) = ||x|*
Therefore, || Ax|| = ||x|| for all x € R".
(ii)—(iii): For all x,y € R",

(Ax, Ay) + (Ax, Ax) + (Ay, Ax) + (Ay, Ay) = (A(x +vy), A(x + 1))
= [|A(x + )|
= [lx+y?
={(x+tyx+y)
= (xx)+(xy) +{vx)+{yy)
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Hence, we have shown
(Ax, Ay) + (Ay, Ax) + || Ax|]* + | Ay[I* = (x,y) + (v, x) + [lx]> + [y ]>

But as (Ax, Ax) = ||x|| and (Ay, Ay) = ||y||?, this implies that 2(Ax, Ay) = 2(x,y) (using
the fact that (-, -) is symmetric) so that (Ax, Ay) = (x,y).

(iii)—(@v): Let ey, ..., e, be the standard basis vectors for IR"”. The columns of A, say a; is
the ith column, are given by a; = Ae; fori =1,...,n. Then

<a1’, 11]> = <A€i, A€]> = <€i, €]> = 51',]'
foralli,j € {1,...,n}. But then the columns of A are orthogonal.

(iv)—(i): Using the notation from above, we have

a ﬂ{&ll s (/Z{Eln
T . . . .
ATA= | (a1 ”n) = : - : = (bij)ij=1,..n
an a,fal T ﬂgﬂn
where bi,]' = LZZTEIJ‘ = (51] But then ATA = (5i,j)i,j:1,...,n = I,. ]

4. Let (, ) be a symmetric bilinear form of R”, and let A be the matrix of the form with
respect to some basis. True or false: the eigenvalues of A are independent of the choice
basis. Justify.!®

5.

(a) Find an isomorphic direct sum of cyclic groups for an abelian group A generated by
x, Y,z with the relations x +y = 0, 2x = 0, 4x + 2z = 0, and 4x + 2y + 2z = 0.

(b) Prove that Q, the additive group of rational numbers, is not a free Z-module.

6.

(a) Given a field F and any elements ay,...,a, € F,n > 1, denote by ¢ : F[xy,...,x,] — F
the unique ring homomorphism satsifying ¢(x;) = a;, i = 1,...,n. Find an explicit
finite set of generators for the ideal ker ¢ of F[x1, ..., x,]. Is ker ¢ a prime ideal?

15The statement is false if you take a general field. Consider V = k, where k is a field of characteristic not 2,
having at least four elements. Now f(x,y) = xy is a symmetric bilinear form. Choose a basis B = {b}. Now
the matrix for f is A = (b?). But one can choose nonzero b, b’ € K with b% # (b')2.
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(b) Let M = F[x]/I where [ is a proper ideal of F[x|. Viewing M as an F[x]-module, state
and prove the necessary and sufficient condition (in terms of the decomposition of I
into a product of prime ideals of F[x]) for when M is indecomposable.

7. The characteristic polynomial of a square matrix with complex entries is (x —2)3(x? +1)?
and the minimal polynomial is (x — 2)?(x? + 1). List all possible Jordan canonical forms of
the matrix.

8. Let K = Q(—2 —i,1+ 1/3) be the subfield of C obtained by adjoining the elements
—2—iand 14310 Q.

(a) Find the degree [K : Q] of the field extension K/Q.

(b) Describe explicitly each automorphism in the Galois group Gal(K/Q).

(c) Describe Gal(K/Q) abstractly: what well known group is isomorphic to Gal(K/Q)?
(d) Is K/Q a Galois extension? Explain.

(e) Is K a splitting field of a polynomial in Q[x]? If yes, find such a polynomial. If no,
explain why.

(f) Find all the intermediate fields L satisfying Q C L C K.
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August 2016

1. Let G be a group that may either be infinite or finite. Let N be a normal subgroup of G.
Assume that [G : N] is finite. Prove that there are only finitely many subgroups H of G
such that N C H C G.

2. Let V be a vector space and let W, ..., W, be subspaces of V. We say that Wy, ..., W,
are independent if and only if the following condition holds:

Ifw+ - +w, =0withw; € W;foralli=1,...,n,
thenw; = 0foralli=1,...,n.

Now to make life a little easier, we consider only three subspaces W;, W,, W3. For each of
the following statements either prove if or provide a counterexample and disprove it.

(a) Wi, Wy, W; are independent if and only if W; N W, = {0} and (W; + W) N W3 = {0}.
(b) Wi, W, W3 are independent if and only if W; N W; = {0} forall 1 <i < j <3.

Solution:

(a) We prove a more general result: if M is a R-module and Wj, ..., W, are R-submodules,
then M = W, @ W, @ - -- @ W, ifand only if W; N (Wy + - - + W; + - - - + W,,) = {0},
where W; indicates W; is omitted from the sum.

EM=W, oW ®---®@W,andm € WiN (Wi +---+W; +--- +W,), thenm = m;
for some m; € W; and m; = ijéi rim;, where m; € W; and r; € R. Butif r; # 0 for all j,
then
0=—mi+ Y rm=0+0+---40
j#i
has two distinct expressions, a contradiction. Then m; =}, ; rjmj =} ;,;0-m; = 0.

Now assume that V. = W; + W,, where W; N W, = {0}. It is then immediate that
V = W1 ® W,. Assume then that the result holds for n = k. Define V/ = Wy + - - - + W
so that V. = V' + W;,1. Now by hypothesis, V' = Wy & --- @ Wy. If v € V, we
have v = w' + x, where w’ € V'’ and x € Wj,,. Since the expression for w' is
unique and W; N (W + -+ + W; + - - - + W,,) = {0}, the expression for v is unique.
[If there were two: v = w)] + x1 = W) + xp, then 0 = (w} — w)) + (x1 — x). Since
Win(Wi4--+Wi+ - +W,) = {0} and the expression in V' is unique w} = w,.
But then x; — xp = 0so that x; = x,.] Therefore, V= W; & - - - & Wy 1. The result then
follows by induction.

Now the stated result follows with V a k-module, i.e. a vector space with submodules
(subspaces) Wy, Wo, W3.
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(b) The statement if false. Let V be a vector space of dimension 2 over k. Let {x,y}
be a basis for V. Then V = X @Y, where X is the subspace spanned by x and
Y is the space spanned by y. Let Z be the space spanned by x + y. Observe that
XNY={0},YNnZ={0},and XNZ = {0}. Wehave V=X+Y + ZbutX,Y, Z are
not independentas0 =0+ 0+ 0and 0 = (x +y) + (—x) + (—y).

O
3. Prove that there is no simple group of order 30.

Solution: Let G be a group of order 30 and let 1, denote the number of Sylow p-subgroups
of G. Observe |G| = 30 = 2-3-5. By Sylow’s Theorem, ns = 1 mod 5 and n5 | 6.
Therefore, ns € {1,6}. Similarly, we know n3 = 1 mod 3 and n3 | 10. Therefore, n3 €
{1,10}. At least one of n3 or ns is 1 since otherwise

30=|G| >14103—-1)+6(5—1) =1+20+24 =45,

a contradiction. But then G contains a unique, hence normal, Sylow subgroup. Therefore,
G cannot be simple.

OR

By Cayley’s Theorem, if G is a group of order 30, then G is isomorphic to a subgroup of
S30. Now G acts on G by right translation and the only identity fixes any point under this
action. Therefore, this embedding of G into S3 has no fixed point. By Cauchy’s Theorem,
there must be an element of order 2 in G. This element is represented (by the embedding of
G into S3p) as a product of 15 2-cycles. But then this representation is an odd permutation.
The elements of G represented by an even permutation form a normal subgroup of index 2.
However, index 2 subgroups are always normal. Therefore, G cannot be simple.'® O

4. Let G be a group with |G| = 55 and let S be a set with |S| = 24. Assume that G acts on S.
Prove that the action has at least two points.

Solution: For s € S, let stabg(s) denote the stabilizer of s and orb(s) denote the orbit of
s. By the Orbit-Stabilizer Theorem |G| = |stabg(s)|| orb(s)|. Furthermore, stabg(s) < G
so that by Lagrange’s Theorem |stabg(s)| | |G|. Therefore for all s € S, |stabg(s)| €
{1,5,11,55}. But then for all s € S, |orb(s)| € {55,11,5,1}. Let x denote the number of
distinct orbits of size 55, y denote the number of distinct orbits of size 11, z denote the
number of distinct orbits of size 5, and w denote the number of distinct orbits of size 1.
Note that | orb(s)| = 1 if and only if | stabg(s)| = |G| if and only if s is a fixed point of G.

16This same proof works for any group of order 21, where n > 1 is odd. Therefore, there are no simple
groups of order 21, where 7 is odd.
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The set of distinct orbits partition S. Therefore, 55x + 11y +5z +w = 24 with x,y,z,w €
Z>. It is clear then that x = 0 so that 11y + 5z + w = 24. Itis clear that 0 <y < 2 and
0 <z < 4. Furthermore, if z > 2, then 11y = 24 — 5z — w < 14 so that y < 1. Also, ify > 0,
then 5z = 24 — 11y — w < 13 so that z < 2. If S had no fixed point under the action of G,
then w = 0. Then 11y + 5z = 24.

The only possible solutions are

y=0z=0=0,z=1y=0,z=2y=0,z=3y=0,z=4y=1,z=

5. Does there exist a Hermitian matrix with characteristic polynomial equal to x* — 1? If
there does, construct one and prove it is one. If there does not, prove there does not. You
will get no points for a simple yes or no without supporting reasoning.

6. Let R be a UFD and I a proper principal ideal. Prove that R has a proper principal ideal
that is maximal with respect to the property of containing I and identify its generator in
terms of the generator of I.

7. Let R be a commutative ring and I an ideal of R. Define the radical of I to be the ideal

\ﬁd:ef{reRH” € I forsomen > 1}
(a) Prove that /T is an ideal of R.

(b) Define an ideal I to be primary if, for each element r € R, its image ¥R/ is either
nilpotent (that is, 7" = 0 for some m > 1) or a nonzerodivisor.

If I is a primary ideal, prove that v/T is a prime ideal.

Solution:
8.

(a) Find all the possible rational canonical forms for a 8 x 8 matrix A over Q that satisfies
(A —31)3(A% 4+ 1) = 0 and has characteristic polynomial (x — 3)*(x? + 2)2.

(b) Find the Jordan canonical forms (over C) for the matrices from part (a).
(c) If, in addition to the information above, you also know that A satisfies
dimker(A —3I) =2 dimker(A —3I)*> =4
what is the Jordan canonical form of A? Why?
9. Let K be the splitting field of the polynomial p(x) = x* — 2 € Q[x].

(a) Show K is equal to an extension of the form Q(«, {), where « is a real number and { is
a roof of unity (which one?).
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(b) Find the degree of the extension K/Q. Justify completely.

(c) Determine whether the extension K/Q is Galois. Justify your answer. If it is Galois,
find the cardinality of its Galois group.

(d) Determine the group of automorphisms Aut(K/Q) (as an abstract group) using the
information above. Justify completely for any credit.
Hint: Determine all the automorphisms ¢ € Aut(K/Q) in terms of « and .

10.

(a) Let K = Q(Z,v/5), where  is a primitive 7th root of unity. Find the degree of the
extension K/Q.

(b) Let K = IFy(a), where a is a nonzero root of x* + x? + x € IFp[x]. Determine whether
the polynomial is separable. Find the degree of the extension K/IF, and the cardinality
of K.
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May 2017
1. Let G be a group of order 30.
(a) Prove that either the Sylow 5-subgroup K or the Sylow 3-subgroup H is normal.

(b) Prove that HK is a cyclic subgroup of G.171®

Solution:

(a) Let n, denote the number of Sylow p-subgroups of G. We know that 15 =1 mod 5
and n, | 6. This implies n5 € {1,6}. Furthermore, n3 = 1 mod 3 and n3 | 10. This
implies n3 € {1,10}. If n5 # 1 and n3 # 1, then ns = 6 and n3 = 10. Then we must
have

G| >1+6(5—1)+10(3—1) =1+ 24 +20 = 45,

a contradiction. Therefore, at least one of 13, 115 is 1. But then G contains either a unique
Sylow 3-subgroup or a unique Sylow 5-subgroup. Since unique Sylow subgroups are
normal, either H is normal or K is normal.

(b) By (a), either H or K is normal. But then HK is a subgroup of G. Now as |G| =2-3-5,
|H| = 3 and |K| = 5. By Lagrange’s Theorem, it must be that H and K are cyclic since
they are of prime order. Furthermore by Lagrange’s Theorem since ged(|H|, |K|) =1,

we know that HN K = {1}. But then |HK| = \lﬁ'f@l = 3.5 = 15. But every group
of order 15 is cyclic: if G is a group of order 15, then n3 = 1 mod 3 and n3 | 5. But
then n3 = 1. Similarly, n5 = 1. But then both Sylow subgroups of G are unique,
hence normal, and then G is a product of cyclic subgroups of relatively prime order.
Therefore, G is cyclic. Furthermore, we can even say HK is normal in G as its is an

index 2 subgroup of G.

O]

2. Let G be a group with subgroup H (the subgroup need not be normal). If G acts on a set
X from the left, then we will say that X is a left G-set.
The set G/ H of left cosets of H in G is a left G-set by means of go xH = gxH, g, x € G.

71t is generally true that if p, q are distinct primes with p < q,if ¢ Z 1 mod p, then all groups of size pq
are cyclic (hence isomorphic) and if g =1 mod p, then up to isomorphism there are two groups of size pg:
Now let P € Sylp(G) and Q € Squ(G). We know n | g = % and 1, =1 mod p. Then n, = 1 or q but
g #1 mod p by assumption. Therefore, n, = 1. Similarly, n; = 1. Then P, Q are normal subgroups of G.

Since P, Q are cyclic, let their generators be x, v/, respectively. We know PN Q = {1}. Now xyx~'y~! € HNK

_ el —
[PNQ|

as xyx~! € K by normality. Similarly, yx~1y~! € H. Therefore, xy = yx. Since |PQ|
PQ = (xy). Thus, HK is cyclic.

18n fact, if G is a group of order pqr, where p < q < r are primes, then one of the Sylow subgroups is
normal.

pq so that
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(a) Fora € G, compute the stabilizer G,x of aH.

(b) Let X, Y be left G-sets. A map ¢ : X — Y is a homomorphism if ¢p(gx) = g¢(x) for all
g € G, x € X, and it is an isomorphism if there exists a homomorphism ¢ : ¥ — X
satisfying ¢ = 1x and ¢y = 1y. The G-sets X, Y are isomorphic if there exists an
isomorphism X — Y. For x € X, denote G, the stabilizer of x.

(i) If ¢ : X — Y is a homomorphism of G-sets, prove that Gy < Gy(y), x € X.

(ii) If ¢ : X — Y is an isomorphism, prove that G, = G¢(x),x e X.
(c) Let H, K be subgroups of G.
(i) If G/H and G/K are isomorphic G-sets, prove that H and K are conjugate sub-
groups of G. Hint: use (a) and part (ii) of (b).

(ii) Prove the converse of (i). Hint. Use a relevant theorem, or construct an isomor-
phism explicitly: if H = aKa~! for some a € G, right multiplication by 4 is a
bijective map G — G.

Solution:
(a)
g€ Gy < gaH =aH
algaH = H
(a'ga)H = H
a‘lga €H
a~'ga = hforsomeh € H
g = aha™!
g € {aha™' | h € H}
§ € Na(H)

(N

(b,i) Let g € G so that gx = x. But then

(x) = p(gx) = g¢(x)
so that g € Gy(x)- But then G, < G¢(X).

<

(b,ii) Let ¢ : X — Y be an isomorphism with inverse ¢ : Y — X. By the previous part, we
know that G, < G¢(x). But also by the previous part, we have Gq,(x) < G¢(¢(x)), but
Gy(p(x)) = Gx- Therefore, G, = Gp(x)-
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(ci) Suppose that G/H = G/K. Then there is a map ¢ : G/H — G/K that is an
isomorphism with inverse ¢ : G/K — G/H. Then there is a g € G (not necessarily
unique) such that

¢(1H) = ¢(H) = gK
Now let h € H. Then

8K = ¢(H) = ¢(hH) = h¢(H) = hgK

But then 1 € Gy so g~ 'hg € K. But then g7'Hg < K <+ H < gKg~'. Applying
this same logic to ¢ and K gives §(K) = ¢~ 'H so that gK¢~! < H. This shows that
H = ¢Kg~! for some ¢ € G (again, not necessarily unique). But then H and K are
conjugate subgroups.

(c,ii) Suppose that H, K are conjugate subgroups in G. Then there is a g € G (not necessar-
ily unique), such that H = gKg~!. Define ¢ : G/H — G/K be given by rH — rgK.
We need show that this map is well defined, a homomorphism, injective, and sur-
jective. Suppose that rH = sH. Then H = r~'sH so that r~!s € H. Thatis, r s =h
for some i € H. This shows s = rh. Then ¢(sH) = ¢(rhH) = ¢(rH) so that ¢ is well
defined. We need see that ¢ is a homomorphism. But this follows easily asif g € G
and rH € G/H, then

¢(grH) = grgK = g(rgK) = g¢(rH)

To see injectivity, suppose that ¢(rH) = ¢(sH). Then rgK = sgK so that K =
¢ 'r~1sgK. But this shows that g7'r!s¢ € K. Then there is a k € K such that
¢ 'r71sg = k. Therefore, r's = gkg~!. By assumption, gkg~! € H so that there
is an i € H such that r~!s = h. This shows that s = rh. This finally shows
sH = rhH = rH. Therefore, ¢ is injective. Now let sK € G/K. Take r = sg~! and
observe ¢(rH) = rgK = sg~'¢K = sK so that ¢ is surjective. Therefore, ¢ is an
isomorphism and G/H = G/K.

O]

3. For each permutation ¢ € S, denote by f(c) : R” — R" the linear operator given by
f(o)(ej) = es(jy, j =1,...,n. Prove that:

(a) f(o)is an orthogonal linear operator.
(b) The map f : S, - GL(R") sending each ¢ to f(c) is a monomorphism of groups.

(c) What are the eigenvalues of f(0)? Is f(0) diagonalizable? Explain.

4. Prove that
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(a)

(b)

The matrix, relative to any basis, of a positive definite hermitian form on the complex
vector space C" is nonsingular.

For any complex n x n matrix A, the matrix I + A*A is nonsingular, where I is the
n x n identity matrix and A* is the conjugate transpose of A.

5. Let I and ] be ideals of a commutative ring R with identity. Assume that [ + ] = R%.

(a)
(b)

Prove that I] = I N J.20

Prove that R/I x R/] = R/I].*!

Solution:

(a)

(b)

It is clear that I] and I N | are ideals. Consider ij € I], wherei € I and j € J. Since R is
commutative and I, ] are ideals, we have ij = ji € [ and ij € [ so thatij € I N ]J. Now
if x € I], then x = iyj; + - - - + iyju, where iy, ..., i, € Iand jy,...,j, € J. By the work
above, i,j, € INJforr =1,...,n. Butthen x = ijj; +--- + iy, € IN]. Therefore,
Ijcinjy.

Now suppose x € INJ. Now 1 € R = [+ ]sothat1 =i+ for somei € I and
j€J. Thenx =1-x = (i+j)x = ix+jx. Butsincex € INJ,x € Tand x € | so
that ix € I and jx € J. But we also have ix € J and jx € I. Then ix,jx € I N ] so that
ix+jx € IN]. Therefore, x = ix + jx € IN ], proving IN ] C I]. Therefore, I] = 1N ].
Alternatively on the level of ideals,

INJ=(INN)R=IN])I+])=IUn])+JUIN]) CIJ+]I=1]+1] =1].
Since we have I] C INJ,wemusthave I] =1N].

First, we prove thatif I + ] = R, thenifa+1 € R/I and b+ ] € R/], there exists
r€ Rsuchthatr+1=a+Iandr+ ] =b+ . Since I + | = R, there existi € [ and
j € J such thati+ j = 1. Then consider r := bi + aj. We have (bi+aj) + 1 =aj+ 1=
(aj+ai)+I=a(i+j)+I=a+1inR/Iand (bi+aj)+]=bi+]= (bi+bj)+]=
b(i+j)+]=b+]inR/J.

19Such ideals are called coprime

201f R is a commutative ring, it is always the case that I] C I N J. It is not the case that I] = I N J: Take
a€Z-1.Nowlet] = (a) and ] = (a). Then I] = (a?) and IN ] = (a). Sincea € INJand a ¢ (a?), we have
I] C INJ.Evenif I +] = R with R commutative, it is not the case that I] = I N ], R need have identity: let G
be a nontrivial finite abelian group. Make G into a ring by defining multiplication ¢ - ¢’ = 0 forall g, ¢’ € G.
Then R given by (G, +, -) is aring. Take I = | = R. Clearly, I, | are ideals of R. Wehave | + ] = R+ R =R,
INJ=RNR=R,IJ=RR=0sothatI[] £ IN]J.

2IThis is a simple case of the Chinese Remainder Theorem.
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Now consider the map ¢ : R = R/I x R/] givenby r — (r+ I,r + J). We first show
¢ is a homomorphism. Observe ¢(1) = (1+ 1,1+ J)and ¢(0) = (0+ L0+ ]) = (I, ]).
If r,s € R, then
Plrt+s)=(r+s)+Lr+s)+])=(r+D+(+D,(r+])+(s+]))
=+ Lr+])+(s+1Ls+]) =) +¢(s)
p(rs) = (rs+ Lrs+]) = (r+D(s+1),(r+)(s+])) = (r+Lr+])(s+Ls+])
= 9(19(6).

Therefore, ¢ is a ring homomorphism. By the work above, if (1 +1,b+]) € R/I x R/],
then there exists ¥ € R such that ¢(r) = (a+ I,b + J). Therefore, ¢ is surjective. Now
ifr € IJ] = INJ (using part (a)), then ¢(r) = (r+ Lr+]) = (0+ 1,0+ ]) so that
r € ker¢. Butifr e kerg, (0+1,0+]) =¢(r) = (r+ L, r+]J)sothatr € Iandr € ],
i.e. r € IN] = I]. Therefore, ker ¢ = I]. Then by the First Isomorphism Theorem,
R/IJ = R/IxR/]J.

O]

6. Let A be a complex matrix with characteristic polynomial c4(x) = (x +1)7(x — 2)°.
Assume the following data about A, where I is the identity matrix of the appropriate size:
null(A+1)=4
null(A+1)*=5
null(A—2I)=3

(a) Write down the possible Jordan canonical forms for A.

(b) If in addition you know that (A — 2I)? = 4, what is the minimal polynomial of A?

This is a computational problem, and minimal justification is required.

7. Let F C K be a finite field extension. Prove that K can be generated by a finite number of
elements, each algebraic over F 2

Solution: Let K/F be finite and define n := [K: F]. Let aq,...,a, be a basis for K as an
F-vector space. We know [F(w;): F] divides [K: F] fori = 1,...,n. Then [F(a;): F] <
[K: F] = n < oo. Recalling that a finite extension is algebraic, each «; is algebraic over
F (since the degree of F(a;)/F is finite). But then K, being generated by a7, ..., ay,, is
generated by a finite number of algebraic elements over F. O

22K /F is finite if and only if K is generated by a finite number of algebraic elements over F. The converse is
simple to show.
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8. Let K be a splitting field for the polynomial p(x) = x” — 2 € Q[x]. Completely justify
your responses to each of the following questions.

(a) Whatis [K: Q]?
(b) Is K a Galois extension of Q?
(c) Is every permutation of the roots of p(x) given by an automorphism of K?

(d) Is Autg(K)? abelian?
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August 2017

1. Let A < B < G be subgroups of a group G. Recall that a subgroup H of a group G is
called characteristic, if it is invariant under every automorphism of G, thatis, f(H) = H for
every automorphism f of G. (In particular, by looking at all the inner automorphisms, one
sees that every characteristic subgroup is normal.)

(a) Show thatif A is characteristic in B, and B is normal in G, then A is normal in G.

(b) Show that if B is cyclic and normal in G, then A is normal in G.

Solution:

(a) Let ¢ € G. We need show that gAg~! = A. Now B is normal in G so that ¢gBg~! = B;
that is, conjugation by ¢ is an automorphism of B. But A is characteristic in B so that
conjugation by ¢ must fix A, i.e. gAg™! = A, as desired.

(b) Let g € G. Since B is cyclicand A < B, A must be cyclic. However, cyclic groups have
unique subgroups. Since order is preserved under automorphisms, any automorphism
of B must send A to itself. But then A is characteristic in B. By (a), we know that A is
then normal in G.

OR

Since B is cyclicand A < B, we know that A is cyclic as subgroups of cyclic groups
are cyclic. Then if B = (x) for some x € G, we know A = (x/) for some integer j. Let
g € G. Since B is normal in G, gxg~! = x? for some integer d. But then for any integer

k
g()fg™ = (gxg ) = (x)F = (W) € A

But then A is normal in G.

O]

2. Let A, B and C be three finite abelian groups. Prove or disprove the following statement:
“f A®C = B®C,then“A =~ B".2

Solution: By the Fundamental Theorem of Finitely Generated Abelian Groups (applying

it to the case of finite abelian), we can write A = Z/pi' & --- ® Z/p,*, B = Z/ pi’iﬂz @

23 A group C is called cancellable if A x C = B x C then A = B. It turns out all finite groups are cancellable
and was proven by B. Jénsson and A. Tarski in 1947, see their book Direct Decompositions of Finite Algebraic
Systems.
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- QZ/pEZ, and C = Z/q)' 2@ - - - © Z/ g5 Z, where pj,q; are prime for all i (not

necessarily distinct) and e;, f; € Z. . Then we have

AGC=Z/pi & - SZ/PSLZ/NW LS - SZ/43Z
B&CXZ/pZ& - @Z/pIZSZ/ G\ Z® - ®L/ 5y Z

The powers of the primes on each side and the number of quotients appearing on each side
of the congruences are unique. Therefore, n = m and it must be possible to re-arrange terms
so that gj = pyy;for1 < n < n. But then we musthave A= Z/pi' & --- & Z/pt = B. O
3.

(a) Let p be a prime number. Let G be a finite group of order |G| = pn, where p > n. Show
that every subgroup H of G of order p is normal.

(b) Let G be a group of order 99, show that G is abelian.

Solution:

(a) Note that n cannot have a factor of p since p > n. Let n,(G) denote the number
of Sylow p-subgroups of G. We know that n, | n and n, = 1 mod p. That is,
n, € {1,p+1,2p+1,...}. However, p > nso that kp + 1 { n for k > 1. Therefore,
it must be that k = 0 and 1, = 1. But then the Sylow p-subgroup is unique, hence
normal.

(b) Observe |G| = 99 = 3% - 11. We know that 111 | 9 so that n1; = 1. We know also that
n3 | 11 so that n3 = 1. Since these subgroups are unique, they are normal in G. Let by

denote the Sylow p-subgroups. By Lagrange’s Theorem, P; N P;; = {1}. But then we
have G = P3P;; and G & P53 x P;;. But then G is abelian.

O]

4. Let A be a square matrix over C. Let A* denote its adjoint (i.e., its conjugate transpose).

(a) Prove A*A has no negative eigenvalues.

(b) Prove that 0 is an eigenvalue of A*A if and only if A is singular.

Solution:

(a) Let A be an eigenvalue of A*A and 0 # v be an associated eigenvector. Then we have
Mol = Ao, v) = (A*Av,v) = (Av, Av) = ||Av|| >0
Therefore, A > 0.
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(b) This is true more generally, a matrix is singular if and only if 0 is an eigenvalue.
Applying this claim to the matrix A*A gives the result—we need only prove the claim.
But observe

Asingular <= detA =0 <= det(A—0-1) =0 <= 0 eigenvalue of A.

5.

(a) Suppose that R is a PID. Prove that R does not have an infinite collection of ideals such
that I ChLCIZC oL A

(b) Let R be a commutative ring. A proper ideal I C R is called primary if for all elements
r,a € Rsuch thatra € I,ifa ¢ I then ¥ € I for some k > 0. For instance, every prime
ideal is primary.

If R is a PID, identify all the primary ideals of R.

Solution:

(@ If; € I, € Iz C--- isachain of ideals in a PID, then I = UIj is an ideal. Note that
Iy C I for all k. Since R is a PID, [ = (r) for some r € I. But since I = UI, r € I for k.
ButthenI C [, C Iforalln € N U {0}. Therefore, I = Iy = I;,, foralln € N.

(b) Recall that if I is an ideal of a commutative ring R, VI:={reR: 1" €Iforsomen c
N} — the radical of I. It is clear that I C /1. We show that if I is a nonzero primary
ideal in a PID, then Vis prime. Let I be a nonzero primary ideal in a PID, then I = (r)
for some nonzero r € R. If ab € \/I, then (ab)" = a"b" € I for some n € N. Since I is
primary, either a" € I or (b")™ = b"" € I. Without loss of generality, assume a" € I.
Since aa" 1 € I, eithera € Tora" 2 e I.Ifa € I C /I, we are done. If not, a" 2 € 1.
Repeating this process inductively, we see that a € I C /1. Therefore, I is prime. [In
what follows, we use primes. But in a UFD (hence PID), an element is prime if and
only if it is irreducible.]

Now if I is a primary ideal in a PID, we know /T is a prime ideal by the work above. In
a PID, an ideal is prime if and only if it is of the form (p), where p is prime. Therefore,
VI = (p) for some prime p € R. Since I is an ideal in a PID, we can write I = (r) for
somer € R. Asp € VI, p" € I = (r) for some n € IN. But if g is a prime appearing in
the factorization of r (R is a UFD since R is a PID), then g | r so that g | p". But as p is
prime (recalling primes are irreducible), this implies p = g, up to associates. Therefore,

24Rings which satisfy this property (the ascending chain condition) are called noetherian.
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the only prime appearing in the factorization of r is p. Therefore, r = up* for k € N
and u a unit in R. Therefore, I = (r) = (up*) = (p").

Finally, suppose I = (p¥), where k € N and p is a prime of R. We claim I is primary.
Suppose ab € I = (p¥) C (p). If a € I = (p*), we are done. So suppose a ¢ I. We have
ab € (p) so that p | ab. Since p is prime, this implies a € (p) or b € (p). Butifa € (p),
then a* € (p*) = I, a contradiction. Suppose b € (p), then b* € (p*) = I. Therefore, I
is primary. This shows that the primary ideals of R are precisely the ideals of the form
I = (p), where p is a prime element of R and the zero ideal.

O]

6. Let N C M be R-modules, where R is a ring.
(a) If both N and M/ N are free, prove that so is M.>>2
(b) If M/N is free, prove that M = (M/N) & N.%7

(c) Show with an example that the above need not hold when M/ N is not free.

Solution:

(a) If N and M/N are free, they have a basis as an R-module. Let {1, },c7 be an R-basis
for N, where n, € N for all & € Z. Let {mg + N}gc s be a R-basis for M/N, where
mg+ N € M/N forall B € J. [Note that mg € M forall € J.] Letm € M. In M/N,

write m + N = r1(mg1 + N) +r2(mgp + N) + -+ r(mpy + N) = Yoy r;(mp; + N),
where r; € R. Thenm — ¥ rimg; € N sincein M/N

(Wl - ii’,‘mﬁ,l) + N = (m—I—N) - [(irimm) + N
i i=1

i=1

k
=(m+N) — ;(rimﬁ,i +N)

k
= (m—i—N) —;Vi(m‘g,i—l—N).

25The ‘converse’ is false: if M is free, it is not necessarily the case that N, M/ N is free. Take M = R, where R
is any integral domain with a non-principal ideal I. There are other prelim problems based on this idea, e.g.
August 2012 Problem 7.

26 Another similar and important exercise is to show that M is noetherian if and only if N, M/ N is noetherian.

2’This is a general concept that is seen in later course work. If M/N is free, then it is projective as an
R-module. Since there is an exact sequence 0 — N — M — M/N — 0, the sequence splits and
M= M/N@N.
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(b)

Since m — Zﬁ;l rimg; € N, write m — Zﬁ‘:l rimg; = g1+ ralgp + o+ Tl =
2?21 ringj, where r; € R. Therefore, we have

k

q
= Z rime + Z Tilg,j.

i=1 =1

Therefore, S := {14 }acz U {mp}pecs spans M as an R-module. It remains to show that
the elements of S are linearly independent. Suppose to the contrary that

rimp,i+ 2*}”«]/
j=

O
Tm»

where the 7}, rj are not all zero. Then in M/ N, we have

p
0= Z ﬁl+271”«1

= =

k
E rimpg, + E T]'TZ(,C,]') + N
=1

I
('\

k
éZrmﬁl—i—N

~ I
—

(r; mﬁl—l—N)

I\
—_

I
AM»

Il
—_

ri(mg; + N),

where = follows from the fact that 27:1 riny,j € N. But since {mg + N} 4c 7 is a basis
for M/ N, it must be thatr; = 0fori = 1,..., k. But then we have

k
=) 7 mﬁl+271”tx] ZVJ”M
i

]_

However, {1, }4c7 is a basis for N so that this implies r; = 0 for j = 1,...,4. But
then S is linearly independent. Therefore, M is a free R-module with basis S. Indeed,
M =2 Reard (ZUJ) a5 R-modules, where card represents set cardinality.

Consider the map ¢ : M — M/N, where ¢ is reduction modulo N, i.e. m — m + N.
Clearly, this map is surjective: if m + N € M/N, then ¢(m) = m + N. Now M/N
is a free R-module so that is has a basis. Let {m, + N},c7 be an R-basis for M/N,
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where my + N € M/N for all « € Z. [Note that m, € M for all « € Z.] Define a
map ¢ : M/N — M as follows: if m + N € M/N, write m + N = ry(my1 + N) +
ro(map + N)+ -+ +r(myr + N) = Zf;l ri(my; + N), then p(m + N) = 25:1 Fillly ;.
We must first show that ¢ is well defined. However, each element of M/ N has a unique

representation of the form YX_, r;(m,; + N) since M/N is free. Therefore, ¢ is well
defined.

Now observe thatif m + N = 2?21 ri(my;+ N) € M/N, then

k k
p(p(m+N)) =¢ (4’ <;Yi(ma,i + N))) =¢ (;rima,z)

k
<Z rima,i> + N
i=1

(rimy i+ N)

I
M»

_.
Il
—_

(moc,i +N)

I
'M*

Il
—_

= m+N.

Therefore, ¢yp = 11,5 — the identity map id: M/N — M/N. We claim ker¢ = N.
Clearly, if n € N C M, then ¢(n) = n+ N = N = 0+ N so that n € ker¢, ie.
N C ker¢. If m € ker¢p, we have 0+ N = ¢(m) = m+ N so that m € N, i.e.
ker¢ C N. Therefore, N = ker¢. Finally, recall we have the canonical inclusion
t: N < M,ie. n+— n. [From the previous work, we have im: = ker ¢.]

