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1 Acknowledgements and Usage

This solution set project was undertaken by Caleb McWhorter to eliminate the problems
with former student preliminary solution binders, which could only be used by a single
person at a time and could easily vanish or be otherwise damaged. However during the
compilation and typesetting of these solutions, the Mathematics Department made changes
to the exams rendering these solutions—while still useful—obsolete. The project was then
abandoned. Hence, some solutions will have no given solution or may be incomplete.

Though the format of these exams are not the current exam style in the department,
they are still a wealth of information and are still very useful when used correctly. When
using these solutions, always attempt the problem first before looking at any solution. The
absolute worst way to prepare for the preliminary exams would be to read through these
solutions like a book. The onus is on you, as a Ph.D. student, to use these responsibly.

While the solutions were typeset by Caleb McWhorter, the solutions were contributed
by many individuals. Solutions may contain errors, either from the sourced solution, the
typesetting, or both. However, the solutions come as is. You have been warned. We
thank Caleb McWhorter for his typesetting as well as the students who contributed to the
solutions (the order being alphabetical):

• Jennifer Edmond

• Rachel Gettinger

• Caleb McWhorter

• Carl Ragsdale
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2 Algebra Prelims
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August 1992

1. Let T : V →W be a linear transformation of finite dimensional vector spaces. Assume
that rank T = k. Prove that there exists ordered bases B for V, and C for W, such that
the matrix representation of T with respect to B and C has the following property: its
(i, i)-entry equals 1 for i = 1, 2, . . . , k, and all its other entries are zero.

Solution: Choose a basis {k1, . . . , kr} for ker T. Extend this basis to a basis for V: B =
{k1, . . . , kr, v1, . . . , vk}. We claim {T(v1), . . . , T(vk)} is linearly independent: suppose
r1T(v1) + · · · + rkT(vk) = 0, where ri ∈ k, the underlying field. Then 0 = T(r1v1 +
· · ·+ rkvk). Hence, r1v1 + · · ·+ rkvk ∈ ker T. But then ∑k

i=1 rivi = ∑r
j=1 r′jk j, where r′j ∈ k.

But this implies

0 =
r

∑
j=1

r′jk j −
k

∑
i=1

rivi = r′1k1 + · · ·+ r′rkr + (−r1)v1 + · · ·+ (−rk)vk.

Since B = {k1, . . . , kr, v1, . . . , vk} is a basis for V, we must have 0 = r′1 = · · · = r′r = r1 =
· · · = rk. Hence, {T(v1), . . . , T(vk)} is linearly independent. Therefore, {T(v1), . . . , T(vk)}
can be extended to a basis for W: C = {T(v1), . . . , T(vk), w1, . . . , wm}. With respect to this
basis, we have

[T]CB =



0
. . .

0
1

. . .
1


,

where all missing entries are 0.

2. Suppose V = W1 ⊕W2 and that f1 and f2 are inner products on W1 and W2, respectively.
Show that there is a unique inner product f on V such that

(a) W2 = W⊥1 ;

(b) f (α, β) = fk(α, β), when α, β are in Wk, k = 1, 2.

3. Let V be an n-dimensional vector space and let T be a linear operator on V. Suppose
that there exists a positive integer k such that Tk = 0. Prove that Tn = 0. What is the
characteristic polynomial for T?

6



4. Suppose B =

−3 1 −1
−7 5 −1
−6 6 2

. Find: (a) the characteristic polynomial and the eigen-

values of B; and (b) a maximal set S of linearly independent eigenvectors of B. (c) Is B
diagonalizable?

5. If A is a square matrix with characteristic polynomial f (x) = (x − 2)3(x + 3)4 and
minimal polynomial g(x) = (x− 2)(x + 3)2, give all possible Jordan normal forms for A.

6. Let T : V →W be a linear transformation with dim V = n, dim W = m, and rank T = k.
Let T∗ : W∗ → V∗ be the dual linear transformation. What are the rank and nullity of T∗?