Defineamap 6 : M/N @& N — Mvia (m+ N,n) — p(m+ N) + «(n). Since ¢ is well
defined, so too is 6. We need show that 0 is an R-homomorphism. Since the notation in
the specific case is tedious, we show this holds more generally. Suppose ¢ : T — S and
1: W — S are R-homomorphisms. Define 6 : T & W — S via 0(t, w) := ¢(t) + 1(w).
Then fort,t' € T, w,w' € W,and r € R,

O((t+t,w+w))=¢pt+t)+(w+w) =9+ )+ 1(w) + 1(w)
P(t) +1(w) + (') + 1(w')
0((t,w)) +0((t, "))

r0((t,w)) = r(Y(t) +uw)) = rp(t) +ri(w) = (rt) + 1(rw) = ((rt, rw))
Therefore, 0 is an R-map. [It is also immediate that 6 is an R-map from the fact that ¢,

are R-homomorphisms.] We claim that 6 is in fact an isomorphism. We need show 6 is
injective and surjective.
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(a)

(b)

To see that 6 is injective, suppose 8(m + N, n) = 0. Then using the fact that ¢y = 1p1/n,

Since M/ N is free, it must be that m + N = 0+ N, i.e. m = 0. But then 0 = 6(m +
N,n) =600+ N,n) =¢(0+N)+i(n) =0+n=mn,ie. n=0. Butthen (mn+ N,n) =
(04 N, 0) so that 0 is injective. We need only show that 6 is surjective. Let m € M.
Define p := ¢(m) € M/N. Then ¢(p) € M and using the fact that ¢pyp = 1p1/n,

¢(m —(p)) = ¢(m) —p(Y(p)) = ¢p(m) — p(Y(¢(m))) = ¢(m) — ¢(m) =0+ N

But thenm — (p) € kerp = N, i.e. there exists n € N so that m — (p) = n. Therefore,

m=1y(p)+n=y(p(m))+n=y(p(m))+tn)=0((p,n)). Therefore, 6 is surjective.
But then 6 is an isomorphism. This shows M/N @ N = M.

Consider the Z-modules (abelian groups) M = Z and N = nZ for n € Z-. Clearly,
N C M, Mis a free Z-module (generated by 1), and N is a free Z-module (generated by
n). However, M/ N = Z/nZ is not a free Z-moduleasn - (m+ N) =nm+ N =0+ N
forallm € M/N, i.e. M/N has torsion (all free modules over an integral domain
are torsion free). We cannot have M = M/N & N since M has no nonzero elements
of finite additive order while M/N @ N has elements of finite additive order, e.g.
(14+N,0).

O]

Prove that any two 3 x 3 matrices over Q with the same characteristic polynomial and
the same minimal polynomial must be similar over Q.

Give an example of two 4 X 4 matrices over Q which are not similar over Q but have
the same characteristic polynomial and the same minimal polynomial. Justify.

8. Suppose K and L are field extensions of F such that ged([K: F],[L: F]) = 1. Suppose
f € F[x] is irreducible and has a root « € K with « ¢ F. Prove that f has no roots in L.
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Solution: Assume to the contrary that there exists € L with f(B) = 0. Since f is
irreducible and f(B) = 0, f is the minimal polynomial for g € L. Let d := deg f. Since
f is irreducible and f(«) =), f is the minimal polynomial for « € K. Now « € F if and
only if deg p.(x) = 1, where p,(x) is the minimal polynomial for « over F, it must be that
deg pu(x) =deg f > 1. Letm = [K: F]and n = [L: F|. Now

Let p be any prime dividing d. Since p | d[K: F(«)], we have p | m. Similarly, p | d[L: F(B)]
so that p | n. But then ged(m, n) = ged([K: F|,[L: F]) > p, a contradiction. Therefore,
p = 1. But then deg p,(x) = deg f = 1so thata € F, a contradiction. Therefore, L contains
no root of f. O

9. Let K be the splitting field of x® — 3 over Q. Determine [K: Q] and find Gal(K/Q).

Solution: The polynomial x® — 3 is irreducible over Q as it is Eisenstein with p = 3.
Define K := Q(+/3,{), where { is a primitive sixth root of unity. Explicitly, set { = H%@
Observe ++v/37" is a roof of x® — 3, where i € {0,1,5}. But each of these are elements of
K. Since x° — 3 has 6 roots over C, it must be that K is the splitting field of x® — 3 over
Q. Now by the work above, [Q(v/3): Q] = 6. Furthermore, [Q({): Q] = ¢(6) = 2. Since
Q(V/3) C R, it must be that { ¢ Q(+v/3). But then Q(v/3,{) = Q(v/3)({) has degree

[Q(V3,0): Q] = [Q(V3,0): Q(9)][Q(¢): Q] =6-2=12.
If o € Gal(K/Q), then ¢ is determined by its action on v/3 and . Define

c:{—{t V33
T:0—{ V3—(V3
It is routine to verify that ¢,{ € Gal(K/Q). Now ¢? = 1 and 7® = 1. Furthermore,
(07)(¢) = & = (t'0)(¢) and (07)(V3) = {'V/3 = (t7'0)(V/3). As any element of
Gal(K/Q) takes  to either { or {~! and v/6 to {’v/6 for some i. Therefore, o and T generate
Gal(K/Q). But then
Gal(K/Q) = (o,t|c? =1, = 1,01 =0 l0o),

which is precisely the presentation of the dihedral group Ds. O
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May 2018

1. Let V be a vector space over the real numbers. Let U and W be subspaces of V. Prove
that U U W is a subspace of V if and only if either U C W or W C U.

Solution: If either U C Wor W C U, then UUW = W or UUW = U, respectively,
which are subspaces. Assume that U U W is a subspace of V. Suppose to the contrary that
neither U nor W are subsets of the other. Choose then x € U\ W and y € W \ U. Since
UUW is asubspace, x +y € UUW. Butthenx+yc Uorx+y € W. If x+vy € U,
theny = (x +y) —x € U, a contradiction. If x +y € W, thenx = (x+y)—y € W, a
contradiction. Therefore, it must be that at least one of U \ W or W \ U is empty. This
implies C Wor W C U. ]

2. Let G and H be groups and consider the product group G x H. Let e; be the identity
element of G. Consider the set X C G x H defined by X = {(eg,h) | h € H}. Construct a
bijective correspondence between {subgroups of G} and {subgroups of G x H that contain
X}. Be sure to prove your bijection works.

Solution:
3. Prove that there is no simple group of order 56.

Solution: Note that 56 = 23-7. Let n, denote the number of Sylow p-subgroups. By
Sylow’s Theorem, n, =1 mod 2 and 1, | 7 so that n, € {1,7}. Similarly, we know that
ny € {1,8}. If np or ny = 1, then the Sylow 2-subgroup, respectively Sylow 7-subgroup, is
unique, hence normal. But then the group would not be simple. Suppose then that n; > 1.
Then there are n7 - 6 = 8 - 6 = 48 non-identity elements of order 7. But then there are
56 — 48 = 8 remaining elements of the group, which must be the Sylow 2-subgroup (which
exists by Sylow’s Theorem). But then the Sylow 2-subgroup is unique, hence normal.
Therefore, no group of order 56 is simple. O

4. Let A and B be n x n matrices over the complex numbers.
(a) Prove that if A is similar to B, then A and B have the same characteristic polynomial.

(b) Prove that if A and B are both diagonalizable and A and B have the same characteristic
polynomial, then A is similar to B.

(c) Show by example that if at least one of A of B is not diagonalizable, then it can be the
case that A and B have the same characteristic polynomial but A is not similar to B. Be
sure to prove your example is valid.
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5. Let G be the abelian group generated by four elements w, x, y, z, subject to the relations

y+3z=0
—2w+x+y+3z=0
—2w+4x+y+3z=0
—3x+y+52=0

Write G as a direct sum of cyclic groups in two ways, corresponding to the two versions of
the Fundamental Theorem of Finitely Generated Abelian Groups.

6. Let R be a commutative ring and M an R-module. Recall that M is said to be finitely
generated if there are elements x1,...,x, € M such that M = Rx; + - - - 4+ Rx,,.

(a) If N € M is a submodule such that both N and M/ N are finitely generated, prove that
M is finitely generated.

(b) Give an example, with justification, of a finitely generated module M and a submodule
N which is not finitely generated.

7. Suppose that A is a square complex matrix with characteristic polynomial c4(x) =
(x — 1)*(x + 3)°. Assume that A — I has nullity 4 and A + 31 has nullity 1, where I is the
identity matrix of the same size as A. Find, with justification, all possible Jordan canonical
forms of A, and give the minimal polynomial for each.

8. Set K = Q(i, v/2), where i is the complex root of —1 and v/2 is the real fourth root of 2.
(a) Find the degree [K: Q].

(b) Identify all the elements of Autg(K).

(c) Identify the isomorphism type of the group Autg(K).

Justify all your conclusions.
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August 1991

1. Show that every uncountable subset of the real numbers has a limit point.

Solution: We prove the contrapositive: if a nonempty subset A C IR has no limit points, it
must be at most countable. Suppose that A has no limit points. Let A, = AN [—n, n] for
n € IN. Observe that each 1 is bounded and must contain no limit points. Note that every
bounded infinite subset of R has a limit point. As A has no limit point, it must be that A,
is empty or finite for each n. But A = U7_; A, so that A is at most countable.

OR

Suppose that A is an uncountable subset of R. Forn € Z, let A, = AN [n,n+1].
We know that A = U,czA,. If A, were finite for each n, then A would be countable, a
contradiction. Then A, is infinite for some n, say ng. We know that A,, C [ng, no + 1].
As this is an infinite subset of a compact bounded subset of IR, we know that A,, has a
limit point, say xo. But then A has a limit point as any neighborhood of xo U in R has
neighborhood U N [ng, ng + 1] in [ng, ng + 1]. O

2. The sequence of real numbers {x, } is defined by recursively by x; = 1 and
1/3
Xpy1 = (Xn +x3)

Prove that x, converges and find the limit.

Solution: Observe that x; = 1and x, = (1+ 12)1/3 =21/3 > 1 = x1. Now assume that the

sequence X, is increasing for n = 1,2,3, - - - , k. Then using the fact that /x is an increasing
function,

My > Mg—1

n2 > ni |

ng + n% > N1+ nifl
241 2 1
(e +m)'® > (g +mg_y)'°

Mg41 > N

Therefore by induction, nj is an increasing sequence. As x; = 1 and x, is increasing,
x, > 0 for all n € IN. Observe also that x; < 2 and x, < 2. Assume that this is true for
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n=1,2,3,---,k Then

X < 2
X2 <4
X+ xf <6
(xp +x)13 <613 <2
X1 < 2
so that x, < 2 for all n € IN. Then the sequence x, is increasing and bounded above. By the

Monotone Convergence Theorem, the sequence x, has a limit in IR, say x. Then x satisfies
x = (x+ x2)!/3. Then

x = (x+x*)1/3
X =x+x°
- —x=0

x(x>—x—-1)=0
sothatx =0orx = % As0 < x, < 2and {x,} is increasing, x = 0 and x = 1_2—\/5 are

not possible. Therefore, the sequence x, converges to 1+2‘/§. O

3. Let { f. } be a sequence of continuous functions defined on a compact metric space K and
suppose f, converges uniformly on K to a function f. Prove that f2 converges uniformly
to f2 on K.

Solution: As the f,(x) are continuous on a compact metric space, they are bounded. Say
|fi(x)] < M; for some M; € R, depending on i. Moreover as f,(x) — f(x) uniformly and
the f, are continuous, we know that f(x) is continuous. Therefore, f(x) is continuous on a
compact metric space and hence is bounded. Suppose |f(x)| < B for some B € R.

Furthermore as f,(x) — f(x) uniformly, given € > 0 there is an N € N such that
|fu(x) — f(x)| < € for n > N, no matter the choice of x € K. But then |f,(x)| < B + € for
n > N. Let M = max{Mj, My, --- ,Mn, B+ ¢€}. Then |f,(x)| < M for all n € N so that
{fu(x)} is uniformly bounded.

Now given € > 0, there is an N € IN such that |f,(x) — f(x)| < e/2M for n > N. Then
we have

£ () = ()] = [fulx) = FO) | fulx) + f(x)]
|

< |fulx) = ()\(’fn x)| +1f(x)])
< 5 (M+M) =
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so that f2(x) — f2(x) uniformly. O

4. Prove the following: if f is continuous, real valued function on [0, 1] such that f(0) =0
and

1
/ X"f(x)dx=0 forn=1,2,3,---
0

then f(x) = 0forall x € [0,1].

Solution: Observe that

! n ! n
/Oax f(x)dx:a/o x"f(x)dx =0

for all 2 € R. But then given any polynomial with zero constant term p(x) = a,x" +
Ap_1xX" 14+ ...+ a1x, we have

1 1
/0 p(x)f(x) dx = /0 apx" f(x) 4+ a, X" (x) + - Fagxf(x) dx

—ay [ ) drba s [ O dr b b [ xf() e

=0+40+---40
—0

As f(x) is continuous on the compact interval [0, 1], there is a sequence of polynomials
{pn(x)} converging uniformly to f(x) on [0,1]. Then given € > 0, thereisa N € IN
such that |f(x) — pu(x)| < e forall x € [0,1] and n > N. As f(x) is continuous on
the compact interval [0, 1], it is bounded. Say |f(x)| < M on [0,1]. Observe then that
pn(x)f(x) converges uniformly to f(x)? as | f(x)? — pu(x)f(x)| = |f(x)] |f(x) = pu(x)] <
Me. Furthermore, observe that p,,(0) = 0 for n > N, i.e. the p,(x) have 0 constant term as
£(0) = pu(0)] = [0 = pu(0)] = |pn(0)] < €. But then

1 1 1

0=1lim [ pu(x)f(x)dx= [ lim p,(x)f(x)dx = / f(x)? dx
0 0

n—co 0 n—o

As f(x) is continuous, if there were any interval in [0,1] on which f(x) # 0, then

fgl f2(x) dx > 0, a contradiction. Therefore, it must be that f(x)> = 0. But then
f2(x) = f(x)f(x) = 0 forces f(x) = 0forall x € [0,1]. O

5.Let F(x,y,z) = 3x + 2y + z — y sin(xz).

(a) Can the equation F(x,y,z) = 0be solved for z = f(x,y) in a neighborhood of the point
(0, —1) satisfying f(0, —1) = 2? Justify your answer.
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(b) State a precise version of what is asked for in (a). Be as complete as possible.

6. The function f maps [0, 1] onto [0, 1] and is monotone. Prove f is continuous on [0, 1].

Solution: Note that f is continuous if and only if —f is continuous. If f is monotone
decreasing, then —f is monotone increasing. Therefore without loss of generality, we
assume that f is monotone increasing. Suppose to the contrary that f is not continuous.
Since f is monotone, it has no discontinuities of the second kind. Therefore, f has a simple
discontinuity at some point xo € [0,1]. Let y; := lim,_,. f(x) and yg = lim, L f(%).
At least one of the intervals (v, , f(x0)), (f (x0), yg ) must be nonempty. Choose one of the
nonempty intervals (if they both are nonempty, arbitrarily choose the first), and denote it I.
Then I C (y,,y3) C (f(0), £(1)). But then the image of f is not [0, 1], a contradiction. [
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August 1992

1. Let {x, } be a sequence of complex numbers converging to a. Show that
jin 3 o

Solution: First, observe that

12 X1+X2+XxX3+ -+ Xp
n =" n
j=1
_mtxo+--+x ma
n n
g+ (e—a)+-+(xn—a)
n
1 n
— EZ
=
1 n 1N—1 1 n
SEZ”CJ'_”’:EZ|xj—”’+ﬁz|xj_”’
j=1 =1 =N

Since lim;, .o X, = a, given € > 0 there exists a N € N such that |x, —a| < § forn > N.
Moreover, since x, is a convergent sequence, the sequence {x, } is bounded. In particular
as x, — a, the sequence {|x, — a|} converges to 0 so that the sequence {|x, — a|} is
bounded. Then there exists a M € N such that |x,, — a| < M for all n. Then

1 N= N
n =1 n

ZNM . . .
< - Then this implies P +1 > =~

21\£M . But then

NM €
i1 < 5 Therefore,

S|

|xj—a| < 5
=1 2

forn > P.
Let J = max{P, N}, then

10 1 ( —N—{-l)% € €

- < = _ A L R A R

n}; _n;|x] a|+ Z\x] a|< + ” <5 tn=e
for n > J. Therefore, 1 . 27:1 Xx;j converges to 4. O

2.
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(a) If f, € C}(0,2),n =1,2,...,and f; converges uniformly to zero, while f,(1) converges
to 1, prove that f, converges uniformly on (0, 2).

(b) Is the result true if each f, is only differentiable on (0,2)?

3. Let (X, p) be a compact metric space and (Y, d) be a metric space.
(a) If f : X — Y is continuous and onto show that (Y, d) is complete.

(b) If f is also one-to-one, prove that f 71 : Y — X is continuous.

Solution:

(@) The image of a compact set under a continuous mapping is compact. But as f is onto,
we have Y = f(X) so that Y is compact. But then Y is a compact metric space so that Y
is complete.

(b) Since f is injective, it has an inverse f ~!. We need show that f~! is continuous (show-
ing that f is a homeomorphism). We know that f~! is continuous if and only if f maps
closed sets to closed sets. Let C be closed in X. Since C is closed and X is compact, we
know that C is compact. Then as f is continuous, f(C) is compact. But as Y is a metric
space and f(C) is compact, we know that f(C) is closed. O

4. Suppose f : R? — Ris CL. If f,, exists in a neighborhood of (0,0) and is continuous at
(0,0), prove that f, exists at (0,0) and f,x(0,0) = f,(0,0).

5. Let p(x,y) = (xy — 1)? + x2 for (x,y) € R% Find inf{p(x,y): (x,y) € R?}.
Solution: Clearly, p(x,y) > 0 for all (x,y) € R% Now for n € N, choose x = 1 and y = n.

Then we have
= p (L) = (Loaa) o (1) 2L
PP =P ™) = \n n) n?

Now given € > 0, choose N € IN such that % < €. Then for n > N, we have

p(%,n) = % < €. But then clearly, inf{p(x,y): (x,y) € R?} = 0. O

6. Suppose f is continuous and greater than 1 on [0, 1]. Prove that for a positive a

tim ([ 1ol dx)i —exp [ nlfC)] )

Hints: First, establish the limit formally. Then attend to the intermediate results that require
justification.

233



August 1993
1. Given a C! function F : R" — R" satisfying
IF()|l < [[x[I>, x e R",

prove that there is an € > 0 such that the equation F(x) = x + « has a solution x whenever
the vector « satisfies ||a|| < €.

2.1fa, > 0and ), a, < oo, prove that there exists a sequence b, such thatlim,_, b, = o0
and Y’ ; a,b, converges.

Solution: If a, = 0 for all #, the result is trivial. We assume that a,, > 0 for all n (this will
be generalized to a, > 0 at the end with little modification). As ) a, is finite, it is Cauchy.
In particular, the tail of the sequence tends to 0. That is,

[ee)
lim a, =0
lim Y a
n—=—m

Letr, = Y ,—, @m- Then it is clear that r, — 0. We define the sequence b, = 1//r, (which
is possible as r, > 0). As r, — 0, it is clear that /7, — 0 so that b, — co. We have

Ay o Tn+1
\/ﬁ(\/a—}_ \/rn+1) —an+an n

However, r,, > 1,11 so that this shows

anbn(\/a‘*' M) =

n

NG
Dividing by /7, + \/Tut+1 > 0, yields

_ - 2(ry — us1) _ 2(ry — us1) ‘ VT — /T 5
\/ﬁ \/ﬁ + VI i+ \/ﬁ + VI n+1 \/ﬁ —v/Tn+1

But we know that

r
anbn(\/ n + V rn+1) == (\/ Iy + V rn+1) =ay + ay 1;+1 < 2‘111 = 2(1’n - 7’n—&-l)
V n

a,b,

(Vrn = V/Tus1)

[ee]

Y- 217 Vi) =2 (Vs - Vi) = 27

n=1

as the series telescopes. Therefore by the Comparison Test, we know that

Y b= Y -
a =
n=1 o n=1 n
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converges.

We need now only consider the case where a,, can take on zero values. However, this is
now trivial. Let f € N be the first value such thata, > 0. Letb, =0forn =1,2,---, f
and then take b, as before for n > f. We still have that b, — oo and observe

Z ayb, = Z a,b,
n=1 n=f+1
to which the arguments above apply. O

3. Assume that the family {f, }$>; of real-valued functions on |0, 1] is equicontinuous and

pointwise bounded. Also assume | ab fnu(x) dx — O0asn — oo forevery 0 <a < b < 1.
Prove that f, — 0 uniformly.

4. Let P denote the set of real-valued polynomials which involve no odd powers of the
variable, i.e. the coefficient of each odd power term is zero. Prove that Pr is dense in
C([0,1]) which the sup norm. For which closed intervals other than [0, 1] can the same be
proved?

5. For which non-decreasing functions B on [0, 1] does the Riemann-Stieltjes integral
I 01 B dp exist? Prove your assertion.

S—00

t
6. If f is continuous and lim f(s) = a, prove that lolgt / f(:) ds — aast — oo.
1

Solution: Since lim; .« f(s) = a, for € > 0, there exists N; € N such that for s > Nj,
we have |f(s) —a| < €/2. Since f(s) is continuous on [1, Np], it is bounded, i.e. there

exists M € R such that |f(s)| < M for s € [1.N;]. Now log x is an increasing function and
(M+]a|)log N

limy_, log x = c0. Choose then N, € N so that Tog N

< 5. Finally, observe that
1 [ta a [tds a ' a

— | —ds=—+ | —=—"1 = ——(logt —logl) =

logt /1 s ds logt/1 s logt ogsl log t (logt —log1) =a

Now given € > 0, as above, choose N = max{Nj, N> }. Then for t > N (noting that log x is
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log N
logt

t
1/.ﬂ®ds_a
logt./J1 s

increasing so < 1), we have

t t
! /f(s)ds— ! /Eds
logt /1 s logt./J1 s
t _
1 / f(s) a
logt J1 s
t —
< L[l
logt J1 s

_ L NIf(s) — 4l 1 1f(s) a4
B logt/1 s ds+logt/N s ds
)

N t _
< L UOL 1 el
1 logt /N s

~ logt s
N t
< 1/‘M+Wﬁ+'1 /2 4
logt 1 s logt /N s
M—Ha!/Nds €/2 [tds
— 7_1_7 _
logt J1 s logtJn s
N t
:M—Ha’-logs +€/—2-logs
log t , logt N
M+ a| €/2
= Tlogt (log N log1)+@(logt log N)
_(M+|a|)1ogN+E' 1_logN
B log t 2 log t
<E+E—e
2 2
t
Therefore,l/ @ds—wzastﬁoo.
logt /1 s
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August 1994

(o)
1. For which real x does the series Z ne-
n=1

" converge?

Solution: We know that the series converges if lim sup C’Z—Zl < 1, where ¢, = ne™"*. But

(n 4 1)e(n1)x
ne*?’lx

n+1 e ™e™*
n ' e "X

= lim
n—oo

lim
n—oo

= le™7|

So we want |e™*| = e™* < 1. This implies that x > 0. We need now only check the case
where x = 0. But this is easily done as

o
Z nefnx
n=1

e}
= Z n
0 n=1

—nx

xX=

which clearly diverges. So the series ), ; ne~"™* converges for x > 0. O

2. Suppose that f is a differentiable function on [0, ), 1i_r>n f(x)/x=0,and 1i_r>n f(x) =a.
X—00 X—00
Prove thata = 0.

3. Find lim, 0 X, when x,, .1 = /X, +4a,a > 0,and x; = \/a.

4. Prove that if a function f(x) is integrable on [a, b] then its absolute value | f(x)]| is also
integrable on [a, b] and

[ s ax < [ il ax

5. Let f be a complex valued function on a set D and suppose that |f(x)| < 1 for each
xe€D.

(a) Show that the sequence of powers of f, {f, f2, f3,...} converges pointwise.

(b) Find necessary and sufficient conditions for the convergence to be uniform.

6. Let K(x,y) be continuous on the rectangle [a,b] x [c,d] C IR?. For integrable functions f
on [c,d] define an operator T by

d
(TH) = [ Kxy)f(y) dy.

(a) Show that (Tf)(x) is a continuous function on [a, b].
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(b) Show that S = {Tf: fcd |f(x)| dx < 1} is an equicontinuous family of functions on
[a,b].

7. Let U = {(u,v) € R?: u > 0} and define F : U — R? by F(u,v) = (1 cosv,usinv) =
(x,y)-

(a) Show that F is an open mapping on U.
(b) Find ou/dx, ou/ay, ov/9dx, dv/ay.

8. Let f(x,y) = x*> + y? — 5 be a function on R2.

(a) Describe thoroughly the results of applying the Implicit Function Theorem in a neigh-
borhood of the point (2,1).

(b) Describe thoroughly the results of applying the Implicit Function Theorem in a neigh-
borhood of the point (1/5,0).
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August 1997

1. Let K C R" be a compact set and lete > 0. Set ] = {x € R": dist(x,K) < e}, where
dist(x, K) = inf{||x — y||2: v € K} and ||¢|| is the usual norm in R". Prove that ] is com-
pact.

2. Determine the convergence or divergence of the following sequences {x,}° ;.

! + 2 + +L
n24+1 n2+42 n?24+n

(b) x, = <_;)” + sin <%)

© xn:W+<1+;ﬂ>

(a) Xn =

Solution:
(a) Observe

1

n(n+1) T - n(n+1) 1

2 .nz—i—n_x”_ 2 21
1 n’+n
<y, < T
2 =M=

for all n € IN. By Squeeze Theorem, we have

nz—i—n

1
1
Jim, 5 < Jim v < Jim s

1<l' <l
E_nl—g}ox”_z

so that we must have lim,, 0o X, = %

(b) Define a sequence b,, = (—%)”. Clearly, b, — 0 as n — oo. If the sequence x,, converged,
then so too would the sequence {x, — b,} = {sin(“)}. But

{x, —b,} ={0,1,0,—1,0,1,0,—1,0,...}

clearly does not converge. Therefore, {x,} does not converge.
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(c) The sequence ¢, = (1+1/(2n))" converges as

lim <1 + ) = lim (1 + ) ] = [lim (1 + ) ] = +/e.
n—soo 2n n—o0 2n n—00 2n

If the sequence x, converged, then the sequence {x, — ¢,} would converge. But

ny(_,\n
Xp — Cp = % However,

n" + (—n)" n", neven
0, nodd
so that {x, — ¢, } cannot converge. But then neither can {x,} converge.

3. Determine whether or not ), ; u,(x) converges uniformly on I, where u,(x) and I are
given in parts (a) and (b) below

0, |x| <mnor|x| >n+1

a) | =Rand u, =
@ " {nsin(l/nz), n<lx|<n+1

(b) I =[1,00) and u,(x) = [; e dt, x e 1.

4. Let D™ and D~ denote the operation of taking derivatives of real functions from the right

and left respectively, for example D f(x) = lim W, D~ is defined similarly.
y—)x -
(a) Give an example of a function for which D" f(0), D~ f(0) both exist but are not equal.

(b) Prove or disprove: if DT £(0), D~ f(0) both exist then the function f is continuous at
x = 0.

0, 0<x<1/2
5. Suppose that f(x) = xand g(x) =<¢1/2, x=1/2 ,evaluate:
1, 1/2<x<1

(@) [, fdg
®) fo g df

6. For a nonnegative integer I let Py(x) = Y\_, axx for real numbers a; and x € [~1,1].
Given a positive integer n set F(n) = {P(x): 0 <l <mnand |ay| < 1fork=0,...,1}. So
F(n) is the set of polynomials of degree less than or equal n whose coefficients all have
absolute value less than 1. Prove or disprove, for each n, the set F(n) is equicontinuous.

7. Let f(x,y) = |x|'/?|y|'/? + xy be a real function on R?.
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(a) Find the partial derivatives of f at the origin.

(b) Discuss the differentiability of f at the origin.

8. Letx = rcosfsin¢,y = rsinfsin¢g, and z = r cos ¢. Define the map F(r,6,¢) = (x,y,z)
from (r,0,¢) € R3to (x,y,z) € R>.

(a) Prove or disprove, F has a global inverse on R3.

., 0
(b) Find 59(0, 1,0).
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August 1998

1. Construct an open set containing every rational number but not every real number.
What can be said about the closure of any such set?

Solution: Let I be a finite collection of irrational numbers in R. Clearly, I is bounded.
Without loss of generality, assume the finite elements of I are iy,1ip,- - - , i, such thati; <
ip < -+ <iy. Now let

n

S=R\I = ij41) [ J(—00,i1) U (in, )

=1

It is clear that S is open as it is the union of open sets. Clearly, S contains all rational
as x € S forall x € R except for x € I. As a concrete example, take I = {1/2}. Then
5 = (—e0,v2) U(V2, ) = R\ {v2} = {v2}.

Now suppose S contains all rational numbers but S # R and that S is open. Consider
S. If x € R, then every open neighborhood of x contains a rational number distinct from x
as Q is dense in IR. But then every open neighborhood of every point x € R intersects x at
a point distinct from x. Then x is a limit point of S. But then x € S. Therefore, S = R. Or to
see this second part, note that S D Q and Qisdensein Rsothat R=R>SD>Q=R. O

2. Prove the inequalities

pyP H(x —y) <xP —y? < pxPHx—y),

where x and y are real numbers satisfying 0 < y < x, and p is a real number satisfying
1<p <02

Solution: Consider the function f(x) = x. Observe that f(x) is smooth on R. In particular,

f(x) is differentiable on [y, x|, f”(x) exists and is everywhere continuous. By the Mean
Value Theorem, there exists ¢ € (y, x) such that f/(c) = %ﬁ(y) However, f'(x) = px?~!
and f"(x) = p(p —1)xP=2 > 0. Since f”(x) > 0 forall x € [0,0), f'(y) < f'(c) < f'(x).

However, this is py””l < % < xP. This is precisely,

pyP H(x —y) < xP —yP < pxPl(x —y).
OR

28The result also holds, with inequalities reversed, for 0 < p < 1.
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Letr € (0,1) and 0 < p < 1. Since r < 1, we have r < p. Observe p is the p-fold sum
of 1. Now r < 1 so that by induction, 7" < 1and 7" < r"~! for all n € N. Then we have

Prpfl =Pl g
p times
<P it
<l+l4---4+1=p

p times

Noting that ZZ;& k= 11:’: , multiplication by 1 — r yields
pri Y1 —r) <1—7" < p(1—7)

Now 0 <y < xsothaty/x < 1. Setting r = y/x yields

@021 (9 20 (0-Y

Now multiplication by x? > 0 gives

op () (- 2o (] 20on(0-)
o () (1=2) s () 2w (1)

pyP H(x —y) < xP —yP < pxPHx —vy).
Y y y=p y

3. Let F(x,y,u,v) = 3x> — y?> + u® + 4uv + v* and G(x,y,u,v) = x*> — y? + 2uv.

(a) Show that the equations

F(x,y,u,v) =9,
G(x,y,u,v) = -3

determine x and y as functions of u and v in a neighborhood of u = 1, v = 1 with
x(1,1) = 2and y(1,1) = 3. Also find % at (u,v) = (1,1).

(b) If the numbers 9 and —3 on the right-hand sides of the equations above are both
replaced by 0, show that there is no open set in the (1, v)-plane on which the resulting
equations define x and y as functions of u and v.
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4. Let f be a real valued continuous function on [0, 1) such that

lim £(x) = £(0).

x—1-

Prove that f cannot be one-to-one.

5. Suppose f is real-valued continuous on [0, 1] and
1
/ Flx)e ™ dx =0, all A > 0.
0

Show that f(x) = 0on [0,1].
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August 1999

1.Usee= g + 4 + 2 + 3 + - - - to prove that e is irrational.

Solution: Let s, = & + % + % + -+ % Observe that s, increases monotically to e.
Furthermore, we have

e— 5y = ! + ! +-~<1<1+ ! + ! +>
(n+1)!  (n+2)! (n+1)! n+1 (n+1)2
1 1
(m+1)! 1--L4
1 n+1 1
m+1)! n  nln

Now suppose that e were rational and thate = p/g, where p,q € Z,q #,and gcd(p,q) = 1.
Of course, p,q > 0 ase > 0. By the work above, we have 0 < ¢ —s; < L 5o that

qq
0<qgl(e—sy) < % which holds if and only if 0 < gle — g!s; < %. By assumption, e = p/q
so that gle = (7 — 1)!p € Z. Furthermore,
1 1 1 1
Therefore, this shows that g!(e — s;) is an integer. But then as 0 < g!(e — s4) < % andg >1
this implies there is an integer between 0 and 1, a contradiction. O

2. Let a,, b, > 0. Assume that ) a, converges and that lim sup 2—2 < M < oo. Show that
Y_b, converges.

Solution: As limsup Z—: < M < o0, there is a ng € IN such that Z—: < M for all n > ny. But
then
0<b, < Ma,

for all n > ng. As ) a, converges, M) a, converges so that M}, , a, converges. But
then we have },,., b, converges. But

10
Y=Y byt Y by
n=0

n>nop

is the sum of two convergent series. Therefore, } b, converges. O

3. Let f be bounded on the real interval (a,b), show that if addition f is both continuous
and monotone then f is uniformly continuous.
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4. Define

0, «xirrational
fx) = {

i x=1" wherem,n

Prove that f is integrable on [0, 1].%

Solution: Note that by definition, f(x) > 0 for all x € [0,1]. If x € Q, we force x = ¥,
where m,n € Z toavoid x = % = =, Let P = {xo,..., X, } be a partition of [0, 1]. Since

the irrational numbers are dense in IR, there exists an irrational number in each interval
[xi, xi11] fori = 0,...,n —1}. Thus, we must have L(P, f) = 0 for every partition P of
[0,1]. Hence to show that f(x) is integrable, it is sufficient to show for every € > 0, there
exists a partition P with U(P, f) < e.

Let S, = {x: f(x) > %} If x € Sy, then x = £, where 7,5 < n. In particular since
0 <r,s <mn,thesetS, is finite as it can at most contain the elements {g :r=0,...,n,s =
1,...,n}.

Lete > 0and choose n € N such that 1 < §. Let E = {i: S, N [x;, x;41] = @}. Itis clear
that |E| < |S,|, where | - | represents the cardinality of the set. If i € E, then M; < 2 < £

€

and if i ¢ E then M; = 1, where M; = SUP.e [y, v, 1] f(x). Observe Ax; = x;11 — x; < IR
But then we have

U(P,f) = i MiAxi

i=1
= Z M;Ax; + Z M;Ax;

i€E i¢E
€
< Z E Axl' + Z Axl'
icE i¢E
€ €
< =+ |5, -
<E€.

But then U(P, f) = U(P, f) — L(P, f) < €. Therefore, f(x) is integrable. Furthermore,
1
0=L(P,f) < / F(x)dx < U(P,f) <e.
0

But then fol f(x)dx =0. O

5. Let { f } be a sequence of uniformly bounded Riemann integrable function on [0, 1], set
F.(s) = fos fu(t) dt for 0 < s < 1. Prove that a subsequence of {F, } converges uniformly

2 Note: it is assumed f(x) = % when x = I € Q. If x = 0, the given f(x) is not well defined. We assume
f(x) =1if x = 0so that f is continuous at every irrational number but discontinuous at every rational number,
as one can show. However, this value does not affect integrability or the value of the integral.

246



on [0,1].

Solution: The space [0, 1] is compact. We know also that F,(s) is continuous on [0, 1]. By
assumption, the set {f,} is uniformly bounded. Suppose that |f,(x)| < M for all n and
x € [0,1]. Then

IFu(s)] = ’/Osfn(t) dt‘ g/Osyfn(t)\dtg/Ostt:Mng(l—O):M

Therefore, {F,(s)} is uniformly bounded for all n and s € [0, 1]. Now we see that {F, } is
(uniformly) equicontinuous: suppose that s > r, then we have

IFa(s) — Fu(£)] = '/rsfn(t) dt' < / falb)] dt < /rstt:M(r—s) <M(1-0)=M

Then given € > 0, simply choose 6 = €/M. Therefore given |s —r| < ¢, we have
|Fu(s) — Fqu(t)| < M(r —s) < Mé < € so that {F,} is (uniformly) equicontinuous. But then
there is a subsequence of {F,(s)} that converges for each s € [0, 1]. O

6. Let f(x) be a differentiable mapping of the connected open subset V of R". Suppose
that f/(x) = 0 on V, prove that f is constant on V.

Solution: Fix x € V and define S = {y € V: f(y) = f(x)}. Note that S is nonempty as
x € S. We need show that S is open and closed.

Lety € S, then y € V so that there exists r > 0 such that N,(y) C V since V is
open. But N, (y) is a convex, open subset of R” and || f'(x)|| < 0 for all x € N,(y). Then
|f(u) — f(v)] <0lu—v| =0forallu,v € Ny(y). Then f(u) = f(v) for all u,v € N,(y).
But then N, (y) C S so that S is open.

Now let {y,} C S be a sequence such that y, — y € V. Since V is open, there exists
r > 0 such that N;(y) C V. Now as N,(y) is convex, f(u) = f(v) for all u,v € N,(y).
But then f(y,) = f(x) asy, € S. Butlim f(y,) = f(y) since f is continuous. But then
f(x) = f(y) so that S is closed.

Now § is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V. O

7. Let f(x,y) = (u,v), where u = x> — y? and v = 2xy. Describe a map from R? to R2.
(a) What is the range of this map?

(b) Show there is no neighborhood of (0,0) in which f has an inverse.
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August 2001

1. Let A be an uncountable set of real numbers. Prove that A has an accumulation point.

Solution: Let A, = AN[n,n+1]. As A = Uyez Ay, if each A, were countable then A
would be the countable union of countable sets, hence countable, a contradiction. Then for
some ny € Z, Ay, is uncountable. However, A,, C [no, o + 1]. But then A, is an infinite
subset of a compact set in R so that A,, has a limit point in [ng, ng + 1], say x. But for
eache > 0, thereisay € A, such that B(x, €). Buty € A so that x is a limit points of A. [

2. Let f(x) be a differentiable mapping of the connected open subset V of R". Suppose
that f/(x) = 0 on V. Prove that f is constant on V.

Solution: Fix x € V and define S = {y € V: f(y) = f(x)}. Note that S is nonempty as
x € S. We need show that S is open and closed.

Lety € S, then y € V so that there exists r > 0 such that N,(y) € V since V is
open. But N, (y) is a convex, open subset of R"” and || f'(x)|| < 0 for all x € N,(y). Then
|f(u) — f(v)] <O0lu—v|=0forall u,v € N;(y). Then f(u) = f(v) forall u,v € N,(y).
But then N;(y) C S so that S is open.

Now let {y,} C S be a sequence such that y, — y € V. Since V is open, there exists
r > 0 such that N;(y) C V. Now as N,(y) is convex, f(u) = f(v) for all u,v € N,(y).
But then f(y,) = f(x) asy, € S. Butlim f(y,) = f(y) since f is continuous. But then
f(x) = f(y) so that S is closed.

Now S is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V. O

3. Prove or disprove: the function f(x) = x3/2log x is uniformly continuous on the interval
(0,1).

Solution: First, observe that ¢(x) = x3/% and h(x) = log x are differentiable on (0, 1). We
1

have ¢’(x) = 3x!/2 and h'(x) = 1. Now using ’'Hopital’s Rule, we have
1
| -
lim x*/?logx = lim 98 % LHE_ |im X — =lim _ng/Z =0.
x—0 x—0 1 =0 3 x—0 3
x3/2 2x5/2

Furthermore, we have lim,_,; g(x) = 1 and lim,_,; i(x) = 0 so that lim,_,; g(x)h(x) =
limy_,1 ¢(x) - limy_,; h(x) = 1-0 = 0. Finally, since g(x) and h(x) are differentiable on
(0,1), they are continuous on (0, 1), forcing their product f(x) to be continuous on (0, 1).
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Define F(x) via

0, otherwise

F(x) {f<x>, x€(0,1)

Now by the work above F(x) is continuous on [0, 1]. But then F is continuous on a compact
interval and is hence uniformly continuous. But then F(x) is uniformly continuous on
(0,1). But F(x) = f(x) on (0,1) by construction. Therefore, f(x) is uniformly continuous
on (0,1). O

4. Let f(x,y) = (u,v), where u = x> — y? and v = 2xy describe a map from R? to R?.
(a) What is the range of this map?
(b) Show thatif (1, v) # (0,0) then f has an inverse in a neighborhood of (u,v).

(c) Show that there is no neighborhood of (0,0) in which f has an inverse.

5. Prove that

[ee]

ZSHIHX

n=1

defines a continuous function on R.

Solution: Let f,(x) = m It is clear that f,,(x) is continuous for each n € IN. It is clear

also that
[ee] [ee] [ee] 1
£ o) ¢ o snit) P

=1

4
so that by the Weierstrass M-test, Y, f,,(x) = ¥, ") converges uniformly on R.
That is, gm(x) = Yy fu(x) converges uniformly. Each gm( ) is continuous as it is the
finite sum of continuous functions. But then g, is a sequence of continuous functions that

sin(1*x)
b3

converges uniformly so that the limit, namely ;> 4 is continuous. O

6.
(a) Find the limit
1
lim A [ e MW gy,

A—00 -1

(b) Let g : R — R be a bounded, continuous function. For x € IR, find the limit
1
lim A [ g(x+y)e M dy.

A—00 -1

Hint: Try a “nice” g first, formulate a guess, and then try to prove your guess is correct.

249



January 2002

1. Let A and B be subsets of a metric space. Prove that ANB C AN B and given an
example when ANB # AN B.

Solution: Letx € ANB.Ifx € ANB,thenx € A C Aand x € B C B. Butthenx € ANB.
Now if x € (A N B)' then all neighborhoods of x intersect A N B at a point y distinct from
x. But observe thaty € A and y € B. But then x € A’ and x € B’ so that x € A and x € B.
Therefore, x € A N B. This shows that ANB C AN B.

To see strict inclusion, take A = (—1,0) and B = (0,1). Then we have A = [-1,0] and
B =10,1]sothat ANB = @and AN B = {0}. As another example we have A = (0,1) UN
and B = (—1,0) UN. Thenwehave A = [0,1]UNand B = [-1,0)UN so that AN B = N
and AN B =N U {0}. As a final example, take A = Q and B = Q€. Then we have A = R
and B=Rsothat ANB=Q®and ANB =R.

O

2. Let f and f’ be continuous functions on R. Prove that the sequence of functions

_ fx+1/n) — f(x)
gn(x) = 1/n

converges to f’(x) uniformly on every interval [a,b], —c0 < a < b < c0.
3. Let f be a Riemann integrable function on [0, 1] and
0= [
(a) Show that there is a constant C such that |F(x) — F(y)| < C|x —y| for every x,y € [0, 1].

(b) Given an example of f such that F is not differentiable at some point.
Solution:

(a) Since f(t) is Riemann integrable on [0,1], we know that f(t) is bounded on [0, 1].
Suppose that |f(t)| < M for all t € [0,1]. Without loss of generality, suppose that

x > y, then
F) = Fl = | [ = [ sy ar

t) dt’

B Yy
< /y CIF(8)] at

§/ M dt = M(x —y) = M|x —y|
y
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(b) If f(t) is continuous on [0, 1], then we know that F(x) is differentiable on [0, 1]. Our
example must need then be not continuous at some point. Let

1
) = {0, te [O’i)

Then we have

FU/24 0 =F/2) _ J5 " F0 420 L = [t
h " h hJi h
so that F(x) clearly cannot be differentiable at x = 1.
O
4. Show that the sequence
Fulx) = tan\;%nx)

is equicontinuous on R and converges uniformly to f(x) = limy,_eo fu(x).

Solution:
5. Determine the values of « for which f is differentiable at (0,0) when

. 1
Flxy) = {(x2 + y2)*sin <x2+y2> , (x,y) #(0,0)
0, (x,y) = (0,0)

6. Show that if ¢(y) i
¢(0) = 0and |¢'(y)
€€

function g on (—

is a continuously differentiable function on (—a,a), a > 0, such that
| <k <1on (—a,a), then there is € > 0 and a unique differentiable
) satisfying the equation x = g(x) + ¢(g(x)).
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August 2002

1. Let f : (0,1) — R be continuous, bounded, and decreasing. Prove that f is uniformly
continuous on (0,1).

Solution: We show that f(x) has a continuous extension g(x) on [0,1]. That is, there is
a continuous function g(x) : [0,1] — R such that g(x) = f(x) on (0,1). But as g(x) is
continuous on a compact set so that it is uniformly continuous and as g(x) = f(x) on (0,1),
we know that f(x) is uniformly continuous on (0,1).

As f(x) is decreasing, f(x) < f(y) if x > y. Let L = inf{f(x) | x € (0,1)}. As
f(x) is bounded, it is clear that L is finite. Let € > 0 be given. By the properties of the
infimum, there is a yo = f(xp) such that L < yp < L+ €. Choose § =1 — xg > 0 so that
0<1l—x<dforx € (xo,1). Butthen L < f(x) < f(x9) < L+ €. But this shows for
x € (x0,1), wehave |f(x) — L| < e. As f(x) is continuous, this shows that f(x) — L as
x — 1. If L' = sup{f(x) | x € (0,1)}, a similar argument shows that lim,_, f(x) = L'.
Define

L, x=0
gx) =< f(x), 0<x<1
L, x=1
The work above shows that g(x) is continuous then the comments above show that f(x) is
uniformly continuous. O
"3
2. Consider the function f : R" — R given by f(x) = % if x #0and f(0) = 0, where

x = (x1,x2, -+ ,x,) and ||x|| is the Euclidean norm of x. Prove that f is continuous on R".

Solution: Observe that } " x}?’ =x}+x5+- -+ and ||x||* = x3 + x5+ - - - + x% are both

polynomial functions in n variables, which are continuous. If f(x), g(x) are continuous,
then % is continuous at x if g(x) # 0 at x. It follows immediately that f(x) is continuous

if || x||? # 0. But as || - || is a norm, ||x|| = 0 if and only if = 0. We then only need consider
continuity at the origin. That is, given € > 0, we need produce a § > 0 such that
n 3
Lj-1%]

<€

n 3
Lj-1%) ‘:

]2

We do this by induction. If n = 1, we have f1(x) = z—z = x and f(0) = 0. But this is trivially
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continuous at the origin. Now assume that fn(x) is continuous forn = 1,2,-- - , k. Then

k+1
Y x? ‘

() = FO = | =

k+1 .3
Li=1 %

2
I
3 3 3 3
T B Sy T
x5+ xp g
1 2 k k+1

3, .3 3, .3
P R R S o5
= 2 2 2
B34+ 2
3 .3 3 3
_|atoto-tx Y41
T 22 2T 22 2
P B s JNUp RN
3
X
k41
= |fi(x) +
f 24 xs 4+ xd

3. Prove that the system

xy’ +yu’ +zv° =1
Xy+yu+zo=1

has a unique solution u = f(x,y,z), v = g(x,y,z) in a neighborhood of the point
(w,v,x,9,z) = (1,0,0,1,1). Find 94(0,1,1).

Solution: Let F(u,v,x,y,z) = (xy5 + yu5 + z0° — 1,x5y + y5u + 2% — 1). It is routine to
check that F(1,0,0,1,1) = (0,0). F(u,v, x,y, z) has Jacobian

Syu* 5z0* Y Sxyt+ud  oP
vz 5xty x°+5yfu 5z%

Since each of these partials exist and are continuous, we know that F(u, v, x,y, z) is con-
tinuously differentiable on R®. At the point (u,v,x,y,z) = (1,0,0,1,1), this Jacobian

is
50110
11050

5 0
S f=s#o0

We also have F, ,
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Then by the Implicit Function Theorem, there are unique functions f(x,y,z) and g(x,y,z)
such thatu = f(x,y,z) and v = g(x,y, z) on some open set about (1,0,0,1,1). Furthermore
by the Implicit Function Theorem, we have

’1
u 0
5 (01,1) =~ =—=

O]

4. Let Qp be the set of rationals in the interval [0, 1]. For a bounded function f : Qy — R
andn =1,2,-- -, define

Sn(f) =

S|

Y F(k/n)
k=1

If limy, 0 Sy (f) exists, we say that f is S-summable and let S(f) = limy_c Sy (f) de-
note this limit. Let fi, f>,--- be bounded functions on Qp which are S-summable and
suppose that fy — f uniformly on Qg as k — co. Prove that f is S-summable and that

limy o 5(fk> = S(f)

5. Let aj, a, - - - be a sequence of real numbers such that limy_, 4y = L € R exists. For
0 < p <1, define
Alp) = Y p(1—p) o
k=1

Prove that this sum converges and that lim, ,0 A(p) = L.

6. Prove that
lim & Y K2 =2
fim s L =5
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January 2003

1. Prove that a continuous function on R has a finite or countable number of strict local
maxima.

Solution: Let S = {xp: 36 > 0 3 |x — x| < 6 = f(x) < f(x0)}. We must show that
S is at most countable. We look at Nj,(xg) for each xy € S such that J is as small as
possible. Note that since f is continuous, each open neighborhood contains only one point
of S. Then choose a rational number in each open neighborhood (since Q is dense in R,
this is possible). But note that Q is at most countable. Therefore, the number of open
neighborhoods is at most countable. Therefore, S is at most countable.

OR

Let M be the set of strict local maxima of a function f. For each x € M, there is a
Jx > 0such that |f(x)| > y for all |[x — y| < ¢ as x is a strict maxima. Let §p = mind,/2
for all x € M. Itis clear that 6y > 0 for otherwise there is a maxima with no neighborhood
about it so as to be the only maxima. But one can cover R with intervals of length Jy, each
containing at most one maxima. We can also choose a single rational for each of these
intervals so that the number of strict maxima are at most countable. O

2. Proof or counterexample: Let f be a continuous function on [0, 1] that is differentiable
on a dense subset. Also, f’ > 0 wherever it is defined. Then f is increasing. (Hint: think
about the Cantor function.)

Solution:
3. Find

1
lim nz/ exzx"(l —x) dx.
n—oo 0

Hint: lim,, e 72 f) (1 — x) dx = 1.

Solution: First, recall that e* =} 7 i—’,{ so that
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and the convergence of the summation to ¢® is uniform on [0,1]. But then

lim 72 /1 exzx”(l — x) dx = lim n? /1 i X—ka”(l —x) dx
0 B 0 k!

n—o0 n—o0 =0
’ 1 x2k+n
1 _ .
_7}1_1&11 /0 Y k=0 x (1—x)dx
= lim i 1 /1 X2 (1 — x) dx
n—o00 k' 0
k=0
Now
1 1
lim n2/ X1 — x) dx = lim 712/ x"(1—x) dx
=00 0 n—o0 0
1
= lim 712/ X" — x"t dy
n—oo 0
Pt A1+2 1
= lim n? —
n—00 n+1l n+2j,
1 1
= lim n? —
= [n Y1 n+ 2]
= lim i
e (n+1)(n+2)
Therefore,

O

4. Let a,, b, > 0. Assume that ) a, converges and that lim sup Z—Z < M < o0. Show that
Y. b, converges.

Solution: As limsup Z—Z < M < o, there is a ng € IN such that Z—Z < M for all n > ny. But

then
0<b, <Ma,
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for all n > ng. As ) a, converges, M) a, converges so that M 2n>n0 a, converges. But
then we have } ., by converges. But

n
b= byt Y by
n=0

n>ng

is the sum of two convergent series. Therefore, } b, converges. O

5. Let f(x) be a differentiable mapping of the connected open subset V of R" to R™.
Suppose that f'(x) = 0 on V. Prove that f is constant on V.

Solution: Fix x € V and define S = {y € V: f(y) = f(x)}. Note that S is nonempty as
x € S. We need show that S is open and closed.

Lety € S, then y € V so that there exists r > 0 such that N,(y) C V since V is
open. But N;(y) is a convex, open subset of R” and || f'(x)|| < 0 for all x € N,(y). Then
|f(u) — f(v)] <0Ju—ov| =0forallu,v € Ny(y). Then f(u) = f(v) for all u,v € N;(y).
But then N;(y) C S so that S is open.

Now let {y,} C S be a sequence such that y, — y € V. Since V is open, there exists
r > 0 such that N;(y) C V. Now as N,(y) is convex, f(u) = f(v) for all u,v € N,(y).
But then f(y,) = f(x) asy, € S. Butlim f(y,) = f(y) since f is continuous. But then
f(x) = f(y) so that S is closed.

Now S is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V. O

6. Let f(x,y) = (u,v), where u = x* — y* and v = 2xy, be a map from R? to R2.
(a) Show thatif (u,v) # (0,0) then f has an inverse in a neighborhood of (u,v).

(b) Show that there is no neighborhood of (0,0) in which f has an inverse.

Solution:

(a) We have

43—y
Je(x,y) :det<2y 23 > = 8x* 4 8y*

Then (u,v) = (0,0) if and only if x* — y* = 0 and 2xy = 0 if and only if x = £y and
x = 0ory = 0if and only if (x,y) = (0,0). So if (u,v) # (0,0), then (x,y) # (0,0)
and J(x,y) # 0. Clearly, f € C'(R?) since all the partial derivatives for f exist and are
continuos. By the Inverse Function Theorem, f has an inverse in a neighborhood of

(u,0).

257



(b) Let N;(0,0) be a neighborhood of (0,0). Let (x,y) € N;(0,0), then (—x, —y) € N,(0,0).
But f(x,y) = (x* —y*, 2xy) = ((—=x)* = (—=y)%, 2(=x)(~y)) = f(—x,—y). But then
f cannot be injective in a neighborhood of (0,0). But then f is not injective in any

neighborhood of (0,0) so that there can exist no neighborhood of (0,0) in which f has
an inverse.

O]
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August 2003

1. If f is continuous on [a, b] and
F(x) = / £(1) dt
a
for x € [a,b], show that F' = f on (a,b).

Solution: Let x € [a,b], € > 0,and h be such thatx +h < band 0 < I < J (6 given by the
continuity of f below). Observe that

oth o x+h x
Fat =R _ LTS a0 6 LT wa 1,

As f is continuous at x, there is a § > 0 such that when |f(t) — f(x)| < € whenever
|t —x| <. Nowift € [x,x+h],x <t<x+hsothat0 < t—x < h < ¢. But then
|t — x| < ésothat|f(t) — f(x)] <e. Then f(x) —e < f(f) < f(x) + € and

F0) e <f1) < f(2) +e
x+h x+h
| Gw-ea< |
(F - [ < / ) dt < (Fx) +e) / o
()< [ feyar < (£ +e)

x+h

f(t) dt</ (f(x) +e€) dt

X

) —e<q /xmf(t) dt < f(x)+e
o<y /xx+hf(t) dt— f(x) < e

F(x+h)—F(x)

so that . — f(x)| < e. But then F'(x) exists for x € (a,b) and F' = f on (a,b).

OR

Consider x € (a,b). Let h > 0 sufficiently small so that x + & € [a,b]. [For instance,
take i = (b —a)/n for some n € N+1.]

F(x+h) —F(x) _ [ f() dt— [ F(1) at
(x+h)—x h

_ :l/xx—&-h f(t) it
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As f(x) is continuous on [g, b], the Extreme Value Theorem says that there are 7, s € [a, ]
such that f(r) = m and f(s) = M, where m, M are the minimum and maximum of f(x)
on [a, b], respectively. But then we have

1 fxth 1 pat+h 1 pat+h
E/x mdtﬁE/x f(t)dtgz/x M dt
But simple calculation shows that
1 x+h hm
i /x mdt = = m
;/xHtht:hiw:M
Therefore, we have

foy=m<t [ fe ar < m=£s)

B F(x+h) — F(x)
flr)=m< (x+h) —x

<M = f(s).

We obtain the same inequality considering i < 0 such that x +h € [a,b] (again, one
can take 1 = (a — x)/n for some n € N-), mutatis mutandis. Given € > 0, we can
find a N € N such that N > (b —a)/e, implying (b —a)/N < e. But then taking & as
above with n > N, we have |h| < e. Furthermore, r,s € (x — |h|,x + |h]) C Be(x). As
r— xand s — xasn — oo and f is continuous, lim,_,o f(r) = lim,—, f(r) = f(x) and
limy, o f(s) = lims—x f(s) = f(x). Then by the Squeeze Theorem,

! 1 F<x+h)_F(x)
Fx) =M = =

= f(x).
2. Prove that

for some y € (1/2,1).

Solution: Let x, = (I}_; 1) — logn. Observe that

Xp — Xp—1 :E—logn+log(n—1) = E—HOg <1_n> <0,
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where the inequality follows from the fact that log(1 — x) is a concave function (simply
examine its derivative) and hence lies beneath y = —x and this line is tangent to log(1 — x),
1

evaluating this function at x = %, we havelog (1 — 1) < —%.

Moreover, this sequence is bounded below as

n1 n+1 J¢ 1 1
xn—k_21k>/1 — =log(n+1) >logn

t
as log x is an increasing function. But then x,, > 0 for all n. Therefore, {x,} is a monotone
decreasing sequence which is bounded below. Therefore, {x,} is convergent. Call the limit

of this sequence 7. We only need show y € (1/2,1).
Observe that

1 14n Un g 1/n 1
L :/ —dt</ P
n og( n > o 1+t —Jo 2n?

1 1+n 1/n t 1/n t 1
——1 = ——dt > dt= — .
1 Og( n > /0 1+t _/0 1+1 2n(n+ 1)
Therefore,
= (1 1+n =1 d 1 | 1 1
B () EbeE B ) -
nZ::l V;ZnZ nz—:lznz_; 712::12 n_% 1’1—}—%
and
= (1 1+n > 1 = 1/1 1 1
- — —lo = — [ = _,
! nz_l< g< >) ,;2n(n+1) ,?;12<n n+1> 2
Therefore, v € (1/2,1).
OR

Observe that e!/k < e for k > 1. It is simple to prove by induction that [T{_, e!/* < ne
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for n € IN. Then we have

1)
o [EE)

IN

I
N

Furthermore, one can show via induction that [T}_, me'/k > (n —1)e/" for n € N. Then

n 1/k
et — Hk:le
n
enzzz el/k
n
o1/2p1/2 ngz ol/k
n
o172 szz ol/k
n
e/2(n —1)el/m
n
n—1
— o2, el/n
n

>

>

which tends to ¢!/2 as n — oo. But then ¢!/2 < ¢*» < ¢l. This implies (as e is monotone
increasing) that 3 < x, < 1forall n. Buttheny € (1/2,1). O

3. Let f : R — R be given by

) X, x€R\Qorx=0
x) = .
psm(%), ng, p.q€Z, ged(p,q) =1

Where is f continuous?
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Solution: As lim,_,q Si;”‘ =1, we have lim; ;¢ sin(1/q) = lim, e Sinl(}é 9 — 1. Then for

all € > 0, there exists a M such that for g > M,

sin (1/q)
1/q

€

2

_1’<‘q
P

for any fixed p. Let x ¢ Q and € > 0 be given. Let 6; = €/2, 6, = limy<p [x — p/q|, and
0 = min{dy,,}. Then forany y, y = p/q € Q with |[x — y| < §, we have

[f(x) = f(y)| = [x — psin(1/q)]
x — p+Z—psin(1/q))

q

F| [ - peinciza)
<l|lx—%|+|=—psin(l/

i (1/q)

p s1n(1/q)‘

— |y — Ll B s
. yH’q ’ 1/q

Pl 19| €€ _
<(5—|—'qu2_2+2 €

Taking 6 = €, we have forany y ¢ Q, |f(x) — f(y)| = |x —y| < § = e so that f is
continuous for x ¢ Q. Moreover using the work above, f is continuous at x = 0.
Now let x € Q with x = p/q as in the definition of f. Suppose f were continuous, then

fore =3 ‘p (sin(l/q) - %) , there would be § > 0 such that for y ¢ Q with |[x —y| < 4,
[f(x) = f(y)] <e. But

. . 1 : 1
f(x) = fy)l = |psin(1/q) —y| = ‘Psm(l/q) - Z‘ + ’Z —y’ >3 ’p (sm(l/q) - q) ’ +o>e
a contradiction. But then f cannot be continuous for x € Q. Therefore, f is continuous on
the irrationals and x = 0 only.

OR

Note that we need only consider 4 > 0 as otherwise we have sin(1/4) = —sin(1/]q|)
and the result follows mutatis mutandis. Moreover, we only need consider p > 0 as if x =
p/q, where p/q is rational written in reduced form and p,q > 0, we have —x = (—p)/q
and f(—x) = —psin(1/q) = —f(x).

Itis clear that f(x) is discontinuous at each nonzero rational point. Let p/q be a nonzero
rational written in reduced form. For each n € N, one can find an irrational x, in the
interval (p/q —1/n,p/q+ 1/n) as the irrationals are dense in R. Then we can find a
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sequence {x,} of irrational numbers converging to p/q. If f(x) were continuous at p/q,
then by the continuity of f(x), we would have

. . . (1
Jim () = f(fim ) = f(p/q) = psin ()
But we know that lim, .« f(x,) = lim,_e X, = p/q as f(x,) = x, for all x,,. Then we
must have p/q = psin(1/q). If g =, then we have 1 = sin(1), which is clearly false. If
q # 1, then we have sin(1/g) < 1/q as for 0 < x < 71/2, we know that sin x < x. But this
contradicts the fact that p/g = psin(1/q) as it must be that p/q > psin(1/9).

To see continuity at 0, observe that f(0) = 0 so that |f(x) — f(0)| = |f(x)|. However,
|f(x)| < x so that as x — 0, it must be that f(x) — 0 by Squeeze Theorem. To see
continuity of f(x) at each irrational point, observe that limy_,. sinx/x = 1 so that

lim S0(/9) _

g 1/q
Then for € > 0, there exists an N € IN such that |gsin(1/g) — 1| < e/2for g > N. Now let
x € R be irrational. There exists a 0 < é < €/2 such that for each rational p/g, written in
lowest form, with [p/g — x| < 6, theng > N.

\f(p/q) — f(x)| = |psin(1/q) — x|

= Z-qsin(l/q) —x

p . p., P
=|=--gsin(l/q) — =+ = —x
g s/ =+

: p p
= .gsin(1/ —'—l—‘—x
g sin(l/a) =i+ o

IN
<

— | Eigsin(1/g) 1)) + | - x

€ €
< 4 - =
_2+2 €

If y were irrational with [y — x| < €/2, then |f(y) — f(x)| = |y — x| < e/2 < e. O

4. For each n, let f, : R — R be a non-decreasing function, and assume f, converges
pointwise to a continuous function f. Prove that f,, converges uniformly on compact sets

to f.

Solution: Leta = xp < --- < x,, = b and choose ¢ such that |x;,1 — x| < ¢ for all
k. Then for x € [a,b], we have x € [xi, xx.1] for some k so that |[x — x| < J. But then
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|f(x) — f(xx)| < €/5 by the uniform continuity of f on [a, b] (since f is continuous on a
compact set). Since f, — f, there exists N € N such that for n > N, |f,(x) — f(x)| < €/5.
But then

[fu(x) = FOO)] < [ falx) = fu(xi) |+ [ (i) = f (i) |+ 1f (i) = f(x)] < Ifn(x)—fn(xk)Hde
Now |[fu(x) — fu(xx)| = fu(x) — fu(x) since x > xj and f, is non-decreasing,

() = fu ()| < fu(orsn) = fu(xk) = | f(xkg1) = fulxi)]
< fu(irn) = fur) [ 1f Gern) = F G 4 1f () = fu ()|

€ €,€ 3
5 5 5 5
But then
Fa0) = FO] < 1) = ful) | + = <e
for all x € [a,b]. Therefore, f, converges uniformly to f on compact sets to f. ]

5. Let f be a continuous function on [0, 1] such that

1 nx
/ e T f(x)dx=0
0
for all n > 0. Show that f is identically zero.

Solution: Define A as
A= {f(x) = ag+areT* + et * + - +ayer and f(1) = 0: x € [0,1),4; € R}

Let f,¢ € Asothat f(x) = ap+ a1eTr + aze%ﬁ + .- +ayetx and g(x) = by + bieTx +
boeTor + - + bpe%.7Without loss (32f generality, assume m < p. Thenig )f +9)(x) =
(a0 + bo) + (a1 + by)eT= + (ap + b_z)eﬂ +ot (am +bpu)eT + -+ ber € A. Also,
(fg)(x) € A since (aie%> (bje%) = a,-b]-e_(llji)x € A. Clearly, if c € R then ¢f € A.
Therefore, A C C([0,1],R) is an algebra. Let x1,x, € [0,1] be distinct points. Then
s € Aand e # e™% . But then A separates points. Let x € [0,1]. Then f(x) =1€ A
and f(x) = 1 # 0 and A vanishes at no point. The interval [0, 1] is compact. By Stone-
Weierstrass, A = C([0,1],R), i.e. thereis a {f,} C A such that {f,} converges uniformly
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to f on [0,1]. Then

/f2 dx—/O lim f,(x) - f(x) dx

n—o0

= lim /0 ful®)f(x) dx
= lim [/Olaof(x) dx+..._|_/01ame1mff(x) dx]

n—oo
= 1m0
n—oo

=0

But then f f2 dx = 0. As f2 > 0 and f2 is continuous, it must be that f2 = (0 for all
x € [0,1] sothatf_Oon [0,1]. O

6. Show that there is an open interval containing 0 and a unique curve (x(t),y(t)), t € I
with (x(0),y(0)) = (1,1) satisfying
x+ y2 +sint =2
2ty =1

Find the velocity of the curve at t = 0. For a given ¢y € I is there a unique solution (x,y) to
the above with t = #?

Solution: Let F = (f1, f2) : R> — R? such that f1(x,y,t) = x + y> +sint — 2, fo(x,y,t) =
x?> 4ty — 1. Then F(1,1,0) = (0,0).
B (1 2 1)
(1,1,0) 201

/ (1 2y cost
F'(1,1,0) = <2x 2Hy P )
1 2
4= (2 o)
1
w=()
Now det Ay = —4 # 0. Then A, is invertible. By the Implicit Function Theorem, there
exists U C R3 open such that (1, 1,0) e Uand I C R open such that 0 € I and for all

t € I, there is a unique (x,y) such that (x,y,t) € U and F(x,y,t) = 0. But then there
is a differentiable function % in a neighborhood of (1,1,0) such that #(0) = (1,1, ) and

Define
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F(h(t),t) = 0, i.e. the system has a unique solution (x,y) = h(t) in a neighborhood of

- 1/0 -2\ 1/-2 2
Y — a-1a _ * _ 1 _ 2
Ho) = A"AV_4<—2 1)‘4(—1)‘ 1

Finally given ty € I, there is a unique solution (x,y) to the system of equations with
t=1ty. ]
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January 2004

1. Show that if E C R¥ is not compact, there is a continuous function f : E — R which is
unbounded.

Solution: If E C R is not compact, then by the contrapositive to Heine-Borel it is not
bounded or not closed. If E is unbounded, then f : E — R given by f(x) = ||x| is an
unbounded function. If E is not closed, then EC is not open so that thereisa xg € E € such
that no neighborhood of xg is contained entirely within EC. That is, all neighborhoods of
xo intersect E. Then f : E — R given by f(x) = Te=xal for x € E is unbounded. Notice
the function is defined at all x € E as xo € E. But as xp is a limit point of E, there is a
sequence x, in E which converges to x. That is, for any € > 0 there is an N € IN such that
|x, — xo| < € forn > N. Take € = % and choose such an N. Then we have

1 1

X = - > — = n
o) = e =l 7
for all n > N so that f(x) is an unbounded function. O
2. Let f: (0,+0) — R be a differentiable function such that 1—1>T f(xx> = 0. Prove that
X oo}

there is a sequence x,, /! +oo such that f'(x,) — 0.

Solution: Consider the sequence {x, }, where x, = 2". Then x,, ;1 = 2" =2.2" = 2x,, >
xy. Clearly, x, * co. Since limy M =0, for all e > 0, there exists N € IN such that for
. As f is differentiable, for all n,

there exists ¢,, € (xn,an) such that f'(c,) = w. This implies

n > N, we have x” ‘ < 7. But th1s implies ’f

reoy  f2x) = fxn) _ f(2x0) — f(x)
f (Cn) B 2Xy — Xp N Xn ’
Therefore for n > N, we have ‘f 2%1) < 7. Then
F0a) = F(0) + F2x) | _ €
2xy 2
Using this for n > N, we have
fCn) | | f2xn) — f(xa)| _ €
2xy B ' 2xn < 4
f(xn €
3|7 - Gl < §
L e < §




Therefore, |f'(cy)| < §+ 5 = €. Then for all # > N, we have [f'(c,)| < € so that
f'(xn) — 0. O

3. Let f : [x1, x2] — R be a differentiable function, where 0 < x; < x,. Prove that there
exists ¢ € (x1,x2) such that

1
X1 — X2

f(x1 ) f&) ' = f(c) —cf'(c).

Solution: Let g(x) = % and h(x) =
¢ € (x1,x2) such that g'(c) (h(x1) — h(x2))

y the Mean Value Theorem, there exists
W' (c)(g(x1) — g(x2)). Then

o) - of (0) (2210 - 2= n /)
£(6) = ¢f'(€) = xaf () = (x2) -
Therefore,
Ll i [

O

4. Let f,p : [0,+00) — R be functions which are Riemann integrable on each interval [0, A],
A > 0. Assume that p(x) > 0 for all x > 0 and

/O+Oop(x) dx=1, lim f(x)=LeR.