7



August 1993

1. Let A be a real symmetric matrix satisfying Ak = I for some positive integer k, where I
is the identity matrix of the same size as A. Prove A2 = I.

Solution: Every real symmetric matrix is diagonalizable. Therefore, there exists a (real
orthogonal) matrix Q so that Q−1AQ = D, where D is a diagonal matrix. [Note that
Q−1 = QT.] Now we have A = QDQ−1 so that

I = Ak = (QDQ−1)k = QDkQ−1

Since D is real and diagonal, it must be that every diagonal entry is either 1 or −1. But
then D2 = I. But then A2 = (QDQ−1)2 = QD2Q−1 = QIQ−1 = I, as desired.

2. Let v be a nonzero vector of the Euclidean space Rn. Let T : Rn → Rn be the linear
operator given by the formula T(x) = x− 2(x, v)v for all x ∈ Rn, where ( , ) is the standard
inner product. Prove that T can be represented by the matrix(

I 0
0 −1

)
where I is the (n− 1)× (n− 1) identity matrix.

3. Let T : R3 → R3 be the linear operator represented by the matrix1 1 1
0 1 1
0 0 −1


with respect to the standard basis. Show there exist nonzero T-invariant subspace U and V
of R3 satisfying R3 = U ⊕V.

4. Let T : Rn → Rm be a linear transformation of rank k. Show there exist linear transfor-
mations U : Rn → Rk and V : Rk → Rm, where U is onto and V is one-to-one, satisfying
T = VU.

5. Denote by Matn(R) the set of all real n× n matrices. A matrix N ∈ Matn(R) is called
nilpotent if Nk = 0 for some positive integer k.

(a) Do all nilpotent matrices form a subspace of Matn(R)?

(b) Prove I + N is invertible, where I ∈ Matn(R) is the identity matrix.

(c) Show I + N is diagonalizable if and only if N = 0.
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6. Let A = (aij) be the n× n real matrix satisfying aij = 1 for all i, j = 1, . . . , n. Denote by
the same letter A the linear operator Rn → Rn whose representation matrix with respect
to the standard basis is A.

(a) Describe ker A and im A as subsets of Rn.

(b) What is the minimal polynomial of A?

(c) Show A is diagonalizable.

9



August 1995

1. Suppose A is a matrix over the complex numbers with characteristic polynomial
(x + 2)2(x− 1)5. If the rank of (A− I)2 is 3 and the rank of (A + 2I) is 5, where I denotes
the identity matrix, what are the possibilities for the Jordan canonical form of A?

2. Suppose that E is an idempotent linear operator on a vector space, that is E2 = E. Show
that the only possible characteristic values for E are 0 and 1.

Solution: Let v be an eigenvector for E with associated eigenvalue λ. Then we have

λv = Ev = E2v = E(Ev) = E(λv) = λ(Ev) = λ2v

But then (λ2 − λ)v = 0. Since v is an eigenvector, v 6= 0 so that 0 = λ2 − λ = λ(λ− 1).
But then λ = 0 or λ = 1.

3. Suppose V is a vector space with a finite spanning set S = {v1, . . . , vn}. Show that S
contains a basis for V.

Solution: For notation purposes, let S = {a1, . . . , an}. If V is the trivial vector space,
then it has an empty basis. If V 6= {0}, then S 6= {0}. Choose a vector v1 ∈ S. If
S1 := Span{v1} = V, then S1 is a basis for V. Otherwise, choose v2 ∈ S \ S1. Define
S2 := Span{v1, v2}. If S2 = V, then we are done. Otherwise, form S3 as before and
continue. Since S is finite of cardinality n, this process can continue at most n times since
S spans V. Note that Si is linearly independent by construction for i = 1, 2, . . . , n. If the
process terminates at Si, then Si is a basis for V.

4. Assume V is a finite dimensional vector space of dimension n and let T and S be linear
operators on V, both with rank strictly greater than n

2 . Show that the composition S0T is
nonzero.

5.

(a) Suppose T : V → W is a linear transformation between the vector spaces V and W.
What is meant by Tt, the transpose of T?