X—+o0

(o]

+
(i) Calculate ¢ / p(tx) dx, where t > 0.
0
(i) Show thatlims ot [ p(tx)f(x) dx = L.

Solution:

(i) Letu = tv so that du = t dx. Then 1 du = dx. Then we have
£
0

t/ooop(tx) dx:/ p(u) du =1
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(ii) Lete > 0. Using (i), we have

‘/ (tx)f dx—L':‘t/ooop(tx)f(x)dx—L-t/O o(tx) dx
|

<t [Tp(tx)If(x) ~ L] dx

Now as limy_,« f(x) = L, there exists an N € N such that forx > N, |f(x) — L| < e.
But then we have

’/ (tx)f(x)dx —L ’<t/ (tx)|f(x) — L| dx
:/ (#0)|f(x Lydx+t/N°°p(tx)\f(x)—Lydx
/ (tx)|f(x) — L dx—l—t/oop(tx)e dx

Since p(tx), f(x) € R0, N], p(tx), f(x) are bounded on [0, N], so

’/ (tx)f(x) dx —L ’<t/ p(tx)|f(x)—L\dx+t/ p(tx)e dx
0 N
< tMN + et /oop(tx) dx
N
< tMN +¢€

for some M € R. Choosing t < 537x, we have that limp ot f0+°°p(tx)f(x) dx = L.
O

. . X . ..
5. Consider the series Z e Find all the values x > 0 where the series is convergent.

Show that the series converges uniformly on the set [0,1/2] U [2, +00). Is the series uni-
formly convergent on [0,1)? Justify your answer.

Solution: Observe

xn+1 n-4+ xZn 2n+1

n41+4x202 xn

nx+x
n+14x2n+2|"

If x = 0, the series sum is clearly 0. If 0 < x < 1, we have

1 nx+x2n+1
m |\ ——5——
n+ 1 + x2n+2

n—o00

—‘%‘:|x\:x<1
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so that the series converges absolutely by the Ratio Test as x < 1. If x = 1, then

[o0] (o] 1

xn
Z;n—i—xZ” :ng;ln—l—l

n=1

which diverges by limit comparison with the series } ;> ; % — which diverges by the p-test.
[Alternatively, one could use the Integral Test or observe that

=1 1&1
;;n—kl n+n E;E

so that the series diverges by the Comparison Test.] If x > 1, then

[oe]

D

n=1

[ee]

i m-(5)

n=1

1 n
The series ) ;"4 <x> is geometric with || = |1/x| < 1 since x > 1. Therefore, the series

n

Yoot 1 on converges (absolutely as the terms are all nonnegative) by the Comparison
n

Test. Then Zn 1 %
Let fu(x) = .-z We have

converges absolutely for x € [0,1) U (1, 00).

7,12xnfl _ nx3n71

frll(x) = (n+x2n)2

Observe that f,(x) > 0 for x € [0,1/2] but f,(x) < 0 for x € [2,00). Therefore, f, is
increasing on [0,1/2] but decreasing on [2, o). Then for x € [0,1/2],

n+x2 — 1\* ~ n
n+<2)

and Y0011 () " converges absolutely by the Ratio Test. Therefore, ), ;

2

'y ) Ly

n

————— converges
n+ x2

uniformly on [0,1/2] by the Weierstrass M-test. For x € [2, ),

x" 2" 2" 1\"
< < —=|=
n+x2n _1’l—|—22” — 22n (2)
and Y, (%) " converges by the Geometric Series Test with 7 = 1/2 (or by the Ratio or Root
n
Test). Therefore, ), ;

X
o g2 converges uniformly on [2, o) by the Weierstrass M-test.
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But then the series converges uniformly on [0,1/2] U [2, ). O

2
2+yy if (x,) # (0,0) and

£(0,0) = 0. Show that f is uniformly convergent on {(x,y): x*> + y?> < 1}. Find the first
order partial derivatives of f at (0,0). Is f differentiable at (0,0)? Justify your answer.

6. Consider the function f : R? — R defined by f(x,y) =

2

Solution: Note that f is continuous for (x,y) # (0,0) as f(x,y) = x2x+yyz is then a
quotient of continuous functions. Observe
2y | (@] [P
x2+y2 — x2+]/2 x2+y2

and x — 0 as (x,y) — (0,0). Therefore by Squeeze Theorem, lim(, ) f(x,y) = 0 = £(0,0).
Then f(x,v) is continuous for all (x,y) € R?. But then f(x, y) is continuous on the compact
set {(x,y): x2 +y? < 1}. Hence, f(x,y) is uniformly continuous on {(x,y): x> +y> < 1}.
Now

D1£(0,0) = lim fO) = fO.0) _ o= o

h—0 h h—0
D,£(0,0) = lim fOR=fO0) o=
h—0 h h—0

Suppose f(x,y) were differentiable at (0,0). Let u = (uy,u2) be a unit vector. Then
D,f(0,0) = V£(0,0) - u. But

Busuy
_ £2(142 2
D,f(0,0) = lim f0.0) +tu) = f(0,0) lim Bl +up = lim uuy = uduy
t—=0 t t—=0 t t—0

and V£(0,0) - u = (0,0) - u = Ouy + Oup = 0. But then uyu; = 0 which is not true for all
unit vectors u, e.g. u = (1/+/2,1/+/2). Therefore, f is not differentiable at (0,0). O
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August 2005

1. Let g be a continuous function on [0, 1] with ¢(1) = 0 and let h,(x) = x"g(x) for
n=1,2,---. Prove that I, converges uniformly.

Solution: Though certainly not the shortest route, we prove this by showing far more
general results (these results could be assumed for the exam in which case only the final
argument is needed). We have a more general result: if f,(x), g.(x) are sequences of
bounded functions which converge uniformly on E to functions f, g, respectively, then
fn(x)gn(x) converges uniformly to fg on E. We know that {f,} and {g,} are uniformly
bounded. Then there P, Q such that |f,(x)| < P and |g,(x)| < Qforalln € N and x € E.
Let M = max{P, Q}. Itis clear that | f,(x)| < M and |g,(x)| < M so that |f(x)| < M an
|g(x)| < M. Using the convergence of {f, } and {g,}, given € > 0, thereisa N € IN such
that |f,(x) — f(x)] < e/(2M) and |gn(x) — g(x)| < €/(2M) for all n > N. But then

| fu ()8 (x) — f(x)g(x)] = | fu(x)gn(x) — fu(x)g(x) + fu(x)g(x) — f(x)g(x)]
< fu(x)gn(x) = fu(x)g(x)| + [ fu(x)g(x) — f(x)g(x)]
= |fu(2)] 1gn(x) — g(x)| + |g(x)| [fulx) — f(x)|
<Mﬁ+Mm
=€

so that f,(x)gu(x) converges uniformly to f(x)g(x) on E.

Let {f,} and {g,} (not necessarily bounded) converge uniformly to f(x),g(x) on a set
E, respectively. Then we know that the sequences { f, } and {g,} are Cauchy. Then given
€ > 0, thereisa N € N such that |f,(x) — fiu(x)| < €/2 and |gn(x) — gm(x)| < €/2 for all
n,m > N and x € E. But then

| (Fu+8n) (2) = (fr = &) ()| = [ (fu(x) = fin(x)) = (gn(x) = gm(x))]

Ju(x) = fin () + 18n(x) = gm(x)]

so that f, + g, is uniformly convergent on E.

Take f,(x) = x™ and g,(x) = g(x). Observe that g,(x), g(x) are bounded on [0, 1] as
they are continuous on a compact interval. It is clear that f,(x) converges uniformly to 0
on [0,1). Then f,(x)gn(x) = x"¢(x) — 0 uniformly on [0,1). Now let f;(x) =1latx =1
and 0 elsewhere. It is clear that f;,(x) — 0 uniformly on [0, 1]. But then f;, (x)gn(x) — 0
uniformly on [0, 1]. But observe

hy(x) = {fn(x)gn(x), x€[0,1)
frll(x)gn(x>, x=1
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is then uniformly convergent.

OR

Since g is continuous on [0, 1], ¢ is uniformly continuous on the compact set [0, 1]. Since
x", g are continuous on [0, 1], h, is continuous on [0, 1]. But then /,, is uniformly continuous
on [0, 1]. Now since x € [0, 1]

s (x) = X" 1g(x) = x- X"g(x) = 3y (x) < Iy (x)

for all x € [0,1] and n. But then {h,} is a decreasing sequence. We show that /1, converges
toh. Lete > 0and x € [0,1). Take N € IN such that xN < —£. (using x" — 0 asn — o as

8g(x)
x € [0,1)). Then forn > N,

hx—hx:x”xngx<‘€-x:€.

[ (x) = h(x)| = |x"g(x)] < [x"g(x)] g(x>g()

For x = 1, h,(1) = g(1) = 0. But then h, converges to & on [0,1]. But then by Dini’s
Theorem, {h,} converges uniformly to & on [0, 1]. O

2. Leta,,n=1,2,--- be a sequence of positive numbers such that )", ; a,, converges.

(a) Prove that liminf,, . na, = 0.

(b) Show by example that limsup,_. . na, > 0is possible.

Solution:

(a) Suppose that liminf, ;. na, # 0. Then there exists € > 0 such that liminf, . na, > €
since a, > 0. But then lim,,_, (lim infy>, kay) > €. Then there exists N € N such that
fork > N, kay > €. But thenay > §. Butthen Y3° a > Y01 § = € Yo ; + diverges by
the Comparison Test, a contradiction. Therefore, lim inf,,_,« na, = 0.

(b) Define

1
517 n =2 forsomel € N
an == 21
;/

Clearly, a, > 0 foran € IN. Now
Lam<) at Y m =Y atlmSsath
n=1 n=1 n=2! n=1 1=0 n=1 1=0

so that ), ; a,, converges. But we have taking the sequence {2"}, we have

otherwise

ST LT
6 1-1 6

R

lim sup na, > 2" - o= 1.
n—oo
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O]

3. Let F(x1,x2,¥1,¥2) = (x1%2 + X191 + Y2, X192 + X2y3). Check that F(1,1,1,1) = (3,2).

(a) Prove that there is a neighborhood U of (1,1,1,1) and a neighborhood W of (1,1) and
a function ¢ : W — RR? such that for all (y,y2) € W there is a unique (x1,x;) € R?
given by g(y1,y2) such that (x1,x2,y1,y2) € U and F(x1,x2,y1,12) = (3,2).

(b) Find ¢'(1,1).

(c) Find an approximate solution to the equation F(x1, x2,1.001,1.003) = (3,2). Assume
that (1.001,1.003) € W.

Solution:

(a) We have F(1,1,1,1) = (1+1+1,1+1) = (3,2). Define F(x1,x2,y1,y2) = (x1x2 +
x1y1 + Y2 — 3, x1y2 + x2y> — 2). Then F(1,1,1,1) = (0,0) and

A-:ﬁ(1111):<xz+y1 oo 1) :(2 11 1)
’ i 1) y% 2xy1 X1 (L111) 112 1)°

Define then

We have

Therefore, A, is invertible so that the Implicit Function Theorem applies. By the Implicit
Function Theorem, there exists a neighborhood U of (1,1,1,1) and a neighborhood
of (1,1) and a function ¢ : W — IR? such that for all (y1,y2) € W, there exists
(x1,x2) € R? given by ¢(y1,y2) such that (x1,x2,y1,y2) € U and F(x1,x2,y1,y2) =
(0,0). Define g : W — R? by g(y1,y2) = (§(y1,v2) +3,$2(y1,y2) + 2) so that we have
F(x1,%2,y1,42) = (3,2).

(b) We have
, _ 1 -1\ /1 1 1 0
gAY =-AT4 = - (—1 2 ) <2 1) - (—3 —1)‘
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(c) We need find g(1.001,1.003).

x1 = g1(1,001,1.003) = g1(1.001,1.003) — g1(1,1) + 1(1,1)
981 981
= =2-(0.001) + ===(0.003) +1
Byl( ) ayz( )

= 1(0.001) + 0(0.003) + 1 = 1.001

09> g2
= ===(0.001) + ===(0.003) + 1
ay1( ) 8yz( )

= —3(0.001) — (0.003) + 1 = 0.994
Therefore, (x1, x2) = (1.001,0.994).

4. Prove that |
lim n(2) +In(3) +--- +In(n)
n—»o0 nlnn

=1

Solution: We know that
In(1) +In(2) + - - - + In(n) = In(n!)
By Stirling’s formula, we know that In(n!) — nlnn —n+ O(Inn). So we have

In(n!)  nlnn—-—n+0O(Inn) 1— 1 O(Inn)
nlnn nlnn o Inn nlnn

which clearly tends to 1 as n — co.
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We know thatlnn = fln % dx. So we have

Tmea [ L dx [ hdt [P idxt [ it [ L
n i g dx n(flz}cdx+f31dx+ +fn_1dx>
(n-1 flzglcdx'i' (n—2 fzsalcdx+ A+ (n—n+1) [ 3 dx
n(ffbdxd [§ldx ot [ L)

_n(flz}cdx+f31dx—|— +fn"7 ldx)—flz%dx—ZfZS%dx—---—(n—l)f"1}Cdx

n
n(fEtdx+ [l dxt+ [0 L)
flzalcd —l—2f31dx+ "’(”‘Ufnnlalcdx

n(fildxde [ Lax)

and observe the right term tends to 0 as n — oo, as desired. O

—1—

5. Let f : R" — R be a continuously differentiable function such that
f(tx) = £2f(x),Vt > 0,Yx = (x1,...,%,) € R".

Prove that f satisfies the partial differential equation
n
iji(x) =5f(x),Vx € R".

Solution: Let x € R". Define ,(t) = tx and g(t) = f o yx(t). Then ¢'(t) = Vf(7x(t)) -
7. (t). Then ¢'(1) = Vf(x) - x. Now

ix] I (1) = V()2 =g(1).

ax]

But g(t) = foyx(t) = f(7x(t)) — f(tx) = £f(x). Hence, g(t) = £*f(x) so that g; (t) =
5t4f(x) and ¢’ (1) = 5f(x). Therefore,

of

ax( ) =5f(x) for x € R". O

This proves } i ; x;
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6. Prove that if {a, } is a sequence of positive numbers, then

. a
lim sup(a,)*" < lim sup —tl

n—o00 n—oo ai’l

Solution: Note that if limsup,, ,, “* = co, we have

. _ a
lim sup(a,)"/" < lim sup L.

n—o0 n—oo ai’l

So assume limsup, ., “Z:l = a < oo. Choose B > a. Then there exists N € IN such

that forn > N, ag—:l < B. So ay4+1 < Ba,. Furthermore, a,17 < Pay4 < lean. Hence
by induction, a,,3 < ﬁ3an so that for p > 0, we have ay,, < BFay ora, < aNﬁ_B - p"
taking p = n — N. Then (a,)!/" < (ayB~N)¥/" - B. Then limsup,, ., (a,)/" < B for B > 2
since ay /BN > 0. Therefore, limy,_,co (a,/B4)'/" = 1. Then limsup, ., (a,)'/" < & which

. . 1/n : A1
improves limsup, . (a,)"/" < limsup, ., “2=. O
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January/August 2006

1. Prove the chain rule: if g is differentiable at a, g(a) = b, and f is differentiable at b, then
f o g is differentiable at a and (f 0 §)'(a) = f'(b)g'(a).

Solution: Since g is differentiable at a, g(x) = g(a) + ¢’ (a)(x — a) + ¢a(x) (x — a), where ¢,
is continuous at 2 and ¢, (a) = 0, i.e. ¢,(x) — 0as x — a. Similarly since f is differentiable
atb, f(y) = f(b) + f'(b)(y — b) + ¢u(y) (y — b), where ¢y, is continuous at b and ¢, (b) = 0,
ie. ¢p(y) — 0asy — b. Then

f(8(x)) = f(g(a)) + f(8(a))(8(x) — g(a)) + ¢»(8(x))(8(x) — g(a))

= f(8(a)) + f'(g(a))(g(a) + g'(a) (x — a) + ¢a(x) (x —a) —
+¢p(8(x))(8(a) (x —a)
= f(8(a)) + f'(g(a))g'(a) (x — a) + [¢a(x) f'(8(
+ ¢u(8(x))a (x) (x — a)]

)
and ¢4 (x) f'(8(a))(x — a) + ¢(g(x))g"(@) (x — ) + ¢y (g(x))a(x) (x —a) — O as x — a.
Therefore, f o g is differentiable at x = a and (f 0 g)'(a) = f'(g(a))g'(a) = f'(b)g'(a). O

2. Let f(0) = 0and f(t) = t?sin(1/t) for t # 0 and let ¢(x,y) = f(x) + f(y).

(a) Prove that g—f exists everywhere in R? but is not continuous at (0,0).

) =
X g(a))
+ @a(x)(x —a))

a))(x —a) + ¢p(8(x))g'(a) (x — a)

(b) Prove that ¢ is differentiable at (0,0) and find ¢’(0,0).

Solution:

(a) We have
pxt+hy)—¢vy) . f+h)+fy) - fx) (@) . flxt+h)—f(x)
e i L S EA

and for x # 0, f'(x) = 2xsin(1/x) — cos(1/x). For x =0,

7(0) = im SO ;Hr%hnh@) —tim hsin () =0

where the last inequality follows from the Squeeze Theorem with —h < hsin(1/ h) <h
as h — 0. Therefore,
1 1
dp ] 2xsin (x) — Cos <x> , x#0
x|y, x=0
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exists for all (x,y) € R%. But

lim a—(l) = lim 2x sin <1> — Cos (1) = — lim cos (1>
(x,y)—(0,0) X  x—0 X X x—0 x

does not exist so that g—ﬁ is not continuous at (0, 0).

(b) We have

gb(hl, I’lz) — (P(0,0) lim h% sin(l/hl) —|—h% Sin(l/hz)

lim —
(I1,12)—(0,0) || (I1,12)—(0,0) /12 + 13
But we also have

R+ _ Bsin(1/l) +i3sin(1/hy) _ 13+

NER h2 + 13 BRVCEN
h2sin(1/hq) + h3sin(1/h
_\/mﬁ 18in(1/h1) + hy sin(1/hy) S\/m

hi+h3

Then

Therefore by Squeeze Theorem, we have

lim lim U2 —9(0.0) _
(h1,h2) (0,0 (1 112) —(0,0) |kl

so that ¢'(0,0) = 0.
O

3. Let f : [0,1) — R be differentiable with bounded derivative. Prove that f can be
extended to a continuous function on [0, 1].

Solution: We show that lim,_,; f(x) exists. Note that |f'(x)| < M for some M > 0. Note
that lim,_,; f(x) = L if and only if for all sequences {p,}, p» # 1 forall n, and p, — 1,
we have f(p,) — L. Now let p, — 1. Since {p,} converges, {p,} is Cauchy. Then for all
€ > M > 0, there exists N € IN such that for n,m > N, [p, — pm| < ;- By the Mean Value
Theorem, there exists { € (pn, pm) such that

€

F(pa) = F(pu) | = I @) pn = pml < M- 5 =€
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for n,m > N. But then {f(p,)} is Cauchy, which implies {f(p»)} converges as every
Cauchy sequence in R converges. Then lim,_,; f(x) = L for some L. Then f(1—) = L =
f(1+4). Define f : [0,1] — R such that

; f(x), xe[01)
x) =
fx) {L, -
Clearly, f is continuous and f = f on [0,1). O
4. 1f Y7, 5 = 0, prove that the polynomial }7_ arxk has at least one root in the interval
(0,1).

Solution: Consider the polynomial F(x) = Y}, 1£Tk1xk+1- Clearly, this function is differ-
entiable (hence continuous) on [0,1]. Observe that F(0) = 0 and F(1) = Y;/_o &5 = 0
by assumption. By Rolle’s Theorem, there must be a point ¢ € (0,1) such that F’ ( ) 0.
However, F'(x) = Y}, axx* so that there is a point ¢ such that Y}, axc® = 0. That is,
Y7_oaxx* has a root in (0,1).

OR

Note that the polynomial Y}, a;x* is continuous on [0, 1]. Then by the Mean Value
Theorem for integrals, there exists ¢ € (0,1) such that

akgk / Zakx dx = Z/ axk dx = Z [kil kH] i

But then Y}, a;x* has at least one root in the interval (0,1). O

5. Assume f : [0,00) — R is nonnegative, Riemann integrable on [0, b] for every b > 0, and

lim /bf(t) dt < oo

b—o0 JO

Prove or give a counterexample;
@ Jim £ =0,

b) f is continuous implies lgn f(x)=0,
X—00

(c) f is uniformly continuous implies lgn f(x) =0.
X—r00

Solution:
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(a)
(b)
(©)

6. Let f, f, : [0,1] - Rand ¢ : R — R. Prove or give a counterexample to each of the
following statements;

(a)
(b)

(©)

If f, — f uniformly on [0, 1] and ¢ is continuous, then ¢ o f, — ¢ o f uniformly.

If f, — f uniformly on [0,1] and ¢ is uniformly continuous, then ¢ o f, — ¢po f
uniformly.

If f, — f uniformly on [0,1] and f and ¢ are continuous, then ¢ o f,, — ¢ o f uniformly.

Solution:

(a)

(b)

(©

Let f, = x + 1 and f(x) = x. Clearly, f, converges pointwise to f(x). Lete > 0 and
take N € N such that % <e€,ie. N> % Then for n > N, we have

1
N

=-<=<e€

[fu(x) = f(2)] =

Q|-

1
X+ ——x
n

for x € [0,1] so that {f,} converges uniformly to f. Take ¢(x) = x%. Clearly, ¢ is
continuous. If ¢ o f,, were to converge uniformly to ¢ o f, for € > 0, there would exist
N € Nsuch thatforn > N, |[¢po f, —po f| < eforall x € [0,1]. Take € = 2. Observe
forx=1andn > N,

2x+ 1
n  n2

>2=¢,

1
:‘an’

1 2
!4>ofn—4>of\=|<x+n> -

a contradiction. Therefore, ¢ o f,, does not converge to ¢ o f uniformly.

Suppose that f, converges to f uniformly on [0, 1] and that ¢ is uniformly continuous.
Then given € > 0, there exists 6 > 0 such that for [x —y| < 4, |¢(x) — ¢(y)| < > Since
fn converges to f uniformly, there exists N € IN such that forn > N, |f,(x) — f(x)] < d.
But then for n > N, | f,(x) — f(x)| which implies |¢(fu(x)) — ¢(f(x))| < € forall x,y
with [x — y| < 6. But then ¢ o f,, converges to ¢ o f uniformly.

The statement is false by (a).
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January 2007

1. Let X be a metric space and let A; be subsets of X, j = 1,2,.. .. For each of the following
statements, prove it or give a counterexample (the / means limit points):

(i) (AiUAy) C AJUA)

(i) UL, A C UL, A;

Solution:

(i) If A1, Ay are empty, then the result is trivial. Let x € (A; U Az)’. Then every neighbor-
hood of x intersects A; U A, of some point distinct from x. Without loss of generality,
assume the neighborhoods intersect A;. But then x € A/. But then x € A} U A so
that (A] U Az)/ Q All U Alz

(ii) The statement is false. We give three counterexamples. First as the rationals are

countable, enumerate them ay, a5, as, - -

.. Let Aj = {aj}. Then A; = A;j for all j. But

UA; = Qand Q=R SoR = U;?’;lAj z Uj?‘ilAj = Q. As a second example, take
Aj={1/j} forj € N. Then A} = @. Then

[ee]

wiE ooy =Ua ¢ Ug = /7,
j=1

j=1

As a final counterexample, take A; = [1/],1]. We have A; = A; but

00 2

[0,1] = UAJ' z GA]: (0,1]
j=1

=1

2. Prove that the series ) | — is convergent and find its sum.
n!

Solution: Observe

n=1

lim
n—oo

Ap41
an

_r}l—rgo}o (m+1)! n2

. n+1 n!

lim

n—co n (n+1)!
1 1

li 14+ =

ngro}o ( +n> n—|—1’

(n+1)% n!

2

0<1
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So the series converges by the Ratio Test. Observe also e* def Yoo % So

So

One could also do this by shifting index

2
! =

00
n

S

3. Let f: (—1,1) — R be a differentiable function such that f(0) = 0 and f”(0) € R exists.
Prove that the limit lim JM

x—0 X

Solution: Observe that f(2x) — 2f(x) is differentiable as f(x) is and that x? is differentiable.
As x — 0, we know that f(2x) — 2f(x) — 0 and x? — 0. Furthermore, Lx? = 2x # 0 on
all of (—1,1). Therefore by L'Hopitals, we know that

i SO 2 270 =20 @) 0 )

x—0 X x—0 2x x—0

exists.

Again, f'(2x) — f'(x) is differentiable as f'(x) is and x is differentiable and £x =1 # 0
on all of (—1,1). Therefore by L’'Hopitals, we know that

4 _ f! 1" o
£ = f10) _ 220 =)

x—0 1

lim
x—0

=2f"(0) — f"(0) = f"(0)
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(a) Let f* € R (this means f* is integrable dx on some closed interval) prove or disprove,
feRrR.

b) Let f> € R prove or disprove, f € R.

Solution:
(a) The statement is false. Take f(x) to be the

f&)z{a -

1, otherwise

This function is not Riemann integrable (inf U(P, f) = b — a while sup L(P, f) = 0 on
any compact interval [a, b]). However, f(x)?" = 1 for all n € IN is clearly Riemann
integral.

(b) If f happens to be bounded on [a, b], then the statement is true. Suppose f>*~!(x) € R
for n € IN. As f(x) is bounded on [a,b], m < f(x) < M for some m, M € R. Then
m3 < f5(x) < M® on [a,b]. We know that ¢(x) = x'/(2"~1) is continuous on R, in
particular [m3, M®]. But then ¢(f/(?"=1)) = f(x) is integrable on [a, b].

O]

5. Let f(x,y) be a real continuous function on the rectangle [0,1] x [0,2]. Givene > 0
show that there exists n and real continuous functions g;(x) on [0, 1] and /;(y) on [0, 2] for

i=1,...,nso that
):gl y)| <e

for all (x,y) in the rectangle.

Solution: Define

{Z:gZ :neN,g:[0,1] = R, h:[0,2] - R both continuous} .

Note that [0, 1] x [0,2] compactand A C C([0,1] x [0,2], R). Let Y1, gi(x)hi(y), ¥, §:(x)hi(y) €
A. Without loss of generality, assume n < m. Then

m

Ll (s) + L 80f(s) = L Ax)1 € A
where fi(x) = gi(x)hi(y) + §i(x)h;i(y) fori = 1,...,n and fi(x) = §i(x)h;(y) for i =
n+1,...,m. [Notethat1 € Aand f;(x) € Afori=1,...,m.] Moreover, I ; gi(x)h;(y) -
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Y §i(x0)hi(y) € A. Finally, c Y7, gi(x)hi(y) = Y1, cgi(x)hi(y) € A since cg; is continu-
ous, where ¢ € R. Therefore, A is an algebra.

Choose distinct (x1, 1), (x2,¥2) € [0,1] x [0,2]. Then either x; # x; or y1 # y». Define
pi(x) = x, p2(y) =y, l(x) = 1, and hy(y) = 1. Clearly, p1(x)ha(y), p2(y)h(x) € A. If
x1 # X, then p1(x1)ha(y1) = x1 # x2 = p1(x2)h2(y2). I y1 # yo, then pa(y1)hi(x1) =
Y1 # Y2 = pa2(y2)hi(x2). Therefore, A separates points. Moreover, choosing g(x) = h(y) =
1, then 0 # g(x)h(y) = 1 € A so that A vanishes at no point of [0, 1] x [0,2]. By Stone-
Weierstrass, A = C([0,1] x [0,2],R). Then for all f(x,y) € C([0,1] x [0,2],R), there exists
a sequence of elements of A that converges uniformly to f. Therefore given € > 0, there
exists n € N, gi(x) : [0,1] = R, h;(y) : [0,2] — R, both continuous, such that

Zgl y)| <e
O

6. Given the equations x — f(u,v) = 0 and y — g(u,v) = 0 (a) give conditions that assure
you can solve for (x,y) in terms of (#,v) and (b) similarly that you can solve for (#,v) in
terms of (x,y). (c) Assuming these conditions are satisfied prove that

ox(u,v)ou(x,y)  oy(u,v)dv(x,y)
ou ox 0o ay

Solution:

(a) Define F = (F, ) : R* — R?, where Fi(x,y,u,v) = x — f(u,v) and F(x,y,u,0) =
y — ¢(u,v). Suppose F € C! and there exists (a,b,c,d) such that F(a,b,c,d) = (0,0).
Then

JoF; OJF
oy ‘1 0' ‘1 0‘
_ — 140
@ @ (a,b,c,d) 01 (a,b,cd) 01
ox 9y

Then by the Implicit Function Theorem, there exists h, differentiable in a neighborhood
of (a,b,c,d), such that h(c,d) = (a,b) and F(h(u,v),u,v) = 0, i.e. the system has
a unique solution (x,y) = h(u,v) in a neighborhood of (a,b,c,d). Therefore, it is
sufficient that F € C! and F(a,b,c,d) = (0,0).

(b) Note that if F € C! and there is (a,b,c,d) such that F(a,b,c,d) = 0,

oF o,
— |0 v
B:= 8711-42 81% # 0.
ou Jv
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Then by the Implicit Function Theorem, there exists a /1, differentiable in a neighbor-
hood of (a,b,c,d), such that f1(a,b) = (c,d) and F(x,y,ki(x,y)) = 0, i.e. the system has
a unique solution (u,v) = fi(x,y) in a neighborhood of (a, b, c,d). Then it is sufficient
that F € C! and there is (a,b,c,d) such that F(a,b,c,d) = 0.

(c) Assuming the conditions in (a) and (b) hold, the Implicit Function Theorem gives

aP1 8F1 aFl aFl
, _ (V0N 3y o || o an
h(”'v)__<o 1) b dh | =\ _dh b
ou Jv u v
and 3%’”) — _%%, %Y g;,v) = —aa—’;z. Furthermore, the Implicit Function Theorem gives
aPZ aPl an 81—"1
. 1 5 oA, | /1 0 1 . v
- _ AV v - oK) v
hey)=~4ep | OB of (o 1) detB | 9B 9k
Ju ou ou u
du(x, 1 oF dvu(x, 1 9dF
and “giy) = —-23%2, ”g’;y) = — 3otp i+ Therefore,

ox(u,v) du(x,vy) oF 1 JF, 1 dF ok

ou ox ou  detB ov _ detB ou ov
(u,o)do(y) _ R 1 R _ 1 9RdR
ov dy ~  0dv detBou detB ou v

But then
ox(u,v) ou(x,y)  oy(u,v)dv(x,y)
ou ox do Ay
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August 2007

1. Show that any set E in a connected metric space X with no boundary in X is either X or
empty. Note: if we denote the closure of E by E and the complement of E by E° then the
boundary of E is given by ENE".

Solution: Recall bd E = EN EC. It is clear that X = E U E“. We show that E is clopen.
Suppose that E were not open. Then there is an x € E such that all neighborhoods of x
intersect EC. But then x € E€’ C EC. Butthen x € E C E and x € EC so that x € bd E,
contradicting the fact that E has no boundary. To see that E is closed, suppose it is not. Then
there is an x € X such that all neighborhoods of x intersect E but x ¢ E. So x € E' C E. As

x ¢ E then x € EC C EC. But then x € bd E, a contradiction. This shows that E is clopen.
As X is a connected metric space, one of E, E¢ must be empty forcing the other to be X. [

2. Suppose that a function f is defined on [0, o), bounded on any interval [0,a], a < oo,
and limy o (f(x + 1) — f(x)) exists. Show that

lim f&) _ lim (f(x+1) — f(x)).

X—00 X X— 00
Solution: By the Stolz-Cesaro Theorem®, if y,, * o, then lim,,_,co ;—: = lim,,_yqo 220 if

Ynr1—Yn
the limit exists. Now that x  co. Then by Stolz-Cesdro Theorem,

tim L) g LEFD ) 1) — ().

xS0 X oo (x+1)—x X500

Therefore, lim, @ = limy e [f(x +1) — f(x)]. O

3. Suppose that ) a, and ) b, are series with non-negative terms and the series ) b,
converges. Show that if
An+1 < bus1
an — by
for all n > ny, then the series ) a, also converges. Derive that ) a, converges if a, > 0 and

if thereisa p > 1 so that fnt1 <1-— g for all n. [Hint: Use b,, = n=7.]

an

Solution: Note that ”Z—:l < b’l;—:l so that a, .1 < bzzl a,. But then
bn+2 bn+2 bn+1 bn+2
Ant2 < a1 < : n= ay.
" bn+1 " bn+1 bn bn

30Stolz-Cesaro Theorem: if {a, } and {b, } are sequences of real numbers with {b,} strictly monotone and
divergence, if lim; 0 % = l exists, then limy, ;0 3= = [.
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bk
Assume thata, ;1 < ”Z: L a,. Then

Therefore, a, ., < b’;}: L a, for all k > ngp — n. Note that ), ; a, converges if and only if
Y1 Antk converges for k > ng — n (since the series differ by finitely many terms). Then

o]

(o]
Z Apik < Z n+k %Z Z bk < o0
n=1 n=1

since } 7”1 b, converges. Therefore, ), | a, converges. Assume that there exists p > 1
such that ag—:] <1— L. Takeb, = nP. Note that Y5>, b, = Y"1 -5 converges since p > 1.
Now b, > 0 and a’;—:l <1l- 5. Note that by the Binomial Theorem, we have

k .
(1+c)k:2(Dcl:1+kc+---+kck‘1+c"21+kc.
i=0

Then , )
a - -p
Il 9P o 1+1 _(nt1 :(”Jril) _ bua
a, n n n n-p b,
By our original work, ) a, converges. 0

4. Let f(x) be continuous on [0, 1] and suppose that

1 1
/0 f(x)x" dx = o

foralln =0,1,2,.... What can you say about the function f(x)? Prove your answer.