(b) Assume S : R2 → R2 is given by S(x, y) = (x + y, 2x − y). Let { f1, f2} be the dual
basis of the standard basis {e1, e2} for R2, where e1 = (1, 0) and e2 = (0, 1). Find St( f2).

6.

(a) Let V be an inner product space with inner product ( , ), and assume T : V → V is
a linear operator on V. What does it mean to say that T is self adjoint? What does it
mean to say that T is normal?
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(b) Let P2 be the inner product space of polynomials of degree at most two over the real
numbers with inner product ( f , g) =

∫ 1
−1 f g. If φ is a linear functional defined on P2

by φ( f ) = f (0), find h ∈ P2 with φ( f ) = ( f , h).

11



August 1997

1. Let A be a square matrix with characteristic polynomial c(x) = x(x− 3)2(x + 5)4 and
minimal polynomial m(x) = x(x− 3)(x + 5)2. Give all possible Jordan normal forms for
A and for each possible form, indicate the algebraic and geometric multiplicities of the
eigenvalue −5.

2. Give an example of linear operators φ and ψ on R4 satisfying the following conditions.
Justify the answers.

(a) φ 6= 0 is neither one-to-one nor onto and φ2 = φ.

(b) (ψ2 + 1)2 = 0 and ψ is not a root of a polynomial of degree ≤ 3 with real coefficients,
where 1 is the identity operator on R4.

3. In R4, let U = Span{(1, 0, 1, 0), (0, 1, 0,−1), (0, 1, 1, 0)} and V = Span{(1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 1, 1)}.
Find a basis for U ∩V.

4. Let φ : U → V be a linear transformation of finite-dimensional vector spaces U, V over a
field F, and let φ̂ : V̂ → Û be the dual linear transformation. Prove that φ is one-to-one if
and only if φ̂ is onto.

5. Prove that the eigenvalues of a real symmetric matrix are real.

Solution: Let v be an eigenvector of A associated with eigenvalue λ. Then Av = λv. If M
is a matrix, M∗ denote the conjugate transpose and M denote the conjugate of M. Since A
is symmetric, A = AT. Furthermore since A is a real matrix, A∗ = A. We compute v∗Av
two different ways:

v∗Av = v∗(Av) = v∗(λv) = λ(v · v)
v∗Av = (Av)Tv = (λv)Tv = λ(v · v).

Since v 6= 0, v · v 6= 0. But then λ = λ. Thus, λ ∈ R.

6. Let A = (aij) be an n× n real matrix, where aii = 2 for i = 1, . . . , n, ai,i+1 = ai+1,i = 1 for
i = 1, . . . , n− 1, and the remaining elements of A are zeros. Using the Sylvester criterion
or another method, determine whether a real quadratic form q represented by the matrix
A with respect to a certain basis is positive definite.
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August 1998

1. Let V be a finite dimensional vector space. Prove that the dimension of V is even if and
only if there is a linear map f : V → V such that ker f = im f .

2. Let V be a finite dimensional complex vector space and let φ : V → V be a linear map.

(a) Assume that for each natural number k, trace(φk) = 0. Prove that 0 is an eigenvalue of
φ.

(b) Prove that φ is nilpotent if and only if for each natural number k, trace(φk) = 0.

3. Find two matrices having the same rank and the same characteristic polynomial, but not
similar to each other.

4. Let A and B be two self-adjoint matrices. Show that AB is self-adjoint if and only if
AB = BA.

Solution: By abuse of notation, let A and B represent the linear operator given by the
matrices A, B on the vector space V, respectively. Recall a linear operator T is self-adjoint
(hermitian) if and only if 〈 Tv, w 〉 = 〈 v, Tw 〉 for all v, w ∈ V. Now A, B are self adjoint so
that 〈 Av, w 〉 = 〈 v, Aw 〉 and 〈 Bv, w 〉 = 〈 v, Bw 〉 for all v, w ∈ V. Equivalently, A∗ = A
and B∗ = B, where (−)∗ denotes conjugate transpose. Now suppose that AB is self-adjoint
so that (AB)∗ = AB. But then AB = (AB)∗ = B∗A∗ = BA. Now suppose that AB = BA.
Then

〈 (AB)v, w 〉 = 〈 A(Bv), w 〉 = 〈 Bv, Aw 〉 = 〈 v, B(Aw) 〉 = 〈 v, (BA)w 〉 = 〈 v, (AB)w 〉

so that AB is self-adjoint.