Solution: If n = 0, then we have fol f(x)dx = 01? = 1. Note that

1 1 "
| Fpe) dx = [ FGe) (0 4+ a0)
1 1
:an/ f(x)x"dx+---+ao/0 f(x)dx

an an—1
+1 n

e

+ +a—1—i—a
5 0
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Now since f is continuous on [0, 1], by Weierstrass” Theorem, there exists a sequence {p, }
of polynomials such that {p,} converges uniformly to f on [0, 1]. Then using uniform
convergence,

/ dx—/ £(x) lim py(x) dx
= lim / f(x)pa(x) dx

n—o0 0

1
= lim pn(x) dx

n—o00
= / lim p,(x
0 n—oo

:/0 f(x)dx
=1

Therefore, fo 2dx = fo dx = 1. Now as f(x) is continuous, (f(x) —1)%is
continuous and nonnegatlve on [0 ] Finally,

/(f ) 1) dx—/f x) +1dx

:/Of(x) dx—2/0 f(x)dx+/011dx

—1-2-1+1
=0
Therefore, (f(x) —1)?> = 0 on [0, 1]. This implies that f(x) = 1 on [0, 1]. O

5. Prove that the only function f(x) satisfying f?(x) is Riemann integrable on [0,1] and

X
— / F2(t) dt for x € [0,1]
0
is the function f(x) = 0.

6. Consider the map (u,v) = f(x,y) from R? to R? given by u = x> + 12, v = x> + y*> — y.
(a) Find all the points (x,y) so that f(x,y) = (1,1/2).

(b) Choose one of the points you found in (a) and call it @ = (xp, o). What does the
Inverse Function Theorem say about f near a? State your answer carefully.
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(c) Why is (a) not a contradiction to (b)?

Solution:

(a) Observe v = x2 +y?> —y = u — v so that y = u — v. Furthermore, u = x* + 2 so that
2=u—y?=u—(u—0)% Thenx = £,/u— (u—0v)2. Nowy =1—1 = 1. Then

x=+4/1-(1-3)2= :l:\/g = j:@. Therefore,

Xi= () fxy) = (L0} = {2 D2 .

(b) Clearly, f € C}(IR?) since f has continuous partial derivatives. Moreover,

2x 2y
2x 2y—1

]f(xry) = ' =2x(2y — 1) — 4xy = —2x.

Now | f(j:\@Z, %) = T/3 # 0. Therefore, the Inverse Function Theorem applies to all
points p € X. But then there exist neighborhoods of p € X such that f~! € C! exists

and f~1(f(p)) = pforp € X.

(c) The statement of (b) holds only for some neighborhood of p € X and does not imply
that f has an inverse outside of that neighborhood.

O]
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August 2008
1. Let f : R> — R be given by the formula

Vi () £ (0,0)
flry) = *+y* Y '
0, if (x,y) = (0,0)
(a) Show that f is continuous at (0,0).
(b) Prove that the first order partial derivatives of f at (0,0) exist.

(c) Prove that f is not differentiable at (0,0).

Solution:

(a) Using polar coordinates, we have

x%y

x2 + y?

r—>0

r3sin 6 cos? 0

lim 5 ‘ = lim !rsichosze‘ <lim|r| =0
(x,y)—(0,0) r r—0 =0

so that f(x,y) is continuous at the origin.

OR
Observe that
2 2
lim % < lim x—zy = hrn |y|—0
(xy)=(0,0) | X* +Y (xy)—=(0,0) | X (xy)—
so that f(x,y) is continuous at the origin.
OR
Note that )
XY |, Y _2xy
1) = || = [ s | < o o

Now (x —y)? > 0 for all x,y. But then x*> — 2xy + y?> > 0, showing x> + y> > 2xy.
Then y
2xy x“+y
< . - — | =
F)l < |re ] <o S| = 1o
Then as lim, ), (0,0) [X| = 0, we must have lim, ,y_, (0,0) f (x,y) = 0. Therefore, f(x,y)
is continuous at (0, 0).
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(b) We have

£:(0,0) = lim il

h—0 h hlg(l) h =0
.. f(0,04+Hh)—f(0,0) .. 0-0
fy(0,0) = }llg(l] - = lim —— =0

(c) If f(x,y) were differentiable at (0, 0), then the following limit exists and is 0:

L Sy = [f0,0) + £0,0)(x = 0) + £,0,0)(y 0]

(xy)—(0,0) V2 +y?

But this is precisely

lim Xy
(xy)=(00) (¥ +y2)*/?
Taking x =y = 1/n for n € N, we have

X’y (1/n)2(1/n) 1
(e)o(00) (2 +y2)372 i (1/m2 +1/n2)32 — noeo /3 70

a contradiction so that the limit does not exist and therefore f(x,y) is not differentiable
at the origin.

OR

Let u = (uy,u2) be a unit vector, i.e. u? + u5 = 1. Suppose f were differentiable at
(0,0). Then D, f(0,0) = V£(0) - u. But

Buzu,
tu) — tuq, t £2(u3 +u3 2
Duf(O/ 0) = lim f((ol 0) + M) f(O’ O) — lim f( Ui, MZ) — (ul + MZ) — ;’lluzz = uduy.
t—0 t t—0 t t uy +u;

Now V£(0,0) = (0,0) - (u3,up) = 0. But if neither uq, u, are zero, then u%uz #0,a
contradiction. Therefore, f is not differentiable at (0,0).

O

2. Suppose f : R — R is a continuous function satisfying the equation

[f(x) = f(y)] = [x —y| forall x,y € R
Prove that f(R) = R.
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Solution: Suppose that f(x) = f(y). Then |f(x) — f(y)| > |x —y| so that 0 > |x —y|,
implying |x —y| = 0. But then x = y so that f is necessarily injective. Suppose that
there exists x < y < z such that f(x) < f(y) and f(y) > f(z). Since x # z, it must be
that f(x) # f(z) since that f is injective. Without loss of generality, f(x) < f(z). But
then f(x) < f(z) and f(z) < f(y). Since f is continuous, there exists a € (x,y) such
that f(a) = f(z) by the Intermediate Value Theorem. But since f is injective, a = z, a
contradiction as z ¢ (x,y). Similarly, it cannot be possible f(x) > f(y) and f(y) < f(z).
This shows that f is strictly monotone. But then f monotonic and injective so that f is a
bijection (f is then surjective). Let x € R, then x = f(y) for some y € R as f is surjective.
Therefore, R C f(R). Clearly, f(R) C so that we must have f(R) = R. O

3. Suppose the boundary of a set in IR? is a graph of a bounded function. Prove that the
function is continuous.

Solution: Let E C R? and f : R — R be bounded, i.e. |f(x)| < M forall x € R. Let G
be the graph of f. Then G is the boundary of E by assumption, i.e. G = E \ E° = E N EC.
Then G is closed as G = E N EC is the intersection of closed sets. Let {x,} be a sequence
in R such that x, — x. We show that f(x,) — f(x). Then we have (x,, f(x,)) be a
sequence in G. Now (x,, f(x,)) € K := ({xx} U {x}) x [-M, M]. Now {x,} U {x} is
compact (it is the union of compact sets) and [—M, M| is compact. Therefore, K is compact.
Therefore for any subsequence {(xp,, f(xn,))} of {(x4, f(xn)}, there exists a convergent
subsequence {(xy, , f(xn,))} so that (xn,, f(xn,)) — (x,y) for some x,y with x, — x.
Now as G is closed, we must have (x,y) € G. But then (x,y) = (x, f(x)) for some x. Then
(x”kl’f(x”kl)) — (x, f(x)) so that (x4, f(x,)) — (x, f(x)). This proves that f(x,) — f(x).
Therefore, f(x) is continuous. O

4. Prove or give a counterexample: Let f : (0,1) - Rand g : (0,1) — R be continuously
differentiable; that is, f,¢ € C1(0,1). Suppose that

xllgl—&-f(x) - xll>r(1;l+g(x) =0

and ¢ and g’ never vanish on (0,1). If

lim ﬁ =c¢ forsomec € R,
x50+ g(x)

then

!
lim f/(x) =c3!
x—0+ & (x)

31This is essentially 'Hopital’s Rule. The little remembered condition is that if one has a limit which results
in an indeterminate form, lim,_,( % = limy_,g % assuming that lim,_,o % exists.
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Solution: Take f,g : (0,1) — R be given by f(x) = x?sin (1) and g(x) = x. Then
f'(x) =2xsin () —cos (1) and g/(x) = 1. It is then clear that f, g € C’(0,1). We have

x
. 1
x? sin <> ‘ < x?
x

so that lim,_,o f(x) = 0 by Squeeze Theorem. It is clear that lim,_,o g(x) = 0. Now g, ¢’
never vanish on (0, 1). We have

. X . . 1
2 =limxsin | —
=0 g(x)  x—0 (x)

and

f(x)

so that lim, ;o 2(x) = 0 by the Squeeze Theorem. [Note that to this point, the limits existed
so that in particular the right and left limits exist and are equal to the limit value.] But

!
lim fx) = lim 2xsin <1> — COS <1> ,
X X

x—0t g’(x) x—07t

If this limit existed, as

lim —[2x| < lim
x—07F x—0+

2x sin <1>’ < lim [2x| =0,
X x—0*t
this would imply

/
lim 2xsin 1 _ lim f(x) = lim cos 1
X0+ x =0t ¢'(x) x50+ x
f'(x)
g'(x)
5. Let {9, }5° ; be a sequence of non-negative Riemann integrable functions on [0, 1] such
that

exists, a clear contradiction. Therefore, lim, _, g+ = 0 does not exist. O

1

- k
Jgrc}o X @n(x) dx

exists fork = 0,1,2,.... Show that the limit

lim /01 f(x)@n(x) dx

n—o00

exists for every continuous function f on [0, 1].
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Solution: Let f be a continuous function on [0, 1]. By Weierstrass’ Theorem, there exists a
sequence {py, } of polynomials such that { p,, } converges uniformly to f on [0,1]. Then

1
lim / F()pu(x) dt = lim / Tim p (1) (x) dt = lim lim [ piu (1) (x) di,

where we have made use of uniform convergence to exchange the limit and the integral. We

show that fo Pm(X)$n(x) dx converges uniformly to fo X)¢Pn(x) dx as m — co. Now for
all n € IN, we have ¢, (x) € R so that {¢,(x)} is pointwise bounded, i.e. |p,(x)| < |$p(x)]
for some ¢(x). Since {pm} converges uniformly to f, there exists a M such that for m > M,

[P = f1 < & 1= 655 Thenfor m > M

[ et di— [ 1) ] < /|pm — )] Igul)] dx

Then fo pm x)¢n(x) dx converges uniformly to fo X)¢pu(x) dx as m — oo. Now show
limy, oo fo Pm(x)¢pn(x) dx exists. Therefore,

1
. m
nh_r)alo/ P (X) Py (x) dx = 7}1_{{)10 ; (amx™ + -+ ag)pn(x) dx
1 1
:nh_rgC> ; A X" Py (x) dx+~-+nli_r£o/0 agpn(x) dx
exists. But then
1 1 1
h_r)n/ f(x)pn(x) dx = lim lim/ P (X)Ppn(x) dx = lim lim/ P (x)pn(x) dx
n oo 0 0

n—r00 Mm—ro0 m—00 Nn—00 J()

exists. 0

6. Forn=1,2,3,..., let

I x l
fn<x>={1’ e )

0, otherwise
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(a) Does the sequence {f, }°; converge uniformly on R? Justify your answer.

(b) Assume that « : R — R is an increasing continuous function, prove or disprove the
following identity

lim /_11 fn(x) da(x) = /1 lim f,(x) da(x).

n—oco _1n—00

Solution:
(a)
(b)
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January 2009

1. Let C be the standard Cantor set on the interval [0, 1] and let A = C° be its complement
on the real line. Identify the set of all limit points A’ of A, explaining your answer.>?

Solution: Since C is closed, A = C° is open. Then A is the union of disjoint open intervals
removed from [0, 1] to form the Cantor Set. Note that the endpoints of those intervals
are the same endpoints as the nonexcluded intervals in the Cantor Set. Call this set of
endpoints B. Let x € C. Then x € I, for some n, where I, a interval in the nth stage of
the construction of the Cantor Set. The length of I, is 37". Lety € BN I, so that y is
an endpoint of I,. Without loss of generality, assume y # x. Then d(x,y) < 37" so that
y € By-w(x) N Band y # x. But then x € B’ so that x € A’. Therefore, C C A’. Now
suppose x € A’. Suppose x ¢ C. Then x € B so that x € C'. But this is a contradiction
since C is closed and hence must contain all its limit points. But then x € C. Therefore,

C=A. O
2.
(a) Prove

Z":k:n(n—l—l)

k=1 2

(b) Let {ay,} be a sequence with limit L. Define a sequence
1 n
by=— ) ka
==
Prove lim;_.o b, = L/2.

Solution:

(a) We proceed by induction. First, we check the first few cases by hand

1

. 11+1) 2
=1: =1 —==-=1

2

. 22+1) 6
n Z;z +2=3; 5 5 =3

3

. 33+1) 12
= . :1 2 = M _— = — =
n=3: ) i=1+2+3=6 5 > =6

$The solution will assume that the complement is meant to be taken in [0,1] not the whole real line.
Otherwise since C C [0,1], (c0,0) U (1,00) C A and clearly every point in these intervals is a limit point. Then
in the given solution, we must have A’ = C U (c0,0) U (1, 00).
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Now assume the result is true forn = 1,2,3, ..., k. We need to show that the formula
holds forn = k + 1.

pay LI k(k+1) 2(k+1) k(k+1) 2k+2 K +k

;1—(k+1)+;z—(k+1)+ e e e
C2k+k*4+k+2  K4+3k+2  (k+1)(k+2)  (k+1)((k+1)+1)
B 2 B 2 B 2 B 2

where the starred equality follows from the induction hypothesis: Y*_; i = @ But

then Y ! ;i = @ follows by induction.

OR

Write out the sum in ‘increasing’ order and again directly beneath it in ‘decreasing’
order.

1 + 2 + 3 + + n
n + (n—1) + (n-2) + + 1
Adding these two rows yields
1 + 2 + 3 + + n
n + (n—-1) + (n-2) + + 1
(n+1) + (m+1) + (n+1) + + (n+1)
This result is the n-fold sum of (n+1)’s. Butthenwehave2(14+2+---4+n) =n(n+1)

sothatZ?zlizl—FZ—i----—kn:”("TJrl).

OR

We want to find 1 +2+--- +n = Y ; i. Observe this is the same as finding n + (1 —
1)+---+2+1=Y],n—i+1, the sum written in reverse. But then we have

i=1 i=1 i=1
n
i=1
n
i=1
= n(]’l + 1)
But then we have Y ;i = n(n; L
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OR

Let S(n) := Y} i. Observe that S(n) —S(n —1) =nforn =1,2,---. But then S(n) is
a polynomial of degree two.>* Suppose that S(n) = an? + bn + c. We must have c = 0
as S(0) = 0. Furthermore, S(n) — S(n — 1) = nand

n=5(n)—Smn—1)=(an*+bn) - (a(n —1)>+b(n—1)) = (2a)n + (b — a)

Relating the polynomials in 7 on the far left and right, we have 2a = land b —a =
0. But thena = 1/2 and b = a. Therefore, S(n) = Y/ i = 3n®+ in = w
Alternatively, once one knows that S(n) is a polynomial of degree two, we could use
the points (0,0), (1,1), and (2,3) (coming from the fact that S(0) = 0, S(1) =1, and
5(2) = 3) and use Lagrange Interpolation to find that

_ 4. (n=1)(n—-2) (n—0)(n—-2) (n—0)(n—-1) n(n+1)
S(n) =0 (1-0)(2-0) 1 (1-0)(1-2) 3 2-0)(2-1) 2
OR

Let S denote the n-element set {1,2,...,n}. We count the number of ways to choose
a two-element subset from S. First, we can choose the first element in n ways and
the second element in (n — 1) ways. However, choosing i and then j produces the
same two—element subset as choosing j then i. So the number of ways of choosing a

two—element subset from S is @

Alternatively, suppose the larger of the two numbers chosenisi. Thenfori =2,3,...,n,
there are i — 1 choices for the second number j. Thatis fori = 2,3,...,n, there are
1,2,---,n — 1 possible two—element subsets of S. Then in total thereare 1 +2 4 --- 4

(n — 1) total two—-element subsets of S. Butthen Y/ 'i = 1+2+ -+ (n—1) =
n(n—1)

5 -

OR

First, we prove Pascal’s Identity: ("I") = (}) + (.",). We count the number of ways to
choose a k—element subset from the set {1,2,...,n + 1} in two different ways. Since

33This actually takes a bit more work to show. Let V be the space of all polynomials defined over N U {0}

over a field FF of characteristic 0. Define the forward difference operator Dp(n) := p(n + 1) — p(n). If p(n) has
degree d + 1, then Dp(n) has degree at most d. Let V; denote the subspace of V consisting of polynomials of
degree at most d. Then we have dimg V; = d + 1. Choosing the standard basis, observe that matrix for the
forward difference operator is upper triangular and defines an operator D : V1 — Vj;. Then the result is
clear.
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they count the same thing, they must be equal. First, we do this ‘directly’. The
number of k—element subsets one can choose from this set is exactly ("H) Second,
each k—element subset either contains 7 + 1 or does not. The number of k—element
subsets containing n + 1is (" ;) while the number of k—element subsets not containing
n+1is (). But then the number of k-element subsets is (}) + (,",). Therefore,

("t = (1) + (,",). We will need this identity for the starred equality below.

Now we show Y7 ;i = ("}') using induction. The case where n = 1 is simple:

Yl ,i=1and (%) = 1. Assume the resultis true forn =1,2,...,k — 1. Then

Theny ! ,i= ("}!) = ("H) follows by induction.
OR

Consider the complete graph K,,. Label the vertices v1, vy, ..., v,. Associate to vertex
v1 the (n — 1)-edges connecting it to all the other vertices in K,,. Associate to vertex v,
the (n — 2)-edges connecting it to all the other vertices in Kj, except for v1. Continue
this process for v3, vy, ..., v,. Notice that for each i, the association for v; |1 contributes
no new edges and this process never duplicates an edge. Let |v;| denote the number of
edges associated with v;. Then the number of edges in K is...

n

#of edges = ) _ [vj] = |o1| + |oa] + -+ |opca| +]on| = (=1 + (n—2)+-- - +2+1
i=1

But then we have ! ; |v;| = Z? 1 i. The result will follow if we can show that the

number of edges, Y 1" ; |v;l, is ( U But every edge in K, connects two vertices. The
number of edges must then be the number of ways one can select two vertices to

connect. But this is precisely () = "("2_1). Therefore, we have
n—1 n
, n nn—1)
i=1 il 2 2

But this is exactly what was to be shown.
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OR
We want to show that1+2+---+(n—1) = n(anl) Represent the sum 1 +2+--- 4
(n — 1) as a triangular array of yellow circles. Place a row of n blue dots beneath this
array to create larger a triangular array of dots. The case when n = 5 is illustrated
in Figure 3. Observe that if one chooses any two distinct blue dots, there is a unique

Figure 3: An illustration for the triangular array for n = 5.

yellow dot in the upper portion of the triangular array ‘associated’ to the pair of dots
as illustrated in Figure 3. Vise versa for each yellow dot, there is a unique pair of blue
dots associated to it. That is, there is a one-to-one correspondence between yellow dots
and pairs of blue dots. But then the number of yellow dots, 1 +2 + - - - + (1 — 1), must
be the same as the number of ways of choosing two distinct blue dots, (). Then we
must have

Ei:1+2+...+(n_1):<z):n(nz—1)

But this was exactly what was to be shown.*

OR
Observe that (i +1)? —i? = (> +2i + 1) — i = 2i + 1. The series

i(i—l—l)z—iz:(22—12)—|—(32—22)—|—(42—32)+---+((n+1)2—n2)
i=1

= -1+ (n+1)?
= -1+ n*+2n+1)
=n®+2n

341, Larson. A Discrete Lookat1+2+ - - + . College Mathematics Journal, 16:369-382, 1985.
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Take note also that } ;' ; 1 = n. We also have...

f21+1 221+21_221+21_n+221
i=1

sothat2y ;i= —n+)Y ;(2i +1). Putting these results together, we have...

n

n
Y i=-n+) 2i+1

i=1 i=1
n
=-n+) (i+1)*-
i=1
= —n+ (n* +2n)
=n’+n
=n(n+1)

Therefore, Y i = n(n; 03

Consider the finite geometric series

T+r+r+ "=

Differentiating both sides of the equality yields

E(l+r+r2+---+r”) =1+2r+37 +- - +n""!

d <1 —r”+1> _ —(A=nm+)r—(-1)(1 — _ nrttl— (n+1)r" +1
dr\ 1—r (1—7r)? (1—r)2

We obtain the sum 1 4 2 + - - - + n by taking the limit as 7 tends to 1:
nn+1)(r—1)rm1t

nr"™t — (n+ 1) + 1 LH. .

lim

r—1 (1 — 7‘) r—1 2(1 - 1")
_ n—2
LH nn+1)(n(r—1)+1)r
r—1 2

~ n(n+1)

B 2
where "= denotes that the equality follows by application of 'Hopital’s Rule. But it
then follows that Y i = ")
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(b) Note that

nok 1 2 1 & 1 &
o B = | B e B < v,
k=1 k=1 k=1
Moreover,
nop n(n+1) 1
B = = B A ]
n n 2n

Now since a, — L, given € > 0, there exists N € IN such that forn > N, |a, — L| <
€. Furthermore a; is convergent, the sequence {a;} is bounded. But then so too is
{|ax — L|} bounded. Suppose |ay — L| < M for all k. Now given m € IN, there exists

P € NN such that 4Mn;g';+1) = 2M’”I§;”“>, ie. MmZ(;ZH) < - Notice also that for n > 2,
1+l<141=3

We are now in a position to prove lim, . b, = L/2. Let € > 0 be given. As above,
find N € Nson > N, |a, — L| < €. Find as above P € N so that % < §. Let
M = max{2, N, P}. Then for n > M, we have

bn _ ZZ—ZlkL‘
n

_n+1
2n

M N(N+1) Jnn+1)
n2 2 n2 2
MN(N+1) n+1 e

2n? n 2
_ MN(N+1) 1\ e
_2112+<1+n) 2




Therefore, b, — L/2.
L]

3. Let f be a continuous real valued function on [a, b] and differentiable on (a,b). Prove

x)| dx + (b—a) sup |f'(x)]

a<x<b

Jax [ f(x)

Solution: Since f is continuous on [a, b], f is integrable so that the Mean Value Theorem
for Integrals applies. Then there exists ¢ € (a,b) so that

b
= bia/u f(x)dx
But then we must have
101 =525 [ < 51 [ e
Let [f(y)| = r£a<xb\f x)|. But then for some ¢ € (&, )
W =1 < 1f(y) - £(D)]
=[f'()lly ¢
< |f(0)|[b—al
< (b—a) iugb\f’(X)!
Therefore, we have
W< If(@)]+ (b—a) sup. | (x)]
b
ba ), f@ldx+ (b= a) sup |/
Therefore, max, If(x)] < x)| dx + (b —a) suPb If(x)]. O

4. Suppose f(x+1) = f (x) for all real x, f is real valued, f is Riemann integrable on every
compact interval, and fo f(x)dx=0.

(a) Prove there exists xo such that F(x f f(t) dt >0 for all x.

(b) Show by example that F/(xp) = 0 need not be true.
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Solution:

(a) Note that since fo ) dx =0, that [; f(t) dt + f f(#) dt = 0. This implies

I8 dt:—/xlf(t) dt
/Olf(t) dt:/olf(t+1) dt:/lzf(t) gt —

for all x € R. But

so that f ] ] H fo ) dt = 0 for all x € R. Then for all y € RR, there exists
x € [0,1] such that
=[5
Ly
ly) +1
[ rwa= [ s
y
Define G(x) : [0,1] = Rby G(x) = [ f(t) dt. Note taht G is well-defined since f € R

and that G is continuous by the Fundamental Theorem of Calculus.

Since G is continuous on [0, 1], there ex1sts xo € [0,1] such that G(x) > G(xo) for all
x € [0,1]. Lety € R and let F(x f f(t) dt. If y < 0, then

= [ty ar

:—/yxof(t) dt

=— :/ywmf(t) dt+/LjJ+Tf(t) dt+---+/0xof(t) dt}
[ rlyl+

:—/ fiyar+ [ fna }
= - /f dt+/ £(b) ]
/O F(1) dt — /0 £() dt]

= —(G(x) — G(x))
G(x) —G(x9) >0
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This shows that F(y) > 0 forally < 0. If y > 0, we have
Y
Fly) = [ fit)ar
Xo
1 2 y
= [ pwar+ [ arset [ fe) e
X0 1 Lyj
1 y
_ / £(t) dt +/ £(t) dt
Xo ly]
1 x
_ / £(t) dt +/0 £(t) dt
OX X0
= [ rwyae— [ p a
0 0
= G(x) —G(x9) >0
This shows that F(y) > 0 for all y > 0. But then we must have F(y) > 0 forally € R.
(b) Let f : R — R be given by

-1, x€[0,1/4]
Fx)={1, xe(1/4,3/4]
—1, x€(3/4,1]

Extend f(x) to R as follows: for x € R, let n € Z be the largest element of Z such
that n < x. Then x —n € [0,1). Define f(x) := f(x —n). By construction, it is
clear that f(x 4+ 1) = f(x) for all x € R. On any compact interval f(x) is bounded
(since it is bounded on [0, 1]) and has only finitely many discontinuities. Therefore,

f €Rand folf(x) dx = 1. Then G(x) = [; f(t) dt has a minimum at xo = ;. Now
F(x) = flx/4 f(t) dt > 0forall x > 1/4. But F'(1/4) # 0 because F is not differentiable
at 1/4 since f is not continuous there.

O]

5. Let fu(x) = n(e"z/” —1) for all real x.
(@) Prove limy,_,e0 fu(x) = x2 for each x.

(b) Prove {f,} is equicontinuous on [0, M] for all positive M.

(c) Prove that lim, fol (fa(x))!/3 dx exists and equals 3.

Solution:
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(a)

(b)

(©

Using I’'Hopital’s Rule (with %), we have
x2 2
2 ___pi2
e/ — 1 2¢" . 2
lim f,(x) = lim n(e"z/” —1) = lim ———— R fim T = lim x%en? = 22
n—co n—co n—sco 1 n—c0 1 n—sco
n n2

Therefore for all x € R, we have lim,,_,« fu(x) = x2.

Observe [0, 1] is a compact metric space and f;,(x) = 2xe’. Clearly, f;(x) is continuous
for all x and f;,(x) = 0if and only if x = 0 for all n. [In fact, f;, converges uniformly to
f' = 2x on [0, M], giving another approach to the proof of equicontinuity below.] Now
fi(x) > 0 on the interval [0, M] for all n. Each f, is continuous on [0, 1], monotone
(increasing) on the compact metric space [0, M], and f,(x) converges pointwise to
f(x) := x2 for all x € [0, M]. Finally, observe f,,(0) = 0 for all 7 and f,(x) = 2xe* /" so
that
Froa(x) = 2xe"/ 01D < 2xe® /M = £ (x)

for x € [0, M] and all n. Therefore, f,;+1(x) < fu(x) forall x € [0,1] and n € IN.
Therefore by Dini’s Theorem, f, — f uniformly on [0, M].>> Now [0, 1] is a compact
metric space, f, € C([0,1]) for all n, and { f,} converges pointwise to f on [0, 1] by (a).
Therefore, { f,,} is equicontinuous on [0, 1].

By the work in (a) and (b), f, — f uniformly on [0, 1]. Since f, f, € R([0,1]), using the
continuity of /x and uniform convergence, we have

lim 1(fn(x))1/3 dx = 1lim(fn(x))1/3 dx

n—oo Jo 0 n—oe
1
_ : 1/3
= ), (Hm fi(2))7 dx
1
_ (X2)1/3 dx
0
1
_ 1 x2/3 e — x5/3 _ §
0 5/3], 5

O

%Dini’s Theorem: if X is a compact metric space, { f, } is a monotone sequence of continuous functions on
X which converges pointwise to a continuous function f, then the convergence is uniform. Proof. Let € > 0
and define g, = f — f,. Without loss of generality, assume { f, } is monotone increasing, i.e. f,(x) < f;11(x).
Let E;, = {x € X: gu(x) < €}. Each gy is continuous and hence E, is open (Ej, is the preimage of an open
set under g,). Since {f, } is monotone increasing, {g, } is monotone decreasing, we have E,, C E, ;1 for all n.
Since f;, converges pointwise to f, { E, } is an open covering of X. By compactness, there is a finite subcovering
{En}n=1,.,N-Butas E; C E, 1, we must have Ey = X. Thenif n > N and x € X, then |f,(x) — f(x)| < e.
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6. The map (x,y) — (e*sinx — x?y,ycos x — e* + 1) maps the origin to the origin. Show
that the inverse map G exists in a neighborhood of the origin and compute

d

pn foG(—t,t?) and 4

T foG(—t1)

t=0

t=0

when f(x,y) = x +2y.

Solution: Let F(x,y) = (f1, f2), where fi(x,y) = e*sinx — x%y and f»(x,y) = ycosx —
e+ 1. Now

2 1 0

-1 1

e‘cosx +e*sinx —2xy —x
—ysinx —e* cos x

J£(0,0) =

14 3
(0,0)

Therefore, the Inverse Function Theorem applies to F(x,y) at (0,0). Then G := F~! exists
in a neighborhood of (0,0). Now

1 Ccos X x?
-1
pG=DF"= Jr(x,y) <4sinx+e" e* cos x + e¥ sinx—2xy>

Let ¢ : R — RR? be given by g(t) = (—t,1?). So ¢'(t) = <2t

f oG o g. Note that

). Therefore, f o G(—t,#?) =

f(G(g(0))) = f1(G(0,0)) = f(0,0) = (1 2)| =(1 2

(0,0)

Furthermore, G'(g(0)) = G'(0,0) = G (1)> and ¢'(0) = ( 01>. Finally,

= (1 2) G 2) <_01> = 3.

Now let ¢ : R — R? be given by ¢(t) = (—t,t) so that ¢'(t) = <_1

d
a(fOGOg)

. Then as above,

using the fact that ¢/ (t) = <_11> ,

2 (foGog)

LG9 ()=
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August 2009

1. If F; and F; are closed subsets of R! and dist(F;, F,) = 0 then F; N F, # @. Prove or give
a counterexample.°

Solution: Let F; = Nand F, = {n+ 1: n € N}. We have F- = U_By/2(n/2) is open
since each By /,(n/2) is open. Therefore, F; is open. We know also

1 1

PZCZUBd< 5
n=1

% This is clearly open being the union of open sets. Therefore, F; is

closed. Now

where d =

diSt(Fl,Fz) = inf{d(fl,fz)i f1 S F1,f2 S Fz} = inf{zlni ne IN} =0

Therefore, dist(F;, F,) = 0. However, F; N F, = @. O

2. Newton’s method for finding zeroes of a function f : R! — R! is based on the recursion

formula fln)
Xn
xﬂ+1 = xn - f/(xn)/ Z 1

Show that if f € C!, f(a) = 0 and f'(a) # 0, then there exists a § > 0 such that if
|x1 —a] < ¢ then x, — a. (Suggestion: Use the Mean Value Theorem.)

Solution:
3. Let f: [0,00) — [0,00) and for i > 0 and k > 1 set
Mi(h) =  su x), me(h) = inf ).
k( ) (k—l)h£x<khf( ) k( ) (kfl)h§x<khf( )
Let

U(h) = Y My(h)h, L(h) =Y my(h)h.
k=1 k=1
We say that f is directly Riemann integrable if U(h) < oo for all h > 0 and

lim(U(h) — L(i)) = 0.

36The statement is true if one of F;, F> is compact. To shows this, use contradiction. We know there are
sequences Xy, Y, so that d(x,,y,) — 0 (using the fact that d(F;, F,) = 0. But then x, — x € F;. Use the triangle
inequality to show thatd(x,F,) =0sox € F, and x € F.
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Recall f is improperly Riemann integrable on [0,00) if f is Riemann integrable on [0, a] for
every a > 0, and

lim /ﬂf(t) dt < oo

a—o0 Jo
(a) Show that if f is continuous and nonincreasing, then f is directly Riemann integrable

whenever f is improperly Riemann integral on [0, c0).3”

(b) Give an example of a continuous function f which is improperly Riemann integrable
on [0, c0) but not directly Riemann integrable.

Solution:

) If fis 1mproper1y Rlemann integrable, then given € > 0, there is an A > 0 such

that lgn / f(t)dt < E Now partition [0, A] into intervals [x;_1,x;] fori =1,...,n.
a oo A

Since f is nonincreasing, M; = f(x;_1) and m; = f(x;) for each i. Furthermore

since f is continuous, there exists §; > 0 such that for |x; — x; 1| < &1, we have
|f(x1-) — f(xz-,1)| < e Letd = 1’1’111’1{(51,1/(214)} Then for |x1- — xi,1| <9,

;(M m;)Ax; < Z —m;)Ax; + E

i=1
- i(f(xifl) — f(x;))Ax; +§
< f<f<xf—1> — fx))o+ 5

<Y (i~ Fx) g + 5

Therefore, lim,_,o(U(h) — L(h)) = 0 so that f is directly integrable.
b) Let f(x) be the function given by

il X € n—in—kL
fx)=445 ! 2n2’ 2n?

0, otherwise

37This notion appears in Renewal Theory.
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4. Suppose f : [0,00) — [0, 00) is such that for any sequence a, of nonnegative terms we
have

oo oo
Y ay <oco— Y flay) <o
n=1 n=1

Prove that
lim sup f(x) < oo
x—0+ X
Solution: Suppose lim sup fx) = oo, then lim ( sup f(x)) = oo. Therefore for all
x—0* X 020 \ gey<s X

n € NN, there exists x,, < % such that %x:) > n. But then f(x,) > nx,, implying

that f(x,) > n-% = 1. Butas ¥ 1 diverges, by the Comparison Test ¥ f(x,) di-
verges. But this contradicts the fact taht ) x, < ) %, since ) % converges. Therefore,

lim sup f(x) < oo, O
x—0% X

5. Let f be continuous real valued function defined on the unit square and for each
0 < x < 1let fy be function on the unit interval defined by f,(y) = f(x,y). Prove that for
any sequence x, in [0, 1] there is a subsequence n; such that f;, converges uniformly on

0,1].

Solution: Note that f is continuous on the set [0,1] x [0, 1], which is compact, so that
f is bounded. But then it must be that {f(x,)} is pointwise bounded. Let e > 0 be
given. Since f is continuous, there exists d, > 0 such that for |y; — y2| < Jy, we have
|f(x,y1) — f(x,y2)| < €. Choose 6 = min,{dy,}. [Note only finitely many are required
since [0, 1] is compact.] Then

ly1 —v2l <0 = [fr,(1) — fr.(2)| = f(xn,y1) — f(xn, y2)| <€

for all n € IN. But then { f;, } is equicontinuous. But since [0, 1] is compact, by the Arzela-
Ascoli Theorem, there exists a uniformly convergent subsequence of { fy, }. O

6. If ¢ is a real parameter prove that x” + x + ¢ = 0 has a unique real root and that this root
is a differentiable function of c.