5. Let V be an n-dimensional real vector space, and let q be a quadratic form on V.
Let A = (aij)1≤i,j≤n be the symmetric matrix of q in an ordered basis. Show that if the
form q is positive definite, then for each positive integer k, we have det Ak > 0, where
Ak = (aij)1≤i,j≤k.

6.

(a) Show that every n× n matrix A can be uniquely written as the sum of a symmetric
and a skew-symmetric matrix.

(b) Let A and B be two congruent n× n matrices. Show that AT and BT are also congruent.
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(c) Again, let A and B be two congruent n × n matrices, and write A = A1 + A2 and
B = B1 + B2, where A1 and B1 are symmetric and A2 and B2 are skew-symmetric.
Show that A1 is congruent to B1, and that A2 is congruent to B2.
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August 1999

1. Let P4 be the vector space of real polynomials of degree ≤ 4 in the indeterminate x. For
a ∈ R, we put P4(a) = { f ∈ P4 : f (a) = 0}.

(a) Prove P4(a) is a subspace of P4.

(b) Find a basis for and the dimension of P4(a).

(c) Find a basis for and the dimension of P4(−3) ∩ P4(2).

2. For the indicated values of c(x) and m(x), determine whether there exists a square
complex matrix A for which c(x) is the characteristic polynomial and m(x) is the minimal
polynomial. If such an A exists, find all possible Jordan normal forms of A. Justify your
answers.

(a) c(x) = x(x + 1)(x− 2)3 and m(x) = x(x− 2)2.

(b) c(x) = (x− 4)2(x + 3)3 and m(x) = (x− 4)(x + 3)2.

3. Let A be a 4× 3 matrix of rank 3 over a field F.

(a) Is there a matrix B satisfying BA = I3, where I3 is the 3× 3 identity matrix?

(b) Let TA : F3 → F4 be the linear transformation given by TA(x) = Ax for all x ∈ F3. Is
TA one-to-one? Is it onto?

Justify your answers.

4. Let φ : U → V be a linear transformation of finite dimensional vector spaces U, V over a
field F, and let φ̂ : V̂ → Û be the dual linear transformation. Prove that φ is onto if and
only if φ̂ is one-to-one.

5. Let U and V be subspaces of the Euclidean space Rn. If dim U < dim V, prove that there
is a non-zero vector in V orthogonal to all vectors in U.

6. Give an example of a normal linear operator on a finite dimensional unitary space that
is neither self-adjoint nor unitary. Justify your answer.
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January 2002

1. Let A be a matrix and assume A2 has characteristic polynomial x3(x− 1)2 and minimal
polynomial x2(x− 1). What are the possible Jordan canonical forms of A?

2. Let T : V → W be a linear transformation between two vector spaces V and W. Show
that T is injective if and only if ker T = {v ∈ V : T(v) = 0} only contains the vector 0.

Solution: Suppose T is injective. Let v ∈ ker T. Then T(v) = 0 = T(0) so that v = 0.
Therefore, ker T = {0}. Now suppose that ker T = {0}. If T(v) = T(v′) for some v, v′ ∈ V,
then T(v) = T(v′) implies 0 = T(v)− T(v′) = T(v− v′) so that v− v′ ∈ ker T. Therefore,
v− v′ = 0 so that v = v′. But then T is injective.

3. Let T : V →W be a linear transformation between two finite dimensional vector spaces
V and W. Show that T is an isomorphism if and only if the dual map T∗ : W∗ → V∗ is an
isomorphism.