Solution: The function x” 4 x + c is odd so it has at least one real root by the Intermediate
Value Theorem. Note also that %(ﬂ +x+4c¢) = 7x°+1 > 0, implying x” + x + ¢ is
increasing. But then this root must be unique. Define

Fx)=[_x , x+x+c]
A B



We have det A =1 > 0,det B = 7x® + 1 > 0 so that det A, det B are invertible. Therefore
by the Implicit Function Theorem, we can solve for x in terms of ¢, i.e. we can find g € C!

with F = [¢(c), c]. Therefore, x” + x + ¢ has a unique real root which is a differentiable
function of c. O
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January 2010

1. Let X be a connected metric space. Given two points p,q € X and a number € > 0, prove
that there exist an integer n > 0 and points ag, a1, ...,a, € X such thatag = p, a, = g, and

d(aj,aj_1) <e forallj=1,2,...,n

Solution: Since X is a connected metric space, the only set which is both open and closed
in X is X itself. Let C, - denote the set of elements x € X such that thereisann € NU {0}
and a sequence {p,} such that py = a, p, = x, and d(p;, pi_1) < efori =1,2,...,n. Let
€ > 0 be given and choose a € X. We show that C, ¢ is nonempty: a € C,¢ as choosing
n =1and py = a and p; = a certainly satisfies the condition. We need only show that C, ¢
is clopen so that X = Cge.

To see that C, ¢ is open, we need find a €’ > 0 such that B(t,€") C Cge. In fact, we show
that the same € as assumed above suffices. That is for any y € B(t,€), we need show that
Y € Cype. Ast € Cype, there is a sequence {p, } such that pg = a, p, = t,and d(p;, pi_1) < €
fori =1,2,--- ,n. But then the sequence {4, p1,p2, ..., pn = t,y} is a sequence meeting
the condition so that y € C,¢. Therefore, C, ¢ is open.

To see that C, ¢ is closed, let t be a limit point of C;.. Then for each € > 0, there is
ac € Cye such thatd(c,t) < e. Asc € Cgp, there is a sequence {p,} such that py = a,
pn = ¢, and d(p;, pi—1) < € fori = 1,2,--- ,n. Then it is immediate that the sequence
{a,p1,p2, ..., pn = ¢, t} is a sequence “connecting" 2 and ¢ satisfying the condition. This
shows that t € C.

Therefore, C,¢ is clopen so that C; = X. This holds for all 2 € X so there is a path
satisfying the condition of problem statement for any two points x,y € X. O

2. Suppose that f : (0,1] — R is a bounded continuous function such that for every t € R
the set {x € (0,1] : f(x) = t} is finite. Prove that f is uniformly continuous on (0, 1].

Solution: We show that lim, o f(x) = [ < co for some I. Suppose that lim, o f(x) does
not exist. Since f is bounded, there exist sequences {x,}, {y.}, tending to 0, such that
f(xy) = aand f(y,) — B witha # B. Without loss of generality, assume that & < . There
exists € > 0 such that |f(y,) — «| > € as y, — 0. Since between any two real numbers,
there is another real number, we know there is a t such that « < t < B. So there is a
N € N such that forn > N, f(x,) < t < f(ya). By the Intermediate Value Theorem,
for each n > N, there exists w, such that f(w,) = t. Using this, define a sequence {w, }
such that f(w;) = t. But this is a contradiction since {x € (0,1]: f(x) = t} is finite. Then
lim,\ o f(x) = I < oo for some [. Define

_Jfx), x€(01]
g(x) {z, 0
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By the work above, g(x) is continuous on [0, 1]. However as g(x) is continuous on the
compact set [0, 1], it must be that g(x) is uniformly continuous. But then f(x) is uniformly
continuous on (0, 1]. O

3. Prove or disprove the following: if a function f : (—1,1) — R is differentiable on (—1,1)
and f'(0) = 0, then for every é > 0 there exists € > 0 such that

f(8) = f(s)

r— <6 whenever —e <s<t<e.

Flx) = {xzsin (i), x#0

Solution: Define

0, x=0
We have
_ 2 . .
f’(O) = hmw = limM = lim x - sin X =0-1=0
x—0 x—0 x—0 X x—0 X

[For the last limit, either use the fact that lim,_,o 2* = 1 and lim,_,ox = 0, or prove
p

directly using the Squeeze Theorem: since |sinx| <1, —x < xsin(1/x) < x which gives

lim(—x) < limxsin(1/x) < lim x
x—0 x—0 x—0

which gives the required limit.]
This shows f/(0) = 0. For nonzero x, we can compute this directly. Putting this together

gives
f(x) = {2““‘ () -es(5) w20

0, x=0
Then f is differentiable and f'(0) = 0.
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1
Now defined =1/2,t, = and s, = ——. We then have

2 + 17 2mn’
2
1 , ) 1\%.
———— | sin(2nn+ 1) — ( 5= | sin(27n)
f(H) = fs)| _ | \2mnt " \2mm
t—s N 1 _ 1
2nn+ 1 27

(3

1
2 12, n_
(270 + ) (27tn + %) 27tn

sin 1
n 2nn

1 '27'm+%
n

sin(1/n)  2mn?
1/n 27tn? +1

which converges to 1 as 1 tends to infinity. [The left limit is equivalent to lim,_, $0% =1
and the right limit is a rational function in n whose limit as n — oo is obvious.] But then

M>5:1/2. O

for large enough n, —e <s <t < ¢, but P—

4. Let f be a bounded real-valued function on [, b] with a discontinuity at ¢ € (a,b). Let
«(x) be monotonically increasing on [a,b] with a(c—) < a(c) < a(c+). Prove that f is not
Riemann-Stieltjes integrable with respect to « on [a, b].

Solution: Suppose f € R(a). Then given € > 0, there exists a partition P such that
U(P, f,a) — L(P, f,a) < €. Let P* = P U{c}, a refinement of P by adding the value
c. Since this is a refinement, U(P*, f,a) — L(P*, f,a) < €. Since f is discontinuous
at ¢, choose € > 0 such that for all 5y > 0, there is a x¢ such that |xf —c| < Jp but
[f(xf) = f(e)| = /€. As a(c—) < a(c) < a(c+), we know a is discontinuous at c.
Using discontinuity again, choose €, > 0 such that for all §, > 0, there is x, such that
|y — ¢| < 8 but |a(xy) —a(c)| > \/€q. Sincea < ¢ < b, there existk € {1,2,...,n} such
that x;_; < ¢ < x;. Choose € = min{ey, €, }. Then for 6* = min{x, —c,c — x,_1}, there
exists x* such that |[x* —¢| < §* and so |f(x*) — f(c)| > Ve and |a(x*) — a(c)| > fe.
Therefore,

n
U(P*, f,a) = L(P*, f,a) = ) (M; —m;) A > MiAwy — g = (My — mp) Ay > Ve e =g,
i-1

a contradiction. Therefore, f ¢ R(«) on [a, b]. O
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5. Give examples of sequences of functions { f,,} and {g,} on R such that {f,} converges
uniformly, {g,} converges uniformly but { f,g, } does not converge uniformly on R.

Solution: Let f,(x) = gu(x) = x + 1. Clearly, {f,(x)} converges uniformly to the function
f(x) = x: given € > 0, choose N > 1/€ and then for n > N,

)~ fx) = 1 <

for all x € R. Then {g,(x)} converges uniformly to g(x) = x as well. Now {f,9,} = {(x +

1/n)?}. If this were to converge uniformly, it must necessarily converge to f(x)g(x) = x2.

But take € = 1 and x = n. Then

2x 1 2n*+1
)~ Fg] = [+ 2 Ll <[ 2L
so that { f,g, } cannot converge uniformly to fg. O

6. Let ¢, 1 : R® — R be continuously differentiable functions and define F : R® — R3 by

F(x,y,2) = (¢(x,¥,2), 9(x,,2),*(x,¥,2) + ¥*(x,y,2))

(a) Check whether or not the Inverse Function Theorem applies to F at any point (xo, Yo, zo),
i.e., check if F satisfies the hypothesis of the Inverse Function Theorem at any point
(x0, Y0, 20)-

(b) Suppose that F(7) = b for some points ,b € R3. Explain geometrically why F does
not have an inverse function from an open set V C RR? containing b to an open set
U C R3 containing 4.

Solution:

(a) Cleary, F € C!(IR®) since ¢, ¢ are continuously differentiable. We have

Px Py ¢=
Jr(x,y,z) = det Py Py P,
2(ppx + pipx) 209y + ¢ipy)  2(pz + Pypz)

= Z‘leljy‘P‘PZ + 24’%’#4’2 + 2¢y¢24’4’x + Z‘wazlplpx + 24’2%47%
+ 2099y — 2020y PPx — 200y PPx — 20292y

= 20x: Yty — 29y PxPpPz — 29y Yx Pz
=0

Then Jr(x,y,z) = 0 for all (x,y,z) € R3. But the the Inverse Function Theorem does
not apply to F at any point in R3.
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(b) The Inverse Function Theorem requires that for a sufficiently small neighborhood U of
@ € R3, F(U) is an open ball about F(@) = b. Suppose ¥ € im F with ¥ = (x,v, g(x,y)).
For (x,y) € R?, there is at most one z with (x,y,z) € im F because z = g(x,y). But
then for e > 0, (x,y,z + €/2) € B¢(X) but is not in im F. But then F contains no open
ball, contrary to the Inverse Function Theorem.

O
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August 2010

1. Suppose that f : R — R is a function such that f(f(x)) = x for all x € R. Prove that
there exists an irrational number such ¢ that f(¢) is also irrational.

Solution: Suppose that f(x) = f(y). Then as f is a function we know

x=f(f(x)) =f(f(¥) =y

so that x = y and f is an injective function. Suppose f(x) were never irrational, then f is
an injection from R (uncountable) to a countable set Q (countable), a contradiction.

OR

As f(f(x)) = x, we know that f(x) is invertible; in fact, f(x) is its own inverse. So
f(x) is a bijection. If f never took an irrational value, then there is a bijection from R
(uncountable) to a countable set QQ, a clear contradiction. O

N
5

2. H d hiee subsets A, B, C of the real line R suchthat ANB=ANC=BNC=®Yand
A = B = C = R. Prove that your sets satisfy these properties.*®

Solution: We use a lemma: If p, g are distinct primes, then ,/pq is irrational. Suppose it
were rational, then there are m,n € Z withn # 0 and (m,n) = 1 such that

m
VP =
But then pg = ’Z—zz This occurs if and only if n?pg = m?. As p | n?>pq then p | m? so that
p | m. But then p | m2. Now as p? | n®pq it must be that p | n?q so as p { g, we know p | n?

so that p | n, a contradiction as (m,n) = 1. Now let

A={a+/p|lacQ}
B={b+q|becQ}
C={c+Vr|ceQ}

for distinct primes p, g, r. It suffices to show that A, B are disjoint. Suppose they were non
disjoint, then there are a,b € Q such thata + ,/p = b + /7. But then

a+.p=b+.1q
a—b=./g—/p
(a—b)>=q+p—2ypq
a—b)?—
( b)2 1XP _ g

3You can even be more ‘extreme’. For example, it is possible to partition [0, 1] into uncountably many,
uncountable sets.
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But then ,/pg would be rational, a contradiction. Therefore, the sets are pairwise disjoint.
We need see that these sets are dense in R. This is obvious as they are an invertible linear
transformation on Q given by q — q + \/p,q + /4,9 + /7, respectively, and Q is dense
in R. Another way of seeing this fact is to note that there is a rational sequence in R, s,
converging to the point xo — /p for all xo € R. But then s, + ,/p € A and this sequence
converges to (xo — /p) + /P = xo € R. But then every point of R is a limit point of A so
that A = R. The density follows mutatis mutandis for B and C. O

3. Let X and Y be metric spaces. Suppose that f : X — Y has the following property: for
any continuous function g : Y — IR the composition g o f is a continuous function from X
to R. Prove that f is continuous.

Solution: We show f is continuous by showing the preimage of closed sets are closed, i.e.
find a continuous function g such that f~1(E) = (g o f)~1(0) (which is closed since g o f is
continuous and {0} is closed), where E C Y is a closed set. Let E C Y be closed. We want
fUE) = (g0 f)1(0), ie. f1(E) = (fTog~1)(0). Thisis exactly f~1(E) = /(g 1(0),
i.e. g71(0) = E. Define ¢(y) := inf{d(z,y): z € E}. Then g(y) = Oif and only ify € E = E.
[Either y € E and hence ¢(y) = 0, or y is a limit point of E so that y € E/ C E and g(y) = 0.
In either case, y € E.] But E is closed so that E = E. Therefore, g(E) = 0so that g~1(0) = E
and g is continuous. But then f~1(E) = (go f)~1(0) is closed so that f is continuous.

OR

Let g : Y — R be the function given by g(y) = d(y, f(x)), where x € X and d is the
metric on Y. We need show that g is continuous. Lete > 0 and y € Y. Choose é = €/2 so
that for |y — a| < 6, we have

8(y) —g(a)| = ld(y, f(x)) —d(a, f(x))| < d(y,a) <e
But then g is continuous on Y.
By assumption, we know that g o f is continuous. Let € > 0, then we get a ép > 0 such

that |gf(y) — gf(x)| < e fory € By, (x). But
18f (y) = gf ()| = 1d(f(y), f(x)) —d(f(x), f(x))] = |d(f (y), f(x))]

Taking § = min(e, dy), we know d(f(y), f(x)) < e. But then f(x) is continuous at x. But
the choice of x € X was arbitrary so that f(x) is continuous on all of X. O

4. Suppose that f : R — R is a function such that f’(x) exists for all x € R and
f'(—=x) = —f'(x) for all x € R. Prove that f(—x) = f(x) forall x € R.

Solution: Let ¢(x) = f(x) — f(—x). Then g is differentiable since f is. Furthermore,
g (x) = f'(x) + f'(—x) = Osince f'(—x) = —f'(x) for all x € R. But then g is constant.

320



Now ¢(0) = f(0) — f(0) = 0. Then g(x) = 0 for all x € R. But g(x) := f(x) — f(—x) so
that f(x) = f(—x) forall x € R. O

5. Give an example of a bounded function f : [0,1] — R such that
e f is not Riemann integrable on [0, 1]
e The function g defined by g(x) = sin f(x) is Riemann integrable on [0, 1]

Prove your claims using the definition of the Riemann integral.

Solution: Define the function

Then g(x) = sin f(x) is

. (1
¢(x) = sin f(x) = {sm <x> , x€(0,1]
0, x=0

Clearly, f ¢ R on [0, 1] since f is not bounded. We show that ¢ € R on [0,1]. Lete > 0.
Now g(x) is continuous on [€, 1], so there exists a partition, say P, of [¢,1] such that
U(P1,8) — L(P1,8) < €. Let P, be any partition of [0, €. We know U (P2, ¢) — L(P2, g) =
Y.(M; — m;)Ax; < 2e since |g(x)| < 1 and the length of the interval is €. Now P = P; U P,
is a partition of [0,1]. But we have U(P,g) — L(P,g) < € +2¢ =3e. Theng € R[0,1]. O

6. Let f : R> — R3 be a mapping defined by

Yy1=x1+x2
Yr=xX2—Xx1

_ .5
Y3 =Xx3

(a) Determine all points a € R® at which f satisfies the assumptions of the Inverse
Function Theorem.

(b) Is f an open mapping? Prove or disprove.

Reminder: A mapping f : R3 — R3 is open if (W) is an open subset of R3 for every open set
W C R

Solution:
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(a) Clearly, f € C!(IR?) since all partials exist and are continuous. We have

1 1 0 11
J(x1,x2,x3) =det [ =1 1 0 :5x§-det< >:10x§
0 0 5xi -t
3

Therefore, the Inverse Function Theorem applies for all (x1,x2,x3) € R? such that
X3 7é 0.

(b) The map f is an open mapping. Set x1 + x = y;1. Then we have

X1+ X2 =11
X1 =Y1— X2
X1=Y1—-Y2—Xx1
— 1

=T

Repeating this process for xp — x1 = y» gives xp = % We know also that

X3 = y3 so that x3 = yzl,)/ >, But then f(x1,%2,x3) = (y1,Y2,y3) has a unique solution
(x1,x2,x3) = f~Y(y1,y2,y3). This shows that f has a continuous inverse f 1. Since f~!
is continuous, f(U) is open in R® whenever U is open in R3. But then f is an open
map.

O]
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January 2011

1. Let X, Y be metric spaces and f : X — Y be a function. Prove that f is continuous on X
if and only if f~1(E) C f~!(E) for every E C Y.

Solution: Assume that f is continuous on X. Let x € f~1(E) = f~}(E) U (f_l(E))’, where
(f1(E))" denotes the set of limit points of f~!(E). If x € f"}(E), then x € (f! (E)) SO
that f~1(E) C f"Y(E) C fY(E)as E C E. Butthen f~1(E) C fY(E). If x ¢ f1(E),
then x € (f~1(E))’. Then for each r > 0, there exists y € B,(x) N f~'(E) such that y # x.
Since f is continuous, for every € > 0, there exists 6 > 0 such that if d(z, w) < ¢, then
d(f(z), f(w)) < €. Then thereis y € Bs(x) N f~1(E) such that y # x and d(x,y) < J. But it
must then be that d(f(x), f(y)) < €. Then f(x) € Be(f(x)) NE with f(y) # f(x) (since f
is a function). But this shows that f(y) € E' C E implying f~1(E) C f~!(E).

Now assume that f~1(E) C f~!(E) for all E C Y. To show f is continuous, we show
that the preimage of closed sets are closed. Let C C Y be closed. Note that f~1(E) C
f~YC) = f1(C) (C = C since C is closed). But then f~1(C) C f~1(C) so that f}(C) =
f~1(C). But then f~1(C) is closed so that f must be continuous.

OR

Suppose that f is continuous. Let x € f~1(E), i.e. x € f”(E) orx € ffl(E)’. If
x € f~1(E) then observe f(x) € Eso f(x) € E C E. Therefore, f_ (E) C f~1(E). Now
suppose that x € f~!(E)’. Then all neighborhoods of x intersect f ~!(E) ata pomt y distinct
from x. But f"}(E) C f1(E ) so that all neighborhoods of x intersect f~ ( ) at a point
distinct from x so that x € f~1(E)’. But as f is continuous and E is closed, f ~1(E) is closed.
Hence, f~1(E) contains all of its limit points. Therefore, x € f~!(E). This shows that
f~Y(E) C f~1(E). Note that we are in a metric space so one could produce a sequence
Yn — x as x is a limit point. Then nh_r)r.}o flyn) = f(&l_r)r.}o Yn) = f(x) (here we have used the

continuity of f) so that x € f~1(E).
Now suppose f~1(E) C f~1(E) forall E C Y. Let E C Y be closed. Then E = E. We
want to show that f is continuous, which we do by showing the preimage of closed is

closed. But f1(E) C f~X(E) C f"Y(E) = f"Y(E) so f~1(E) = f}(E).
OR

Assume that f is continuous and U C X. We need only show that if x € U, then
f(x) € f(U). Let V be a neighborhood of f(x). Then f~!(V) is an open neighborhood of
X containing x. Then f~!(V) must intersect U at some point y. But then V intersects f(U)
at £(y) so that £(x) € F(U).

Now assume that for all V C Y, we have f~1(V) C f~1(V). We show the preimage of
closed sets are closed. Let V C Y be closed. Now f~(V) c f~1(V) C f~1(V) = f1(V)
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so f~1(V) = f~1(V). Therefore, f is continuous. O

2. Prove that the sequence x,, = nsin(27men!), n > 1, is convergent and find its limit. Hint:

n>1.

1
Use the fact thate = Y/ TR where 1, < el

Solution: We have e = Y57 3. Then

1 1

=1

,+ + j+ <114 +,+ +—

3l 31 A1) | nln 172

We also have

1
I L
=ynl \n+1 1—34 nln+1) n nn

sowecanwritee =)} _, % + 1, where r,, < % forn > 1andr, — 0asn — oco. Therefore,

k=0

"ol
= nsin ( Z k— 27m!rn>
nonl n!
=mnsin | 27T Z iz cos(2mtnlr,) +ncos | 27 Z T sin(27tnlry,)

k=0

"1
nsin(2mnle,) = nsin (27’(;1! ) gt rn)

Now as Y}_, % is an integer for each value of k, the sum is an integer. Using the fact that
sin(27tm) = 0 and cos(27tm) = 1, we know that the above sum is simply nsin(27tn!r,).
We know that sin is increasing on [0, 27”] for n > 2. Now

. 27 . . (21
nsin ([ —— | < nsin(2nnlr,) < nsin | —
n—+1 n

and then
sin (rzfl) _ sin (Tzfl) - sin(27tn!r,) _ sin (27”)
1 1 1 1
n+1 n n n
nx

Then taking the limit as n — 0 and using the fact that lim,_,o St 7 = 1, the Squeeze Theo-
rem says that the limit must be 277. O

3. Let f : R — R be a differentiable function such that |f’'(x)| > 1 for all x € R. Prove
that f is one-to-one and onto R, and that the inverse function f~! : R — R is differentiable.
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Solution: Suppose f'(a) < 0 < f'(b) for some a,b € R. Then by the Intermediate Value
Theorem for Derivatives, there exists x € (a,b) such that f'(x) = 0, a contradiction as
|f'(x)] > 1forall x € R. Then |f'(x)| # 0 for all all x € R. Since we can replace f'(x) by
—f'(x), without loss of generality, assume that f’(x) > 0 for all x € R. Then f must be
strictly increasing. Then f is a bijection, i.e. f has an inverse f~! : R — R.

L ) wey 1 1

IS TG A B0 W FW =) T
u—y

which is well defined as f'(y) # 0. [Note, u := f~1(y) and y := f~!(x).] Therefore, f ! is

differentiable. O

4. Suppose f : R — R is continuous. Show that

1 5 gy — 1
| Feaax = 5@
for some ¢ € [0,1].

Solution: We use the following lemma: If f(x),g(x) are continuous functions on [a, b] and
g(x) > 0on (a,b) then thereisa ¢ € (a,b) such that

b b
| Fg dx = £@) [ gx) d

To see this, using the continuity of f(x),g(x) on [a,b], we know that f(x)g(x) is continuous
on [a,b]. Then f(x)g(x) is integrable on [a, b]. As f(x) is continuous on [a, b] (which is a
bounded interval), then f(x) is bounded on [a, b]. Suppose m < f(x) < M for all x € [a, ]].
So as g(x) > 0, we know

mg(x) < f(x)g(x) < Mg(x)

/ dx</f dx<M/ dx

If [ ab g(x) dx = 0, as g(x) > 0 and is continuous, the result is trivial. Suppose that the
integral is nonzero, then

So that

<k f e <
The continuity of f(x) gives { € [a, b] such that
J; f(x)g(x) dx
[ g(x) dx
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But then this immediately implies that fabf(x)g(x) dx = f(&) fgbg(x) dx.
To obtain the desired result, simply take g(x) = x2, we have ¢ € [0, 1] such that

s = 1@ [ ax

Observe f is continuous on [0, 1], a compact set. By the Extreme Value Theorem, there
exists {1, &> € [0,1] such that f(&1) < f(x) < f(&) forall x € [0,1]. Say m = f(¢1) and
f(&2) = M, sothatm < f(x) < Mforall x € [0,1]. Then

m 1 1 1
— = / mx? dx < / f(x)x2 dx < / Mx? dx
3 0 0 0

sothatm <3 fol x?f(x) dx < M. By the Intermediate Value Theorem, there exists ¢ € (0,1)
so that f(¢) = 3f01 x2f(x) dx. But then

O]

5. Let f1 : [0,1] — R be a continuous function. Consider the sequence of functions defined
on the interval [0, 1] as follows: forn =1,2,...,

fusa(x) = cos fu(x).

Prove that { f,,} contains a uniformly convergent subsequence.

Solution: The set [0, 1] is compact. The function cos x is continuous on R, the function
f(x) is continuous on [0, 1], therefore the composition cos f(x) is continuous on [0,1]
(hence uniformly so). Hence each f,,11(x) is uniformly continuous. Furthermore as f;(x)
is continuous on [0, 1], there isa M € R such that |f(x)| < M for all x € [0,1]. As cosx
is bounded, this shows that |f,(x)| < max{M, 1} for all x € [0,1]. Then the sequence
{fn(x)} is uniformly bounded. We need only show that { f,(x)} is equicontinuous to see
that the sequence contains a uniformly convergent subsequence. However via the Mean
Value Theorem for any [x,y] C R, we have

|cosx —cosy| = |g'(c)] |x —y| < [x —y|
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for some ¢ € [a,b]. However, g(x) = cos x so that [¢/(x)| = | — sinx| = |sinx| < 1 for all
x € R. Lete > 0. As f1(x) is continuous on [0, 1], it is uniformly continuous. So there is a
d > 0 such that |f1(x) — fi1(y)| < € for |x — y| < J. But then observe that via induction

() = o] < fua(0) = faa (W) < - < |Ai(x) = Auly)] < e

for all x,y € [0,1] such that |x — y| < . Therefore, we know that { f,,} is equicontinuous
and pointwise bounded on the compact interval [0, 1]. By the Arzela-Ascoli Theorem, { f, }
contains a uniformly convergent subsequence. O

6. Let f : R — Rand g : R? — R be continuously differentiable. Suppose that none of the
derivatives f’, D1g, D»g attains the value 0. Define h = (hy, hy) by

h(x,y,z) = f(x) +8(v,2)
h(x,y,z) = f(y) — g(x,2)

Prove that h(W) is an open subset of IR? for every open set W C R3.

Solution: Notice that i € C!(IR®) since f, g are continuously differentiable.

h/:< f'x) Digly,2) ng(y,2)>
—Dig(x,z)  f'(y)  —Daglx,2)

Leth = (h1,h2,z) : R — R, Then

fi(x) Dig(y,z) Dag(y,z)
Ji(x,y,z) = det —Dl%(x,z) f’(()y) —ngl(x,z)

_ f'(x) D1g(y, z)
= det (—Dlg(x,Z) f'(y) )

= f'(0)f'(y) + Dig(x,2)D1g(y,2)

Since f1, D1g, D> are never zero, they are always positive or always negative. [If they
switched sign they would have to vanish at some point as they are continuous.] If J; were
to vanish, then it must be that f'(x)f'(y) = —D1g(x,z)D1g(y, z). But since f'(x) and f'(y)
have the same sign, f'(x)f'(y) > 0. This holds mutatis mutandis for D (x, z) and D1g(y, z).
But then then f’(x) f'(y) and —D1g(x,z)D1g(x, z) have opposite signs and cannot be equal.
Thus, J; never vanishes. In fact, J; > 0as f'(x)f'(v), D1g(x,y)D1(x,z) > 0. The Inverse
Function Theorem then applies to /z for all (x,y,z) € R®. Therefore, /i is an open mapping.
Then it must be that /1 is open (for if it were not then neither could / be open). Then /(W)
is open for all W C IR® open subsets. O

327



August 2011

1. Suppose A is an infinite bounded subset of the real line R. Prove that there exists a set
B C A which is neither open nor closed in IR.

Solution: Since A is infinite and bounded, by Weierstrass Theorem, A has a limit point
x € R. Choose a sequence {s,} of elements of A such thats, — x. Define B := {s,}.
Clearly, B C A. Now B cannot be closed since x ¢ B and x is a limit point of B. But B
cannot be open since it consists solely of singletons. O

2. Let X be a metric space. Suppose that f : [0,1] — X is continuous. prove that there
exists an integer n such that for any choice of the partition 0 =tg < t; < --- <t, =1we
have
in di tiiq, ti]) <1
12’?71 iam f([ti-1, £i]) <

Reminder: diam E = sup{d(a,b): a,b € E}.

Solution: Note that f(x) is uniformly continuous since it is continuous on a compact set.
Then for € = 1, there exists 6 > 0 such that for all x,y € [0, 1] with |x — y| < §, we have
d(f(x), f(y)) < 1. Choose n € N such that1/n < 6. Wehave} ! ;(t;—t_1)=1-0=1
(note this series telescopes). Then there exists a i such thatt; —t;_1 < 1/n < é. Therefore
ifx,y € [ti_1,ti], wehave d(f(x), f(y)) < 1. This shows that minj <;<, diam f([t;_1,t;]) <
1. O

3. Let f : [1,e¢] — R be a continuous function. Prove that

</18f(x) dx)z < /;xf(x)2 dx

Solution: Observe

1/2

<(f 2l )™ ([ vaseor o)
NERED)

= (loge —log1)*/? </16 xf(x)? dx> v

= (/jxf(x)2 dx>1/2

where the first inequality is Holder’s Inequality. Taking squares yields the result.

/;f(x) dx
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OR

Define (f,g) := [{ f( ) dx. For r € R, we have
(rf.8) = / rf(x dX—ﬁ/f ) dx =1(f,g)
(f.8) = L/f dx—ﬂg<v<>w—wgﬁ
(Famg) = [ +hx)g(x) dx = [ fx)gl dx+ [ h(xg(x) dx = (f,g) + (hg)

() = [ FGRdx =0

Since f(x) is continuous on [1, ], so too is f(x)? continuous on [1,e]. Then (f, f) = 0if and
only if f2(x) = 0 if and only if f(x) = 0 on [1,e]. Therefore, (-, -) is an inner product. By
Cauchy-Schwartz, |(f,¢)1* < (f, f) - (g, g). Now if i(x) is any positive function,

(/f dx> |(f/h, h)\ < (f/h, f/h) - (hh) /f(x /

x

Jih yzdy
/ [ ()2 ]f(x) dax.

Taking h(x) = %, we have

The result then follows. O
4. Let { f,} be a sequence of Riemann integrable (with respect to dx) real-valued functions

defined on [0, 1]. Suppose that the functions g, (x) = /xf,;(x) form a uniformly convergent
sequence. Prove that the limit
1
lim /0 Falx) dx

exists.

Solution: We show that { fo fu(x dx} is Cauchy. Since {g, } is uniformly convergent, for
all € > 0, there exists N € IN such that for n,m > N< |gu(x) — gm(x)| < €/2, i.e.

[Vx(fal(x) = fu(y))] <

N ™
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Then

‘/Olfn(x) dx — /Olfm(x) dx

Therefore, { fol fau(x) dx} is Cauchy in R.
ists.

[ ) = fnl)

/1V?Uﬂxr—ﬂdﬂ>d
0 Vx

X

e
/()de
(A=

But this shows that lim,,_s fol fa(x) dx ex-
O

1
5. Let f : (0,00) — R be everywhere differentiable with |f'(x)| < 2 0 < x < 0. Prove

that the improper integrals

[ @ = fa-y)ds, 0<y<o
Y

are well defined and in absolute value not greater than 1.

Solution: First, observe

[ () = flx - y) dx
Y

<

f(x) = f(x = y)] dx

[e0]
Ay

But since f is differentiable on (x — y, x) and continuous on [x — y, x], there exists { €
(x —y, x) such that f(x) — f(x —y) = yf'(¢) by the Mean Value Theorem. So

[ ) = f(x—y) dx
J2y

< [, W@l ax
© 1
< /Zy y-?dx
®  dx

Sy

2y (x —y)?
, s
y<_x—y>

=1
2y—vy

2y
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Therefore,

f;; (f(x) — f(x —y)) dx| < 1. We need now show that these are well defined,
i.e. to show that f;; (f(x) — f(x —y)) dx are absolutely convergent. Now

1 1
X)—flx—y)|=v|f (@) <y <
f(x) = flx=y)[ =y f ()] SYVaE SV
and f;yo Gy dx = 1 by the work above. Therefore, f2°y° (f(x) — f(x —y)) dx converges
absolutely so that the integral is well defined. O

6. Let ¢ : R — R be a strictly increasing differentiable function. Define f : R? — R? by

F(x1,x2) = (x1 + g(x1 — x2), x2 + sinxp — g(x1 — x2)).

Does it follow that f satisfies the conditions of the Inverse Function Theorem at every
point of R?? Prove or give a counterexample.

Solution: Take g(x) = x3. Clearly, g(x) is strictly increasing and differentiable. Then
f(xl,xz) = (X1 + (X1 — x2)3, Xy 4 sinxp — (x1 — XZ)B).
Clearly, f € C!(IR?) since all the partials exist and are continuous.
1+ 3(x; — x2)? —3(x1 — x2)?
—3(x1 —x2)®> 14 cosxy +3(x; — x2)?
= (1+3(x; — x2)?)(1 4+ cos xa +3(x1 — x2)?) —9(x1 — x2)*
=14 cosxy +3(x1 — x)% + 3(x1 — xz)2 + 3 cos xp(x1 — xz)2

=14 cosxy +6(x1] — x2)2 4 3 cos xz(x1 — xz)2

]f(xl,xz) = det

Take (x1,x2) = (71, 1) € R2. Then | ¢(m, ) = 0. Therefore, the Inverse Function Theorem
does not apply for all (x1,x7) € R2. O
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January 2012

1. Let {c, } be a sequence so thatc, > 0 foralln > 1 and lirf ¢, = 0. Show that there
n——+00
exists a sequence {a,} so thata, > 0 foralln > 1, Z a, is divergent and Y, cxa, is

n=1
convergent.

Solution: Since lim,,_,« ¢, = 0, there is a subsequence {c,, } such thatc, <1/ 2K for k € IN.
Define

1
2 n # ny for all k.

1, n = ny for some k
a, =

Clearly, ) a, diverges since lim,_,. a, # 0. But

N 1 1 2
Z:lcnan = Z Cry Ay, + Z:l Cnly < Z ? + Z:l ﬁ <1+ ?
n—= n= n=

<N <N

n;znk n#£ng

Therefore, ) c,a, is bounded and c,a, > 0. But then it must be that ) c,a, converges. [

2. Let f : R — R be a uniformly continuous function. Show that there exist positive
constants A, B so that |f(x)| < A|x| + B for every x € R.

Solution: Since f is uniformly continuous, there is a & > 0 such that for all x, y such that
|lx —y| < 8, we have |f(x) — f(y)| < 1. If x € [0,6], we have |f(x) — f(0)] < 1. Then
|f(x)| <1+]|f(0)]. If x € [5,26], then |f(x) — f(6)| < 1. Therefore, |f(x)| <1+ |f(d)] <
2+ |f(0)|. Now assume x € [(n —2)d, (n — 1)d]. This implies |f(x)| < n—1+ |f(0)|. This
shows that for x € [(n — 2)d,nd], that |f(x)| < n+ |f(0)|]. Then for x € [(n —1)J,nd],
F(x) — f((1—1)8)] < 150 that [f(x)] < 1+ [f((n—1)8)| < n+|f(0)]. Similarly,
|f(x)| < n+|f(0) for all x < 0. Therefore, |f(x)| < n+ |f(0)| for all x € R for some n.
But then |f(x)| < }[x| + 1+ |f(0)|. Define A = } > 0and B =1+ [f(0)| > 0. Then there
exist A, B > 0 such that |f(x)| < A|x|+ Bforall x € R. O

3. Let f : R — R be a function which is differentiable at 0 and so that f(0) = 0. Show that
the following limit exists and find it:

li £ (%) —sinf(x).

X0 x3

Solution: Observe that since f(x) is differentiable at 0, we have

im £ ) oy FO) =0 ) = f(0)
x—0 X x—0 x—0 x—0 x—0



This shows that

x—0 X x—0 X x—0 X x—0 X

Now using the Taylor Series for sin x, we have

00 x2n+1
sinx = e [ [P —
,;)( ) (2n+1)!
00 +1 x2n+1
X —sinx = e L e
n;l( ) (2n+1)!
e o 2(n—1)
x s?)lnxzz(_lnx '
x = (2n+1)!

The convergence of this series is uniform (a power series converges uniformly to its function
within the interval of convergence). Hence,

o e 2(n—1)
x —sinx o X
}CLO x3 _xlg(lJnZ:O( ) (2n+1)!
L 1 ) ; x2(n—1)
= lim ?JF;(_U 2n+1)!
B 1 ) ; x2(n=1)
EJF,;)}E% [( V' 2
1
]

where we have used uniform convergence to exchange limits and summations. But as f(x)
is differentiable at 0, it is continuous at 0. Further as f(x) is differentiable at 0, sin f(x) is
differentiable at 0, hence continuous there. But then x>, f(x), sin f(x) are all continuous at
0. But then using the work from above, this shows

f(x)—sinf(x) 1 1

e R T TS
But then
U f) —sinf(x) o (f(0)
g [0 =lim == lim <x>
ENIEELTONES
X0 f(x)3 x3
L f) —sinf(x)
x50 x3
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[e0]
4. Does the improper integral / cos(x?) dx converge or diverge? Prove your answer.*’
0

Solution: First, note that | cos x| < 1 so that fooo cosx? dx < fol dx + floo cos x* dx. So we
o0 2
need only show that [~ cos x* dx coverages.

Make the u-substitution u = x2. Note that this is injective over [1,c0). Then we have
du = 2x dx so that dx = 4% = Zd—“. This gives us the integral
i

/ncos(xz) le—/’12 O 1y
1 ) Vau

Integration by parts with u’ = u~1/2 yields

. n? 2 . .9 2 .
sin u n 1 /” sinu Ju — sinn sinl 4+ 1 /” sinu Ju
Vuly 24 Vs n 271 Vud

Clearly, lim; Sir;”z = 0 by Squeeze Theorem with comparison to the function 1/n

(making use of |sinx| < 1). It then only remains to show that the integral on the right
converges. But observe that

2 .
" sinu

du </n2 sin u du</n2du
1 Vud AR RVATE — SV

which clearly converges as n — o. ]

5. Given that

1 1-3 1-3-5
-1/2 _ 1 _ = 2 _ 3.,
(l+t) =1 2t—|—2'4t 2'4~6t+
has a radius of convergence of 1 about t = 0, and that
. 1
— arcsin(x) = —— for x| < 1

dx V1— 2

find the Taylor series expansion for arcsin(x) at 0 and its radius of convergence. Justify
your reasoning,.

3This is one of the Fresnel Integrals and has many uses in Applied Mathematics.
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Solution: Note that a power series converges uniformly to its function within the interval
of convergence, so that derivatives may be exchanged with summations. Then we have

4 arcsin(x) =

#for|x|<1
dx V1— 2
1 1-3 1-3.-5
— arcsin(x) = (1 xz)_l/z—1+§x2+2‘4x4+2.4‘6x6+~--for|—x2|<1
%arcsm(x)—(l x%) —1—|—§x +2.4x —|—2_4.6x+ for |x| <1
1 1. 1-3.
arcsin(x) = (1 —x3) "2 =x + X3+ 5 X+ 55 x” - for |x| <1

where for the last equality, we have integrated (hence using uniform convergence exchang-
ing integrals and summations) the previous equality to obtain a power series representation
for arcsin x. The radius of convergence is clearly 1. O

6. Give the real valued function ¢(x,y,z) = z — x> — y?> on R?, find Dg(0). Define the map-
ping F(x,y,z) = (x3,¥%,¢(x,v,2)) from R3 to R® with F(0) = 0. What does the Inverse
Function Theorem say about F in a neighborhood of the origin? Does F has a continuous
inverse in a neighborhood of the origin?

Solution: We have
Dg=(-2x —2y 1)

So that
Dg(0) = Dg(0,0,0) = (O 0 1)

Observe that the Jacobian of F(x, y,z) is

3x2 0 0
0 34> 0
—2x -2y 1

Notice that each of these partials is continuous on R?® so that F(x,v,z) is continuously
differentiable. This Jacobian has determinant 9x2y? so that the Inverse Function Theorem
guarantees a continuously differentiable inverse for any point of R® such that x # 0 and
y # 0. The Inverse Function Theorem fails to apply at the origin as then F’(0) is not invert-
ible (in fact, it is the zero matrix). The function F(x,y,z) then fails to have a continuous
inverse in the neighborhood of the origin. O
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August 2012

1. Let X be a metric space. Suppose that A,, n =1,2,3,... are nonempty compact subsets
of X such that A,» C A, U A,41 for every n > 1. Prove that there exists a point x € X
such that x € A, for infinitely many values of n.

Solution: Define B, := A, UA, 1 forn = 1,2,.... Then B,1 = A;;1UA;12 C
Ap+1 U (A UA41) = By so that B,.1 C B,. Note that since each A, is nonempty,
each B, is nonempty for all n € IN. Each B, is compact as each B, is a finite union of
compact sets. Therefore, (;_; B, # @. Then there is a x € (;_; By, that is, there is a
xo € B, for infinitely many n. As B, = A, U A, 41, X0 € A, for infinitely many n. O

2. Suppose that f : R — R and g : R — (0, c0) are continuous functions. For x € R define

h(x) = sup f(t)
0<t<g(x)

(a) Prove thath : R — R is continuous.

(b) Give an example in which f is uniformly continuous on R but % is not.

Solution:

(a) Define F(y) = sup,_, «f (t) = maxo<i<y f(t) (the latter equality following from the
fact that f is continuous on a compact set). Clearly F is non-decreasing. Since F is
monotone, F has only discontinuities of the first type. Suppose F is discontinuous
at x. Then F(x—) < F(x) or F(x) < F(x+). Assume that F(x—) < F(x). Then for
alls € (0,x), we have f(s) < F(s) < F(x—) < F(x). Therefore, f(s) < F(x) for
all s € (0,x), a contradiction. Therefore, F is continuous. But then h = Fogisa
composition of continuous functions, hence continuous.

(b) Let f(x) = xand g(x) = x> + 1. Then h(x) = SUP(tg(x) f(t) = SUP(pcq(x) f = g(x).
But then h(x) = x2 + 1. Suppose that & is uniformly continuous on R. Then for € = 1,
there is a § > 0 such that |x — y| < ¢ implies |h(x) — h(y)| < 1. Choose y = x + 0 for
x > 0. Then

Ih(x) —h(y)| = |(x* +1) = (x +0)>+1)| = | —2x6 — 6*| = 2x6 + &

tends to infinity as x — oo. But then |h(x) — h(y)| > 1, a contradiction. Therefore,  is
not uniformly continuous on R.

O]
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3. Suppose that f : R — R is a differentiable function such that f'(x + 1) = f'(x) for all
x € R. Prove that the limit lim fx)

x—+oco X
Solution: Define g(x) = f(x+1) — f(x). Then ¢'(x) = f'(x+1) — f(x) = 0 since
f'(x+1) = f'(x) for all x € R. But then g¢’(x) = 0 for all x € R so that g(x) is constant.
Therefore, f(x+1) = f(x) + ¢ for some ¢ € R. We need show limy_, y f%) — ¢ Note that

fx)=f(x—=1)4+c=f(x—2)+2c=---=f(x—n)+ncforx € [n,njlc—l]. Moreover, f

is differentiable so that f is continuous on [0, 1]. Then f is bounded on [0, 1], i.e. there is

a M such that [f(y)| < M forally € [0,1]. But then f(x) = f(x —n) +nc < M+ [x]|c as

x —n € [0,1]. Furthermore, f(x) = f(x —n) + nc > —M + [x]c. But then we have
MBS M,

+—c< <+
X X X X X

exists and is finite.

Taking limits yields ¢ < limy_, @ < cso that limy_, @ =c. ]
4. Letf, : R -+ R, n=12,..., be Cl-functions; that is, continuously differentiable
functions such that, for all n,

1 1
fio) < o2 (0<x<1) and /0 Fulx) dx =0
Prove that the sequence { f,, } has a subsequence that converges uniformly on [0, 1].

Solution: Consider |f,(x) — fu(y)| for x,y € [0,1] (with x > y). Since f is C!, we have
|fu(x) — fu(y)| = | fyx £ (t) dt| by the Fundamental Theorem of Calculus. But

X X X
0~ ful =| [ ] < [Tl < [T —21vE - ol =20s) - g
y y v Vit
where g(x) = /x. Since g is uniformly continuous on [0, 1], given € > 0, there is 6 > 0
such that |g(x) — g(y)| < € for |[x —y| < d with x,y € [0,1]. Given € > 0, thereis § > 0
such that for x,y € [0,1] with |[x —y| < J, we have |f,(x) — fu(y)| < € for all n. But
then {f,} is equicontinuous. Since f, is continuous on [0, 1], there is x, € (0,1) such
that f,(x,) = fol fn(x) dx = 0 by the Mean Value Theorem for Integrals. Then there is
x, € (0,1) such that f,(x,) = 0. But then

fu ()| = 1fa(x) = O = [fu(x) = fu(xa)| < 21Vx = /x| < 4

for x,y € [0,1] and n > 1. Then {f,} is pointwise bounded. But as [0, 1] is compact,
{fn} is equicontinuous and pointwise bounded. By the Ascoli-Arzela Theorem, there is a
uniformly convergent subsequence { f,,, } on [0, 1]. O
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5. Suppose that f : R*? — R? is a C!-mapping with det f'(x) > 0 for all x € R2. Assume
that £~!(K) is compact whenever K C R? is compact. Prove that f(R?) = R2.

Solution: Since det f'(x) > 0 for all z € R? and f € C!, the Inverse Function Theorem
applies for all z € R?. Then f is an open mapping. But then U := f(IR?) is open. Suppose
that U # R2. Then there is ay € Bd U such that y ¢ U. Then there is a sequence {y,},
where y, = f(x,) € U, such that y, — y for ¢, € R% Define K = {y,} U{y}. Now
K is compact in R? so that f~!(K) is compact. But then =, € £ !(K). Then there is a
subsequence {z,, } such that z,, — xo as ¢, € f!(K) is compact. But f is continuous
so that f(z,) — f(x). Then y,, — y showing thaty = f(zo) € f(R?) = U. This
contradicts the fact that y € U. Therefore, f(IR?) = R2. O

6. Let f : R — R be a C!-function with f’(x) > 0 for all x € R. Suppose that f takes the
interval [0, 1] onto itself. Prove that there is a sequence of polynomials p, : [0,1] — [0, 1]
such that p, — f uniformly on [0,1] and each p, is a strictly increasing function on [0, 1].

Solution: Since 'f is continuous on [0, 1] by Weierstrass” Theorem, there is a sequence
{gn} of polynomials such that the sequence converges uniformly to f’ on [0, 1]. SO for
€ = ¢/2, there is a ng such that for n > ny, |g,(x) — f'(x)| < c¢/2. But then for n > ny,
en(x) > f'(x) —¢/2 > ¢/2since f'(x) > ¢ > 0(fis increasing implies f* > 0). This
shows for n > nog,(x) > c¢/2 > 0. Define h,, ( fo gn(t) dt. Now hy,(x) is a polynomial
such that 1,(0) = 0 and k), (x) = gn(x) > 0 But then h, ( ) is increasing on [0, 1]. Now

:foxf/(t)dt
) = £ = | [ 0u0) = £ e < ["1u6) = £ O] 1 < g0 £

But then ||h,(x) — f(x)|| < |lgn — f'|| = 0as n — oo since {g,} converges uniformly
to f'. But then {h,} converges uniformly to f on [0,1]. Since f is increasing and onto,

hy(1) — f(1) = 1. Let P,(x) = Z’;E’g : [0,1] — [0,1]. Now P,(x) is a strictly increasing

function. We have

h f” J;H—>0asn—>oo

=[5 = -

since h,(1) — 1. Therefore, || P (x) —f(x)|| — 0 as n — oco. But then {P,} converges
uniformly to f on [0, 1], is strictly increasing on [0, 1], and such that P,([0,1]) = [0,1]. O
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1. Let f, be a non-negative differentiable functions on [0, 1] such that for every x the
sequence f, (x) is non-increasing, and such that f,(0) is also non-increasing. Prove that the
fn converge point-wise on [0, 1].

Solution: Since f, is nonnegative, we have f, is bounded below by 0. We show f, is
decreasing. Define g(x) := f, — fu11. We have ¢'(x) = f; — f, 4 > 0since {f;} is non-
increasing so that g is increasing. Now g(x) > ¢(0) and g(x) > ¢(0) = f,(0) — f4+1(0) >0
as { f»(0)} is non-increasing. But then f,,(x) > f,+1(x) for all x € [0,1]. Therefore, { f,,} is
decreasing and bounded below so that { f,,} converges pointwise on [0, 1]. O

2. Let (M, d) be a non-empty compact metric space and f : M — M a continuous mapping
such that d(f) (x), f)(y)) — 0 uniformly in x,y, where f")(x) denotes n-fold composi-
tion of f with itself (for example, f® (x) = f(f(f(x)))). Prove that f has a fixed point x,
i.e. there exists an x € M such that f(x) = x.

such that for n > N, d(f®(x), f"(y)) < e for all x,y € M. Define x := xp and
y = fP)(x0). If n > N, then d(f") (xp), f("+P)(x9)) < €. Then the sequence {f")(x)} is
Cauchy. However, M is compact so that it is a complete metric space. Therefore, there
exists x € M such that f(")(xy) — x for some x. As f is continuous, f(f™ (x9)) — f(x)
so that f"*1(xg) — f(x) and f**1)(xy) — x. Therefore, f(x) = x, i.e. f has a fixed
point. O

Solution: First, d(f" (x), f)(y)) — 0 uniformly implies for all € > 0, thereisa N € N
n

3. Let f be a continuous function such that limy_,« f(x) = ¢ € R. Prove that for any & > 0

we have N
Cooa+1
lim N [, ¥ 0) dv = ¢

Solution: First, observe

a+1 (N, dy — a+1 [ xvH! N_
/Oxc X = Sart c

Na+1 x+1 0 -
Therefore, ¢ = I’f]j}l ON x*c dx. Furthermore,
x+1 [N x+1 (N a+1 (N
W/o x“f(x)dx—c‘: N"‘“/o x"‘f(x)dx—W ; x%c dx
a+1 (N
= |37t /0 x*(f(x) —c) dx

a+1 (N
Sw/o x*|f(x) — | dx
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Now given € > 0, there is a Ny € IN such that if x > Ny, |f(x) —c| < 5. Then

a+1

N ® “+1 N ®
Nert J, ¥ dx—e| < G [T F) — ol dx
a+1 [N x+1
= S [ ) —eldx Sy [ 1F() — el d

Now f is continuous on [0, Np], which is compact, f is bounded on [0, Ny]. Suppose
|f(x)| < Mon [0, No]. Then

a+1 [N a+1 [N a+1
n e x| < S5 [Tl — el an 3L [Tt 0) — ol
w41 N”‘*l x+1 e N*H1
< Na+1 (M+’ D Na+1 2 a+1
_ (M |NET e
- Na+1 2

For N > (M + |c[)//(*+1) Ny, we have

a+1 e (M+[|c)NST e e
W/O Ffx)dx—e) < 5+ R sty =€
1
Therefore, limy_co D;\TT: fON x*f(x) dx =c. O

4. The Dirichlet function D(x) on [0, 1] is the function equal to 1 when x is rational and
0 when x is irrational. Show that D(x) ¢ R(«) for any monotonically increasing non-
constant function a. (Recall that R («) is the space of functions on [0, 1] integrable with
respect to & in the Riemann sense.)

Solution: Let P = {0 = xp < --- < x,, = 1} be a partition of [0,1]. Note that between
any two real numbers there is a rational and irrational number. Every interval of the
partition contains a rational and an irrational number so that M; = sup,. ... D(x) =1

and m; = infy, | <<y, D(x) = 0for 1 < i < n. Therefore using the fact that « is nonconstant
and monotonically increasing

U(P,D,a) =Y MiAa; =) Aa;=a(1) —a(0) >0
L(P,D,a) =) miAa; =0

Therefore, [D da = a(1) —(0) # 0 = [D da. Then [D da # [D da. Therefore,
D ¢ R(a) on [0,1]. N B O
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5. Let f be a differentiable function on R and its derivative f’ is continuous there. Show
that the functions

o) = (flx 1) = )

converge uniformly to f’ on any interval [a,b], —co < a < b < co.

Solution: Observe that f is continuous on [x, x + %] and differentiable on (x, x + ) By
the Mean Value Theorem, thereis a ¢ € (x,x + 1) such that f(x + 1) — f(x) = f’( ) %

Then f,(x) = n(f(x+ 1) — f(x)) = nf'(c)L = f/(c). Therefore, fu(x) = f'(c). A

f' is uniformly continuous on [a,b + 1]; that is, given € > 0, thereisa d > 0 such
that |f'(x) — f'(y)| < e for |[x —y| < é and x,y € [a,b+ 1]. There is Ny such that
1/No < 6. Forn > N, x € [ab], c € [a,b+1], we have [c —x| < 1 < 4. Then

|fu(x) = f'(x)] = |f'(c) — f'(x)| < € forall x € [a,b] so that f,, converges uniformly
to f'. O

6. Is the function f(x,y) = (x* + y®)!/3 differentiable at (0,0)?

Solution: Suppose f is differentiable at (0,0). Then D, f(0,0) = V£(0,0) - u, where u is a
unit vector. Define u = (11, 1), a unit vector. We have

— t 3 3)1/3
D,.f(0, 0)_hmwz imM:hmM (ud +ud)/?
t—0 t t—0 t t—0 t

Now we have also

of d _
ox (0 0) dxf(x 0) —0 =1
o
(0,0) = 2 f(0, —1
3y dyf y) o
But Vf(0,0) - u = f(0,0)uy + f,(0,0)uz = uy + up. Therefore, D, f(0,0) # V£(0,0) - u
for all unit vectors u. Therefore, f is not differentiable at (0, 0). O
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August 2013
1. Let f be a real valued function on R and suppose that f has three derivatives in an open

interval containing the point 2. Show

Flat2h) ~2f(a+ 1)+ Fla) _

o 2
and i [0 430) =3f(@+20) +3f(a 4 h) —f@) _
lim I3 =@

h—0
Solution: For notational ease, let f, = f(a + h). Now choose / sufficiently small so that

a + 3h is in a neighborhood of f(a) that f is differentiable. We apply L'Hopital’s rule.

o S = 2t form  2f —2fy

h—>O h2 h—0 2h
/ ’
=1 2~ Jh

hlgé h

e 11m 2f5, —

-/
—J0

By the same method,
o fn = 3fn+3fn—form . 3f5 —6fu +fi
h3 h—0 3’12
o P =t S
h—0 h2

Li . 3f5 —4f + fi
h%O 2h

L. 9~ 8f + fi
2

h%O

h—>0

2f///

///
— JO

2. Let the sequence x, be given by

R RIS

k=1



Prove that the sequence x, converges and that the limit is not 0.

Solution: To see convergence, we know that 0 < 1 — % <1lforke IN,sothat0 < x, <1
for all n € IN. This shows that the sequence is bounded. Furthermore, x; = 1/2, x, = 3/8,
s0 X2 < x1. Now assume that the sequence is decreasing forn =1,2,3,--- ,N. Now

N+1 1 1 N 1 N 1
XN+1:]E1_2]<:<1_21\]+1>]:<[jll:1_2k<gl_2k:xz\]

as 0 < (1— 2,\,%) < 1. Therefore, the sequence x, is decreasing. By the Monotone
Convergence Theorem, the sequence x, converges.
To see the limit is nonzero, consider

In(x,) = In (f[1 — 21k> = Zn; In(1—1/25)
k=1 k=1

note that 1 — 1/2% > 0. Now we consider the series Y 7> ; In(1 — 1/2F). The series Y3 ; ;—,}
converges. Furthermore, In(1 — 1/25) < 0 forallkas 1 —1/2% < 1 < e. Observe

L In2-27*

In(1—1/2 1-1
limn(il/)LE'limizkk:hm =1
k—o0 E—k k—oo IN2 -2~ k—oo ] — %

so by the Limit Comparison Test, Yt ; In(1 — 1/2%) converges, say to x. Then we have

lim X, = lim eln(x,,) — lim Bzgzl ln(l—l/zk) — elimnﬁoo Yo 11’1(1*1/2)‘) = >0
n—o00 n—o0 n— 00

forall x € R. O

3. Let f be a real valued function on R that satisfies {x: |f(x)| > €} is compact for all
€ > 0. Prove or provide a counterexample to the statement: f has a limit as |x| — oo.

Solution: Let M,, = {x | |f(x)| > 1}. By assumption, this set is compact for all n € N
with e =1/n. As M,, C R is compact, it is closed and bounded by Heine-Borel. So there
exists a t, € R such that |x| < t, for all x € M,,. But this implies that |f(x)| < 1 for all
|x| > t,. As this holds for all n € IN, it must be that lim|,|_,, f(x) = 0. O

4. Let f : [0,1] — R be a continuous function. Forn = 1,2, .... Let w,(x) = x”. Prove that

the limit .
fim [ f do
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exists and determine its value.
Solution: Observe for all 7, a, is monotonic increasing on [0,1] and a},(x) = nx""!is
continuous and hence integrable on [0,1]. As f(x) is continuous on [0, 1], it is bounded.

Furthermore as f(x) is continuous on [0, 1], it is integrable on [0, 1]. Therefore, we know
that for each n € IN

/f ) day (x /f dx—n/lxnlf(x)dx

For convenience, we shall work with

/01 f(x) d“n-‘,—l / f n+1 dx — (1’1 + 1) /0.1 an(x) dx

Let p,(x) be a polynomial, i.e. p(x) = ayx" +a, 1x"" ' + - - - 4+ a;x + ag. Observe that

1 1
-1 1
/0 X" Py (x) dx = /0 “noxnwo + ﬂnoflxﬁn0 + a4 agx” dx

1
xn+n0+1 ta xf+o N N xn+1
= a _— 1 .« .. ao
"t ng+1 o~ n -+ ng n—|—10
_ ano ai’lg—l .. ﬂO
n+ng+1 n4+ng n+1

But then this shows that

1
1im(n—|—1)/ x"f(x) dx = lim(n+1)< By o Bmo—1 o, A0 )
0

n—00 n—ro0 n+nyg+1 n—+ ngp n+1
. n+1 n+1 n+1

-1 vt PP N T,
nﬂoanon+no+1+a"° 1n+no+ +aOrH—l

:an0+ang—l+"'+al+ao
10
i=0

= pno(l)

So that the result holds for any polynomial. Now as f(x) is continuous on the compact
interval [0, 1], the Stone-Weierstrass Theorem gives a sequence of polynomials {p,(x)}
such that {p,(x)} converges to f(x) on [0,1] uniformly. Then given € > 0, there is a
N € N such that |p,(x) — f(x)| < e foralln > N and x € [0,1]. But the above shows
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limy,_ye0(1 + 1) fol x"pu(x) dx = pu(1) for all p,(x) € {pm(x)}. Then
= [ 1) [ 300 = ()

1
< (n+1)/ x"e dx
0

1

(n—l—l)/olx"f(x) dx—(n—i—l)/o X" Py (x) dx

1
= e(n+1)/ x" dx
0

n—+1
n—+1

= |€

=€

for all ngp > N. But then lim;,_,c (1 + 1) fol x"f(x) dx = limye(n+1) fol X" pp, (x) dx.
However, we have shown this converges to p,(1) for all n. But we know also that
limy, 00 pu(x) = f(x). Then limy, e pu(1) = f(1), as desired. This shows that

lim /Olf da, = F(1)

n—00

O]

5. Let f : [1,00) — R be a continuous function such that lim,_,« f(x) = 0. Prove that for
every € > 0 there exists an integer n and real numbers cy, . . ., ¢, such that

< eforall x € [1,00)

Pm-iqﬂx

k=0

Solution: Let t = ¢~ for x > 1. Observe t € (0,1]. Now x = —log t. Define

R | =

g(t) = {f(logf), 0<t<-=
O, t=0

Clearly, g is continuous on [0,1/¢] since f is continuous, —logt is continuous, and
lim; 0 g(t) = limy 40 f(x) = 0 = g(0). Therefore by Weierstrass” Theorem, there is
a sequence {p,(t)} is a sequence of polynomials converging uniformly to g(¢). That is,
there are c; such that

<€

Fw—fq%
k=0

forall t € [0,1/¢]. But then

<€

wa—ikwkx
k=0
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forall x € [1,00). O
6. Consider the mapping f = (f1, f2, f3) of R® into R® given by

f1(x1,x2,x3) = x1
fa(x1,x2,%3) = 3+ x2

f3(x1, %2, %3) = %1 + %5 + %3
(a) Is f continuously differentiable? Why or why not?
(b) Find all points at which f satisfies the assumptions of the Inverse Function Theorem.

(c) Is f injective?

Solution:

(a) The function f(x1, x2, x3) has Jacobian

1 0 0
2x1 1 0
1 2x 3x3

each of the partials of f are continuously on all of R? as they are given by polynomials.
Therefore, f(x1,x2, x3) is continuously differentiable.

(b) The above Jacobian has determinant 3x3 which is zero only when x3 = 0. Therefore,
the above determinant above is invertible for all (x1, x, x3) for which x3 # 0.

(c) Suppose that f(a,b,c) = f(x,y,z). Then the first coordinate gives a = x. Using this in
the second coordinate, we have a?> + b = a? + yso thatb = y. Usinga = xand b = y
in the third coordinate yields a + b? + ¢® = a + b* + 23 so that ¢® = z% which implies
¢ = z. Therefore, f must be an injective function.

O]
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1. Show that the following limit exists and find it:

, (3n)1\ /"
dm (Gre)
(3n)!

Solution: Let ¢, = L It is clear that ¢,, > 0. We know that

. . .C ..
lim inf -*1 < liminf /¢,
Cn

limsup /¢, < limsup

Cn+1
Cn

But

! 13
lim S — lim (Bn+3)!  (n!)
nso ¢,  noo ((n+1)13 (3n)!
(Bn+3)(3n+2)(3n+1)
m
(n+1)°

|
(

n—oo
=27

But then lim inf C';—:l = 27 and lim sup C’é—:l = 27. But then

| 1/n
27 = liminfcn—Jr1 < liminfc}/" < <(3n)> < limsup c/n < lim sup Cnt1

Cn (n!)3 " Cn
OR
We know from Stirling’s formula
!
lim In(an)! _1
n—oo nlnn
so that In(3n)!
. In(Bn)!
r}grolo 3nlnn !
Then

((i?));)l/n
)

=27



Then from the continuity of e*, we know

I < (3n)! ) 1/n I eln(3n). in()?
m = lim n n

n—00 (n!)3 n—o0

. In(3n)! ln(n!)3
eliMun—seo = — =5

&3 In(3n)—31In3

— 3(In3n—Inn)

_ B

— €3ln3

O

2. Let f : X — Y be a continuous function, where X, Y are metric spaces and X is compact.
Assume that yy € Y is a point which has a unique preimage xp € X, i.e. f~(yo) = {xo}-
Prove that for every open neighborhood U of x( in X there exists an open neighborhood V
of 4o in Y such that f 71 (V) C U. Give an example to show that this conclusion is false if X
is not compact.

Solution: Suppose there is a U C X is open with xy € U such that for all V C Y with
Yo € V, we have f~1(V) Z U. Take V = By,,(yo)- Since f1(V) € U, there is a sequence
{x,} such that x, ¢ U for all n. Since x, € f~}(V), f(x4) € V = By/u(yo0). Therefore,
f(xn) = yo. Now x, € X\ U and X \ U is closed since U is open. But X \ U is compact
since it is a closed subset of the compact set X. But {x,} € X \ U is compact so that there
is a subsequence {x,, } such that x,, — z € X\ U. Then f(x, ) — f(z) = yo since f is
continuous. Therefore, x,, — f _1(y0) = Xo. But then x,, — xo € U, a contradiction as
Xp, > 2z2€Z \ U. Then for all U C X such that xg € U, thereisa V C Y with yy € V with
f~Y(V) C U. To see this is false if X is not compact, consider the following:
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3. Let f : R — R be a differentiable function such that lim f’(x) =1, and leta € R.

X—+00
Prove that the following limit exist and find it:

i of (x+a)
x%n}?oo gf (x)
Solution: If 2 = 0, the limit is trivially 1. Assume a # 0.
of (x+a)

_ of(rta)—f(x)
ef(x)

Then using the continuity of e*, we know
M e =

Let L = limy ;0 f'(x). Then for any € > 0, there is an N € N such that for x > N,
|f'(x) — L| < e. Then for x > N,

LS

a

x+a
ef (rta) <6M>“ _ (eanwM)”

i/xﬂaf’(t) —L dt‘
S ARVIORP

a

1 xX+a
*/ € =€
a Jx

IN

IN
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fxta)—f(x)

So lim, = L (in our case L = 1). Then

lim a

x+a
ef( ) _ elimxﬁmw 4 — ealimxﬁwf’(x) — eaL — ¢
X—¥00 ef( x)

OR

By the Mean Value Theorem on [x, x + 4], there is a ¢, € (x,x + a) such that f(x +
a) — f(x) = af'(cs). But then f'(c,) = LSO Byt then L = limy oo f'(ca) =
limy o0 M Therefore, aL = limy_, f(x + a) — f(x). Therefore by the continuity
of (x+a)
ef (%)

:eu

of e¥, we have lim,_, 1

OR

As f is continuous on [x, x 4 a] and differentiable on (x,x + a) by the Mean Value
Theorem, there is a cy € (x,x + a) such that f(x +a) — f(x) = af’(cx). As cxy — 400 as

X — 400,
of (x+a)

lim ——— = lim V(&) = ¢f
X—>+00 ef( x) Cxy—r+o0
of (x+a)
as limy_, o f'(x) = 1. Therefore, limy_, — = e exists. O
e

4. For each s € [0, 1] there is a function f;(x) defined for x € [a,b] and fs; € R(«) on [a, b],
where « is a monotonically increasing function on [g, b]. Suppose that

fs; — f% uniformly on [a,b] as j — o0

for any sequence {sj}]?’il from [0, 1] that converges to 3. Show that

lim fs / f 1(x) doe(x

s—1Ja

Solution: Define F(s f fs(x) da(x), s € [0,1]. We need show that limg .1/, F(s) =
F(3). Suppose that 11m5%1/2 F(s ) ;é F( ). Then there is s; € [0,1] \ {5} such thats; — }

but F(s;) # F(3). But as fs; = fij2 and f5; € R(a), we have lim; fabfsj do =
fahfl/z da, ie. F(sj) — F(1/2), a contradiction. Therefore, lim,_,/, F(s) = F(1/2).
Then lim, 1/, fub fs(x) da(x) = f: f1/2(x) da(x). O

5. Let f be a real valued continuous function on [0, 1], with || f|| <1 (sup norm less than or
equal 1) and f(0) = 0. Show that the sequence of powers of f, { f"}%_, is equicontinuous
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if and only if || f| < 1.

Solution:
<=: Assume ||f|| < 1. We need show {f"} is equicontinuous. Now || f|| < 1 so that
supxe[oll]{|f(x)|} < 1sothat [f(x)] < A < 1 for some A. Therefore, |f"(x)] < A" — 0

as A € [0,1). But then f"(x) converges to 0 on [0, 1] (a compact interval). Now as f is
continuous, f” is continuous. But then { f"} is equicontinuous.

= Assume {f"} is equicontinuous. We need show || f|| < 1. Suppose that ||f| = 1.
Then sup,.11{[f(x)[} = 1. So there exists xo € [0,1] such that [f(xo)| = 1. Moreover,
|f"(x)] < 1forall x € [0,1] and for all n. Since {f"} is uniformly bounded (hence
pointwise bounded), [0, 1] is compact, and { f"} is equicontinuous, by the Ascoli-Arzela
Theorem, there exists a subsequence f"x converging to ¢ for some function g(x) on [0, 1].
But as f" are continuous and f" — g, g is continuous. Now | f"| — |¢| and

[0, 1) <1
’g"{l, fx) =1

But then |g| is not continuous, a contradiction. Therefore, || f|| < 1. O

6. Let f = (f1, f2) from R? to R? be given by f1(x,y) = 2x + |x| — [x + 1|, fa(x,y) =

(y—1)°.

(a) At which points (x,y) does the Inverse Function Theorem provide the existence of a
C! inverse in a neighborhood? Check the conditions of the theorem!

(b) At which points is f not invertible?

Solution:
(@ Ifx < -1 filxyy) =2x—x+x+1=2x+1 If -1 < x < 0, then f1(x,y) =
2x—x—(x+1)=-1Ifx >0, fi(x,y) =2x+x — (x = 1) = 2x — 1. Therefore,
2x+1, x< -1
filx,y) =41, -1<x<0
2x—1, x>0

Then f; is continuous but clearly not differentiable at x = —1, 0. Furthermore, f, € C!
for all x. Then f € C'(U), where u € R?\ {(x,y): x = —1,0}. We have

d 0 2
aj;l afyl ofr 0 Jof, 6(y—1)7, x<-1
]f(x,y):det % of = det | 9y - =3(y—1)=— =<0, -1<x<0

ox
0 3(y—1
ax  dy Y 6(y—1)%, x>0
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Therefore, the Inverse Function Theorem applies for all (x,y) with x < —1 or x > 0,
andy # 1.

(b) fisnotinvertible at (x,y) € R?such that —1 < x <0Oory = 1.
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August 2014

1. Suppose f is positive, twice differentiable, and log-concave, i.e., the graph of the
composite function In( f) is everywhere concave down. Prove that the function

s =1 (71 )

is non-decreasing.

Solution: As f(x) > 0 is differentiable, we know ﬁ is differentiable.

() = o

B 1Y P
§(x) = f(x) (f(X)> = )

As f(x) > 0and f(x) is twice-differentiable, since the quotient of differentiable functions
is differentiable, g(x) is differentiable. It suffices to show that ¢’(x) > 0.

oy (PO ) + 2
g1 >‘< ) ) - ()2

As f(x)? > 0, it suffices to show — f”(x)f(x) + f'(x)? > 0. We know In f is concave down
as f(x) is log concave. So

So

(n () = 22
"(x)\’ "(x)F(x) — f(x)?
s = (L) - LI IEP
so f"(x)f(x) = f'(x)* < 0so f'(x)> — f"(x)f(x) > 0. O

2. Let X be a compact metric space with metric d, and let xp € X. Prove that K =
{d(x0,x): x € X} is a closed subset of the real numbers.

Solution: First, we prove a lemma.

Lemma: If d : X x X — R is a metric then d is continuous.
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Proof: Let (a,b) be an open set in R. Let (x,y) € d((a,b)) (if this is empty it is trivial
but this cannot be so for a metric). Then a < d(x,y) < b. Choose € > 0 such that
Bae(d(x,y)) C (a,b). We look at Be(x) x Be(y). Suppose (X,7) € Be(x) X Be(y). Then

d(x,y) <
<

d
d(x,y) <d

(x,x) +d(x,y) +d(y,y) <d(x,y)+2€
(x, %) +d(x,y) +d(y,y) <d(x,y) +2¢

X
X

7

So

d(x,y) <d(x,y)+2e
d(x,y) <d(x,y)+2e

But then the choice of € shows
a<d(xy)—2<dxy) <d(xy)+2e<b

So Be(x) x Be(y) € d7'((a,b)), so d is continuous.

Now X x X is compact, as it is the finite product of compact spaces. Indeed, {xo} x X is
compact as it is the finite product of compact spaces. But then K is the image of a compact
set under a continuous map, hence compact. But then K is a compact set in a Hausdorff
space. Therefore, K is closed. O

3. Let A be a subset of the natural numbers whose elements have been arranged into a
sequence ai, ay, . ... Call the set petite if it is finite, or if it is infinite and

|
) = <oo.
=14

A set which is not petite is called husky. Prove that the complement of a petite set is husky,
but that the complement of a husky set is not necessarily petite.

Solution: Note that as a, € N for all n, then a4, > 0. So if }_a, converges it does so
absolutely and any arrangement of its terms converges. Note also that ) % diverges and
that this also implies that }°,,~,, 2 diverges for all m € N. If A is finite, let 9 € N such that
a, < ng for alln € N. Then A€ is infinite for it must contain all # € N such that n > n.

We know .
L.t L1,

aeA @ ac A€ a

1

Now as } ,ca 5 L converges (being a finite sum), it must be that y_,. AC 5 L diverges for other-
wise the above equality would then show that the harmonic series converges. Therefore,
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A€ is husky. Now suppose that A is infinite and petite. Suppose AC were finite, then
Y acAc % converges as it is a finite sum but then once again

ZZZ*

aeA ac AC a n=1 n

show that the harmonic series converges, impossible. Therefore, it must be that A is
infinite. Assume to the contrary that }_,c sc 1 converges. But then yet again,

1 =21
IR IS W
aer®  geact oM
yields a contradiction for the same reason. Therefore, AC is husky. To see that the comple-
ment of a husky set need not be petite, take A = {2,4,6, - - - }. We know that A is infinite
and Y ,c 4 + diverges as

1 1&1
Laia2kn
However, A = {1,3,5,--- } and
Z— —+1+1+ S SR S +--->1+1+1+---:Z1
o 5 1 2(1)+1 2(2)+1 2 4 6 = a
so that Y, 4c 1 diverges. Therefore, AC is not petite. O

4. Suppose that {f,}, n = 1,2,..., are continuous functions defined on the interval [0, 1],

and .
nlggo/o Fulx) dx =0

Suppose also that for each n, the function f, is increasing, and f,,(0) = 0. Prove that f,
converges to 0 uniformly on the interval [0,1/2].

Solution: We need show that given € > 0, there is a N € N such that |f,(x) — 0| =
|fu(x)| < eforall x € [0,1/2] and n > N. As f,(0) = 0 and f, is increasing, we know
fn > 0 on the interval [0, 1] for all n. Moreover, f,(1/2) > f,(x) forall x € [0,1/2] and
fu(1/2) < f(x) forall x € [1/2,1]. Now [ f, dx > 0forall n as f, > O for all n. We have
also

/
/Olfn(x) dx = /01 an(x) dx + /;an(x) dx > 1izfn(x) dx >0

Now as f01 fn dx — 0, this implies f11/2 fn dx — 0. But we have

1/2

) fon(1/2)<1—;):f”<12/2)20
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for all n. This implies that lim f,,(1/2) = 0; that is, given € > 0, thereisa N € N such that
|f2(1/2)| < e. However, |fu(x)| < |fu(1/2)| < eforn > Nandall x € [0,1/2]. O

5. Let f : [0,1] — R be a continuous function. Prove that there exists a sequence of
polynomials, {p,} such that p, — f uniformly on [0,1], and p,(x) > p,+1(x) for every
x €1[0,1]. andeveryn =1,2,....

Solution: Let x,, be any nonconstant nonzero increasing sequence converging to 0. It is
then clear that x,, < 0. Take A,, = X"”Zﬂ and B, = ==L Observe that A, <0, B, > 0,
and both A, — 0, B,, — 0 as n — oco. Furthermore, A, + B, = x,_1 and A, — B, = x,,. As
f(x) is continuous, so too is f(x) — A, continuous on the compact interval [0, 1]. By Stone-
Weierstrass, there is a polynomial p,(t) such that |p,(x) — (f(x) — An)| < By. Therefore,
f(x)—xp = f(x) — Ay — By < pn(x) < f(x) — Ay + B, = f(x) — x. In particular, f(x) —
Xpy1 < pu(x) < f(x) = xn. Now as |pu(x) = f(x)| < |pa(x) = (f(x) = An)[ + [An] = O,
we have p, (x) converges to f(x) uniformly on [0, 1]. O

6. Let f : R — IR be a continuously differentiable nondecreasing function. Define
g:R? — R?by
g (x1,%2) = (x2 + f(2x1 + x2),2x1 + f(2%1 + x2))

Show that g satisfies the conditions of the Inverse Function Theorem at every point of IR?.

Solution: The function g(x1, x2) has Jacobian

( 2f"(2x1 +x2) 1+ f'(2x + xz))
2+ Zf,(le + XQ) f’(le + x2)

Notice that each of these partials are continuous as f is a continuously differentiable
function (meaning that f’ is continuous). Therefore, we know that ¢(x1,x2) is C’ on R?.
Observe that the above has determinant

2f’2(2x1 + XQ) — (1 +f/(2x1 + XZ))(z + 2f’(2x1 + Xz)) =-2— 4f/(2X1 + x2)

So that the determinant is only zero when —2 — 4f’(2x1 + x,) = 0so that f'(2x; +x2) = 3.
However as f is a nondecreasing function, f’(x) > 0 so that this is impossible. But then g’
is invertible for all (x1,x2) € IR%. Therefore, g(x1, x2) satisfies the conditions of the Inverse
Function Theorem everywhere on IR?. O
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January 2015
1.

1
(i) If x > 0and y > 0 show that x + —— >

2
y2x Ty

(ii) Suppose that the series Z a, converges and a, > 0 for all n > 1. Show that the series

n=1
[ee]

1
) 3 diverges.

n=1 n

Solution:

(i) This follows from

(xy —1)2>0
Py —2xy+1>0
y* 4+ 1> 2xy

1 2
X+ —-—2> -

yx Ty
where in the last line we divided by xy?, using the fact that xy? # 0 as x,y > 0.
(ii) We know that a, > 0 and n > 0 for n € IN. By the previous part, we know that

i 1 > 2
Z <an+n2an> Zn;la

n=1

Suppose that ) ;7 4 nZlTn converges. Then the left side can be split as

1

00 00 |
;an+r§1n2ﬂn EZZE

But then the left side is a sum of convergent series, hence convergent, greater than a
divergent series, a contradiction. Therefore, it must be that } ", converges.

1
n2a,
O

2. Let f : [0,4+00) — R be a continuous function such that lim,_, +«(f(x) — x) = 0. Prove
or provide a counterexample to the statement: f is uniformly continuous on [0, +c0).
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Solution: We know from lim, .« (f(x) —x) = 0, given € > 0 there is an N € IN such
that | f(x) — x| < e for x > N. As f(x) is continuous on [0, o), it is continuous on [0, N].
But then f(x) is uniformly continuous on [0, N|. Given € > 0, there is a 6; > 0 such that
|f(x) — f(y)| < efor |x —y| < 61, where x,y € [0, N]. Now given € > 0, choose §, = €/3.
For x,y € (N, c0) with |x — y| = |y — x| < &2, we have

f() = fW)] = 1f(x) =x+x = f(y)| < |f(x) = x[+|f(y) — x|
= 1f(x) = x| +1f(y) =x+y =yl < |f () = x| +1f(y) =yl + |y — ]

<Sifii=e
3 3 3
But then given € > 0, taking § = min{é;,4,}, we have |f(x) — f(y)| < € for x,y € [0, )
with |x — y| < ¢ so that f(x) is uniformly continuous on [0, ). O

3. Let f,g : R — R be functions such that f is differentiable and for every x, /1 € IR one has
f(x+h)— f(x —h) = 2hg(x). Prove that f is a polynomial of degree at most 2.

Solution: As f(x) is differentiable with respect to x and 2hg(x) = f(x +h) — f(x — h), we
know that g(x) is differentiable with respect to x. Moreover, we have

2hg(x) = f(x +h) = f(x = h)
2hg(x) = f(x +h) = f(x) + f(x) = f(x = h)

f
):f(x+h) f(x) _fle—h) —f(x)
h h

2g(x

sothatash — 0,

2(x) = tim T M S0 JEZW 2 _ 13y (- pr()) = 2 (),

This shows that g(x) = f’(x). As g(x) is differentiable, this shows that f(x) is twice
differentiable and that ¢’(x) = f”(x). All that remains is to show that f”(x) = ¢/(x)
is constant. Differentiating f(x + h) — f(x —h) = 2hg(x) twice with respect to & yields
f"(x+h) — f"(x —h) = 0. But this is true for all x,/ so that f” is constant. Therefore,
f"(x) must be a polynomial of at most degree 2. O

4.

(a) Give an example of a differentiable function f : R — R whose derivative f’ is not
continuous. Prove that your example works.

(b) Let f be as in Part (a). If f/(0) < 2 < f’(1), prove that f'(x) = 2 for some x € [0, 1].
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Solution:

(a)

(b)

Let f(x) be given by

It is clear this function is continuous as x? sin(1/x) is continuous at all nonzero points
and |x?sin(1/x)| < |x?| forces lim,_,0x?sin(1/x) to have limit 0 at the origin by
the Squeeze Theorem. But then f(x) is continuous. Furthermore, f(x) is clearly
differentiable at all nonzero values. In addition,

— W2sin (1) —
i FO M) = f(0) _ (. Wsin(;) —0
h—0 h—0 h

= lim hsin(1/h) =0
h—0

where the last equality follow from the Sequence Theorem with |hsin(1/h)| < |h].
Then f(x) is differentiable at 0 - hence everywhere on R - with f/(x) = 0. The derivative
of f(x) is given by
flx) = 2xsin (1) —cos (2) x#0
0, x=0

We have shown f/(0) = 0. But note that |2xsin (1)| < |2x| has limit 0 as x — 0 by
Squeeze Theorem. But then

lim f(x) = lim 2xsin (1) — cos (1> = — lim cos <1>
|x|—0 |x|—0 X X |x|—0 X

Now f’(0) = Obut taking x, = 5+~ and the above calculation shows that lim,,_,« f' () =
1. But then f’(x) is not continuous at x = 0. In fact, we can produce a differentiable

function whose derivative is discontinuous at x = xg, X1, - - , X, via

flx) = { <H?_o(x - xi)2> sin (m) , X & {xo,x1,...,%Xn}

0, otherwise

Leta = f'(0) and b = f/(1). By assumption, a < 2 < b. Let g(t) = f(t) — 2t
Observe that g(t) is differentiable and ¢'(t) = f'(t) — 2. As g(t) is differentiable on
[0,1], g(t) is continuous on [0, 1]. Observe that ¢'(0) = f'(0) —2 = a —2 < 0 while
¢ (1) = f/(1) =2 = b—2 > 0. But then clearly ¢(#) has a minimum on [0,1] at
some value ty € [0,1]. But at to, it must be the case that ¢’(ty) = 0. However, this is
0=¢'(to) = f'(tp) — 2 so that f'(ty) = 2, as desired.

O]
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5. Let f : R — R be a continuous function. Show that

n—oo

lim (1 + 1) /01 ¥ f(x) dx = f(1)

Solution: Let p, (x) be a polynomial, i.e. p(x) = a,x" +a,_1x" ' +- - +a;x + ap. Observe
that

1 1
/0 X" g (x) dx = /0 A X0 @y x0T T 4 gx™ dx

1

xn+n0+1 xn+n0 xn+l
°n+no+1+a"°_1n+no+'”+a0n+10
— ﬂno a?’lo—l ao
n+ngp+1 n—+ng n+1
But then this shows that
1 a Ayn—1 ap
li 1/ n dx = li 1 L o
Jim 1) [0 F(3) e = fim (-4 1) (e e 20
n+1 n+1 n+1
= 1i _
I B0 g M1y On+1

= pﬂo(l)

So that the result holds for any polynomial. Now as f(x) is continuous on the compact
interval [0, 1], the Stone-Weierstrass Theorem gives a sequence of polynomials {p,(x)}
such that {p,(x)} converges to f(x) on [0,1] uniformly. Then given € > 0, there is a
N € N such that |p,(x) — f(x)| < eforalln > N and x € [0,1]. But the above shows

lim,eo(n+1) fol X"pu(x) dx = p,(1) for all p,(x) € {pm(x)}. Then

(1) [ ) dr— (1) [ () dx| = [0 ) [ ) ()

1
< (n+1)/ x"e dx
0

1
= e(n+1)/0 x" dx

n+1
n+1

= |€

=€
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for all ngp > N. But then lim;,_,c (1 + 1) fol x"f(x) dx = limye(n+1) fol X" pn, (x) dx.
However, we have shown this converges to p,(1) for all n. But we know also that
limy, 0 pu(x) = f(x). Then lim, 0 pu(1) = f(1), as desired. O

6. The Arzeld-Ascoli Theorem asserts that a sequence {f,} of continuous real valued
functions on a metric space () is precompact (i.e. has a uniformly convergent subsequence)
if

(i) Q)is compact.

(i) sup{|fu(x)|: x € Qand n € N} < oo,
(iii) the sequence is equicontinuous.

Give examples of sequences which are not precompact such that: (i) and (ii) holds but (iii)
fails; (i) and (iii) hold but (ii) fails; (ii) and (iii) hold but (i) fails. Take Q) to be a subset of the
real line.

Solution:

(i),(ii) # (iii) Let Q = [0,1] and take f,(x) = x". Itis clear that supp f,(x) = 1 for all n and that
Q) is compact. However, the sequence of functions { f,,(x) } is not equicontinuous. If
the sequence were equicontinuous, there would bea § > 0 such that 0 < 4 < 1 and
|x" —y"| < lforalln € Nand x,y € (1—5,1]. Ast" — 0asn — c0if 0 < t < 1, we

can choose 7 sufficiently large so that (1 — %)n < 3. Choosex =landy =1— %
>1— 2>

But then
5 n
1= (1 B 2) 272

But this contradicts the equicontinuity of the sequence. Therefore, { f,, } is not equicon-
tinuous.

(i),(iii) # (ii) Take Q) = [0,1] and f,(x) = n for all x € [0, 1]. The series of functions { f,,} is clearly
equicontinuous but sup{| f,(x)| | x € Q An € N} is clearly infinite.

(ii),(iii) 4~ (1) Take 2 = R and choose

1 1
X" —y"| =

0, x<n
fa(x) =< x—n, n<x<n+1
1, x>n+1
Observe that sup f,(x) = 1 for all x € R and n € N. Furthermore, the sequence of
functions {f,(x)} is equicontinuous as || f,(x) — fu(y)|| = 1 for n,m € N, n # m,
and x,y € R.
O
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August 2015

1. Assume f, is a sequence of functions mapping R into [0, 1]. Prove there is a subsequence
ng along which f,, (q) converges for all rational 4.

Solution: The collection {f,(q)} is a sequence in a compact metric space [0,1]. Then
there is a convergent subsequence of this sequence which converges, 1. But then f,, (q)

converges for all g € Q. O

2. Prove that

k=1

. "1
Jim | Ly~
exists.

Solution: Let s, = Y}_; + — Inn. The sequence s, is decreasing as
1 1 1
Sn—Sp-1=—+In(n—1) —In(n) == —In (1— >
n n n

However, £ In(1 —x) = 1 < 0for x € N so that In(1 — x) is concave. But then In(1 — x)
lies below its tangent at x = 0, which is —x. Taking x = 1/# gives In(1 — 1/n) < =!. But
thens, —s,_1 < 0forall n € IN. But s, is bounded below by 0 as

n n+1
21>/ d—xdx:ln(n+1)>lnn
Sk hox

as Inn is increasing and Inn > 0 for n € IN. But then the sequence s, converges by the
Monotone Convergence Theorem. O

00 ot
smx
/ dx
1 X

3.Is

a convergent integral?

Solution: Integration by parts yields

*® sin x — Cos X
dx =
1 X X

® Ccos x ® 1 cosx % dx
> dx < ‘ > ‘< 72<00
1 X 1 X J1 x
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[ee]

® cosx ® cosx
— > dx = cos1l — —
1 1 X 1 X

But observe that




so that the integral / % dx converges. But then the original integral converges. [
1
4. 1f pr > 0and ) 2 ; px = 1, show that
oo 2 [o0]
(Z kPk) <) Fpe
k=1 k=1

Let ay = k,/px and by = ,/pk. By the Cauchy-Schwartz Inequality (in the case where the
sequences are entirely real),

2
n n
< Y ola® Y b
pa

k=1

n
Y agby
k=1
But using the fact these sequences are nonnegative and , this is precisely

2
n n ’ n

(kak> <Y Fpe Y pe

k=1 k=1 k=1

Then taking the limit as n — co and using the fact that ) ;- ; px = 1, we have

2
<ZkPk> <Y Ko Y =Y K
k=1 k=1 k=1 k=1
0

5. Let { f } be equicontinuous on the compact set K. Assume that { f,, } converges pointwise.
Prove that { f,} converges uniformly on K.

Solution: Suppose that f, — f pointwise on K. As the set { f, } is equicontinuous, given
€1 > 0, thereisa é > 0 such that |f,(x) — fu(y)| < €e1/3forall x,y € Kwith |x —y| <
and all fy € {f,}. The set {B(x,d)}, where 6 > 0, is an open covering of K. Therefore,
there is a finite cover of this covering. That is, there are x1, x, .. ., x, such that {B(x;,J) } is
an open covering of K. As f,, converges to f pointwise, given €; > 0 and x € K, thereis a
N € N such that |f,(x) — f(x)| < €2/3 forall n > N. In particular, |f,(x;) — f(x;)| < €2/3
for all n > N. But then given € > 0, choose ¢’ = min{e, €1, €, }. Then let § be as given as
above. Note that |f,(x) — f(x)| = | fu(x) — f(x) + f(x;) — f(x;)| so that

[£a6) = ] < Ufalw) = fulx)| + ful) = F) + 1 (x) — FR) < 5+ 5 +5 =€

for all x € B(x;,6). But each x € K is in some B(x;,J) for some i so that { f,} converges
uniformly to f on K. O
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6. Let
_Jx+2x%sin(1/x), x#0
f(x) = {0, o

with f : R — R.
(a) Show that f'(0) = 1. Show that f’ is not continuous at x = 0.

(b) Write y = f(x), what does the Inverse Function Theorem say or not say about the
inverse of f in a neighborhood of y = 0? Explain.

(c) Show that f is not 1-1 in any neighborhood of x = 0.

Solution:

(@)
FO+h) —F(0)  f(h)—f(0)  h+2k2sin(1/h) —0
O+mh—-0 I - h

But we have

=1+2hsin(1/h)

lim iisin(1/h) = lim M i SN
h—0 h—0 7 h—ooo N

Therefore,

. f(0+h)—f(0) . .

| =lim1+2h 1/h) =1
sy (0+h)—0 oy T sin(1/h)

However for x # 0, f'(x) = 1+ 4xsin(1/x) —2cos(1/x). Taken x, = 5., observe

that x, — 0 as n — o and we have

2sin(2n7)

fl(xn) =1+ v

—2cos(2nm) = -1

Butas f'(0) =1, f'(x) is not continuous at x = 0.

(b) The Inverse Function Theorem fails to give any statement about an inverse of f(x)
for any open set containing the origin as f need be a C' mapping but f'(x) is not
continuous about the origin, despite the fact that f'(0) # 0. However for any open
set not containing the origin, f'(x) = 1+ 4xsin(1/x) — 2cos(1/x) is continuous.
Therefore for any other open interval, E, containing an xj such that f(xp) = 0 and
f'(x0) # 0, the Inverse Function Theorem gives an inverse g(x) € C'(E).
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(c) In any neighborhood of the origin, E, x, = 5 and x,, = i are in E for some

1
2m+1)7
n,m € N. However, observe that

f'(xn) =1+ ZSmn(72rn7t) —2cos(2nm) =-1<0
ffO=1+ 281?2(;(1121—111—1—)711)”) —2cos((2m+1)mr) =3>0

so that f(x) cannot be one-to-one on any neighborhood of the origin.
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January 2016

1. Let E C R be a nonempty set.

(a) What does it mean to say that E has an upper bound?

(b) When E has an upper bound define sup E, the supremum of E.
(c) Give an example of a bounded set E such thatsup E ¢ E.

(d) If E has an upper bound prove that there is a sequence {x,}, x, € E, such that
limy, e x4, = sup E.

Solution:

(@) E has an upper bound if there exists a x € R such thate < xforalle € E. If y € R is
such a number such that e < y for all e € E, we say that y is an upper bound for E.

(b) Suppose E is bounded above. If s € R is an upper bound of E such that if x < s then x
is not an upper bound of E, we say that s is the supremum of E and denote it sup E.

(c) Consider E = (0,1) C R. Clearly, e < 1foralle € E so that 1 is an upper bound of E.
Clearly, no s € R with s < 0is an upper bound for E. If 0 < s < 1, then s < % <1lis
an element of E and therefore s is not an upper bound of E. ThensupE =1 ¢ E.

(d) Since E C R has an upper bound, sup E exists. Define s = sup E. Now consider
Ky,:=EN[s—1/n,s]forn € N.IfK, =EN[s—1/n,s] =D, thens —1/n < sisan
upper bound for E, contradicting the fact that s = sup E. Therefore, there is a e, € K,
for every n € IN. The sequence {e, },eN converges tos = sup E as |e, — s| < % —0as
n — oo.

O

2. Let f be a real valued function defined on a metric space X with distance d(x,y), x,y € X.
Prove or disprove the following assertions.

(a) If f is uniformly continuous on X and if {xn}, xn € X, is a Cauchy sequence, then
{f(xy)} is Cauchy.

(b) If f is continuous on X and if {x,}, x, € X, is a Cauchy sequence, then {f(x,)} is
Cauchy.

Solution:
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(a) The statement is true. Let € > 0 be given. Using the uniform continuity of f, choose
0 > Osuch that |f(x) — f(y)| < |x —y| for all |[x — y| < J. Using the fact that {x, } is
Cauchy, choose N € N such that |x, — x,,| < ¢ for n,m > N. Then choosing § = €, we
have |f(xn) — f(xm)| < |xn — x| < € for n,m > N. Therefore, { f(x,)} is Cauchy.

(b) The statement is false. Let X = (0,1) with the usual metric topology on R and

f(x) = L. Clearly, f is continuous on X. Consider the sequence {%}n N Since 10

is convergent, the sequence is Cauchy. However, |f(1/n) — f(1/m)| = |[n —m| > 1 for
all n # m, where n, m € IN. But then {f(x,)} cannot be a Cauchy sequence.

O]

3. Let f be a real valued continuous function on the interval [0, 1].

(@) If0 < p < land f(x) = xPsin(x!77), x € (0,1], compute (the one-sided derivative)
f'(0).
(b) Give an example of an f with f’(x) uniformly bounded on (0, 1] such that f'(0) does

not exist.

(c) Suppose f'(x) is uniformly bounded and nondecreasing for x € (0, 1]. Prove f'(0) =
llmxﬁo f/ (x) .

Solution:

(a) First, observe f(0) = 0. Recall lim,_ % = 1 so that both the left and right hand
limits at 0 exist. Now

— P <1 1—p . 1_p
fO+h) =f0) _ lim W sin(h7F) _ lim h"~tsin(h!'"F) = lim sin(# )

/
= = =1
£10) h—0+  (0+h)—h h—0+ h h—0+ h—0+  hl=p

(b)

4. Suppose a non-negative function f has maximum equal to 1 and vanishes on a dense set
of points in [0, 1]. Let B be a nondecreasing continuous function such that f(0) = 0 and
B(1) = 1. Show that any number 0 < a < 1 can be obtained as the value of some Riemann
sum for the integral fol f dp.

5. Let F be an equicontinuous family of non-negative continuous functions on a metric
(M, d). Let S be dense in M and suppose that for each x € S we have f(x) = 0 for some
f € F. Prove that for any y € M we have inf{f(y): f € F} =0.

6. Let f and g be C! real-valued functions such that f(0) = ¢(0) = 0and f'(0) = ¢’(0) = 1.
Show that for any € > 0 there are numbers x, y such that |x| + |y| < e and f(x) = g(y) > 0.
Hint: Consider the mapping F(x,y) = (f(x),g(v)).
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May 2016
1.

(o]
(i) Give an example of a sequence of real numbers {a, },>1 such that the series Z ay
n=1

o0
converges, but the series Z a% diverges.
n=1

(ii) Ifa, > 0 for all n > 1 and the series ), ; a, converges show that the series Z a%

n=1
must converge.

Solution:

—_— n n
(=1) } . The series ) ;7 ; (G converges by the Alter-
nelN

N vn

nating Series Test: lim;, . ﬁ = 0 and the sequence {1//n} is decreasing (/x is an

(i) Consider the sequence {

N
increasing function so /1 < v/n + 1 so that \/nl? < 4/n). However, (%) = 1 for

all n € IN and the series } ;" ; % diverges.

(ii) Suppose Y ; a, converges and denote thesum L. Then L2 = L-L = (Y00 1 a,) (Y5004 ay) =
(X%, a,)*. Moreover, it follows immediately by induction that

N N 2
0) a* < a,
n=1 n=1

for all N > 1 (the left inequality follows from the fact a, > 0). Therefore,

N—oo =1 N—oo =1

N No\?
0lim Yy a3 < lim (Y a,| =L?

Therefore, {Y)_, a2} new is an increasing sequence which is bounded above. There-

fore, Y00 ; a2 converges.

O
2. Let X, Y be metric spaces and f : X — Y be a continuous function such that for every

compact K C Y, f71(K) is a compact subset of X. If F C X is closed, prove that f(F) is
closed in Y.
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Solution:
3. Let f,g : R — (0,+o0) be differentiable functions such that g’(x) > 0 for all x,

/
lim g(x) = +o0,and lim f(x) = L for some number L > 0. Show that lim log f(x) =
X—+00 x—+oo ¢'(x) x—+o log g(x)

1.

4. Let f : [0,1] — R be an integrable function. Prove that there exists a € (0,1) such that
Jo 1) dx < [ [f(x)] dx.

5. Let K be a compact subset of a metric space X. Given a bounded sequence {x,} in X,
define f,(x) = d(x,x,) —d(x,x1) forn = 1,2,.... Prove that there exists a subsequence
{fn} that converges uniformly on K.

6. Suppose f : R — R is a continuously differentiable function such that f(0) = 0 and
f(1) = 1. Prove that there exists a point in IR? where the map

F(xl,xz) = (X1 + X%,f(xﬂ + XQ)

does not satisfy the assumptions of the Inverse Function Theorem.

369



August 2016

1. Consider the following proposition: Every bounded continuous real-valued function f on R
attains its maximum. The following argument which attempts to prove this has an error. (a)
Find where the error occurs and (b) provide a counterexample, with details, to show that
the argument indeed fails at that point:

Let M = sup{f(x): x € R}, and let x*,x, € R such that x, — x* and f(x,) — M.
Since f is continuous, f(x,) — f(x*), which implies f(x*) = M. Hence, x* is where f
attains its maximum.

2. Prove: there exists ¢ > 0 and continuous functions f,¢ on (—c,c) such that f(0) =
g(0) =0and
sin(f(z)) + cos(g(z)) = z* + 1, and
(f(2))?* +2¢383) = 2cosz
3. Let f be continuously differentiable, and suppose that f(0) < —1, f(1) > 0, and

f(2) < 0. Prove that for each ¢ € [0, 1] there exists x, € (0,2) such that f'(x;) =¢,
4. Let (X, d) be a metric space. Prove or provide a counterexample:

(@) The intersection of finitely many dense subsets of X is dense.
(b) The intersection of finitely many open dense subsets of X is open and dense.

5. Let f, g be continuous functions on IR such that f is differentiable everywhere and let
f(1) = 0. Prove that fg is differentiable at 1.

Solution: Since f(x) is differentiable at 1, we know that

i L1 1) = F(1)
h

h—0

= f(1)

Moreover since g(x) is continuous at 1, limy, o ¢(1+ 1) = g(1 + limy,_,oh) = g(1). Then
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we have

(f8)'(1) := lim fA+h)g( +hh) - f()g(1)
i JA (L) —0-g(1)
h—0 h
— 1 f(1+h)g(1+h)
= o I
i fO AL+ ) —hg(1+ 1) + hg(1+h)
T =0 7
i [FO WO+ ) —hg(L+ ) hg(Hh)}
N hlir(l) L h 7

- f<1+h)_h_|_g(1+h):|

= lim |1 h) =
| f(l+h)—0 h
—}g}% _g(1+h) T +g(1+h)

= lim :g(l—l—h) f(1+h})l_f(1> —1+g(1+h)}

=s(Mf (1) +5(1) -1
=g()(f/(1)+1) —1

O]

6. Let (fu) be a sequence of functions on [0, 1] with continuous first and second derivatives,
such that forall n > 1,

1< £u(0)<2, 3<f4(0) <4, sup |f(x)| <12

0<x<1

Prove that (f,;) has a subsequence which converges uniformly on [0, 1].
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May 2017

1. Let f : Q — R where Q is the set of all rational numbers.

(a) If f is uniformly continuous prove it has an extension to a continuous function F :
R — R, i.e. there exists a continuous function F : R — R such that f(g) = F(g) for all
g € Q.

(b) Give an example of a continuous f : Q — R that has no continuous extension F : R —
R.

2. Let X denote the collection of all bounded functions f : R — IR. For f, g € X define
4(f,g) = sup{|f(x) - g(x)|: x € R}
Then (X, d) is a metric space. Let
E = {f € X: there exists K such that f(x) = 0 for all x > K}.

Find the closure of E in X.
3. For p > 0, find

lim 7?0 3" k7
k=1

n—00

d
4. Assume f : R?> — R and % : R? — R are both continuous. Let

s = [ feena

Prove g is differentiable and that

5. Suppose that 2 a,x" converges for all x € R. Let f : R — R be an indefinitely
n=0
differentiable function such that
£ ()] < ntlay]

for all n and all x € R. Prove that the Taylor series about x = 0 for f converges uniformly
to f on every closed and bounded interval [—M, M].

6. Let f : R — R be a strictly increasing continuous function such that f(0) = 0. Let
¢ :[0,1] — R be a continuous function such that

'/Olf"(x)g(x) dx, n=0,1,2,...

Prove that g is identically zero.
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August 2017

1. Let X be a metric space. Consider a family of subsets of X, denoted {E;: i € A} where
A is an uncountable index set. Suppose that for every finite or countable set B C A the
intersection

ME

i€B

E=()E

icA

is open. Prove that the set

is also open.
2. Suppose that f : R — R is a function such that for every compact set K C R the inverse
image f~!(K) is also compact. Prove that
Jim[()] = +es

3. Suppose that f : R — R has derivatives of all orders and satisfies f(0) = f'(0) =
£"(0) = 0. Prove that the function g(x) = f(x)!/3 is differentiable at 0.
4. Let f and g be Riemann-Stieltjes integrable on [a, b] with respect to a non-decreasing
function w. Suppose that given any partition P of [4, b] there exists a partition Q of [a, b]
such that

L(f,P,a) < L(3,Q,a) and L(g,P,a) < L(f, Q)

b b
/fdtx:/gdzx
a a

5. Determine all positive continuous functions f on [1,c0) such that

9
In (1+/ F(e) dx> -y
0
for all real numbers 6 > 0.

6. Prove that the image of any open set containing the unit disk {(x,y): x> +y*> < 1}
under the mapping f(x,y) = (x* + y*, 2xy) is not a subset of the unit disk.

Prove that
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May 2018

1. Let {a, } be the sequence with terms {1,2,21,3,3%,3%,4, %,4%,4%,5, ...}. Prove that for
any positive integer p

lim a —a,=0
oo TP "

Is the sequence Cauchy? Explain.

2. Give an example of two disjoint nonempty closed sets A and B from R so that the
distance between them is 0, i.e. inf{|la —b|:a € Aandb € B} = 0. Show that your
example does in fact work.

Solution: Let F; = Nand b, = {n+ 1:n € N}. We have FF = U ;By,5(n/2) is open
since each By /5(n/2) is open. Therefore, F; is open. We know also

1 1
1’l+2n+7’l+1+2(n+1)>

Fz(j:UBd< 5
n=1

where d = % This is clearly open being the union of open sets. Therefore, F; is

closed. Note that F; N F, = @. Now

diSt(F1,F2) = inf{d(fl,fz)I f1 S Fl,fZ S Fz} = inf{zlni ne N} =0

Therefore, dist(F;, F,) = 0. O
3. Consider the equation x* — y? = 0. This equation determines y as a function of x, for all
x € R, in many ways. Here are five such examples, y = x2,y = —x2,y = x|x|,y = —x|x|
x2, x€Q
oreveny = ) .
—X 7 X % Q

(a) What does the Implicit Function Theorem say (or not say) about y as a function of x at
the point (3, 1£)?

(b) What does the Implicit Function Theorem say (or not say) about y as a function of x at
the point (0,0)?

4. Show that 22;21 @ — fzn @ dx converges as n — oo to a positive number no larger
than log 2.

5. Let f be a Riemann integrable function on [0, 1] and suppose that

1
/ f(x)x"dx=0 forn=0,1,2,...
0
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Prove that if f is continuous. at a point x € [0,1] then f(xo) = 0.

6. Let {f1, f2,...} be a sequence of continuous nonnegative functions on [0, 1] such that
fr(x) < fyr1(x) forallk > 1and all x € [0,1], and fy — f uniformly on [0, 1] as k — oo for
a function f. Prove that

li y nd _ [ d
lim | (kzlfux)) x= [ f(x)dx
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