4. Let T : V → V be a linear operator on a vector spaces V and assume v1, . . . , vk are eigen-
vectors of T corresponding to the distinct eigenvalues α1, α2, . . . , αk. Show that v1, v2, . . . , vk
are linearly independent.

5. Suppose A is an n× n matrix over the real numbers R. Show that A is diagonalizable
over R if and only if we can find a basis for Rn consisting of eigenvectors for A.

6.

(a) Assume T is a normal linear operator on a finite dimensional complex inner prod-
uct vector space. Show that eigenvectors corresponding to distinct eigenvalues are
orthogonal.

(b) Show by example that this need not be true if T is not normal.
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August 2002

1. Prove or disprove the following: if A is a complex square matrix such that An = A for
some integer n > 1, then A is diagonalizable.

Solution: We prove something slightly more general: let k be an algebraically closed field
of characteristic 0 and A is a matrix with entries in k, if An = A then A is diagonalizable.
Now the matrix A satisfies An − A = 0, i.e. satisfies the polynomial p(x) = xn − 1. Since
char k = 0, the roots of p(x) are simple. Since k is algebraically closed, we can write

p(x) = xn − 1 =
n

∏
i=1

(x− ri),

where ri are the roots of A (in fact, rn
i = 1 for all i). Since the roots of p(x) are distinct, the

characteristic and minimal polynomial for p(x) are identical. But then A is diagonalizable.
[Recall that a linear operator A : V → V is diagonalizable if and only if its minimal
polynomial in F[T] splits in F[T] and has distinct roots, where F is an algebraically closed
field of characteristic zero.] Note that the result is false if the field is not algebraically closed

of characteristic 0. For example, A =

(
0 1
−1 0

)
satisfies A4 = I but is not diagonalizable

over R as it has complex eigenvalues. Furthermore, A =

(
1 1
0 1

)
∈ M2(F2) satisfies

A2 − 1 = (A− 1)2 so that A2 = I but is not diagonalizable.

2. Let V be the vector space of all the real polynomials of degree less or equal to 3, and let
T : V → V be the linear transformation given by T( f ) = − f + f ′ + f ′′.

(a) Find the matrix M of T with respect to the basis {1, x, x2, x3} of V.

(b) Find the minimal polynomial of T.

(c) Is the matrix M diagonalizable? Why, or why not?

(d) Find the Jordan canonical form of M.

3. Let A be a fixed 5× 8 real matrix for which there exists an 8× 5 real matrix B satisfying
AB = I, where I is the identity matrix.

(a) Prove that B can be chosen in such a way that three of its rows consist entirely of zeros.

(b) What are the necessary and sufficient conditions on the matrix A for the uniqueness of
the matrix B satisfying (a).
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(c) Suppose that now B is a fixed 8× 5 matrix, and A varies. State, but do not prove the
analogue of (a).

4. Let V be the vector space of all the real polynomials of degree less or equal 3. For all
p(x) ∈ V, put φ(p(x)) =

∫ 2
1 p(x) dx.

(a) Prove that φ is a linear functional on V.

(b) Let {φ0, φ1, φ2, φ3} in V∗ be the dual basis of the basis {1, x, x2, x3} of V. Express φ as a
linear combination of the φi.

(c) Give the definition of the evaluation map e : V → V∗∗.

(d) Find e(1 + x + x2 + x3)(φ) where φ is defined above.

(e) Show that e is a monomorphism. Is it an isomorphism? Why, or why not?

5.

(a) Show that the eigenvalues of a real symmetric matrix are real.

(b) Let A be a real matrix. Show that AT A is diagonalizable.

6. For A =

5 2 2
2 2 −4
2 −4 2

, find a real orthogonal matrix P and a diagonal matrix D such

that A = PDP′. Hint: 6 is one of the eigenvalues.
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January 2003

1. A 5-by-5 matrix A has characteristic polynomial (x − 2)3(x + 1)2, while the matrix
(A− 2I5)2 has rank 2 and A + I5 has rank 4. What are the possible Jordan canonical forms
of A?

2. If A is a Hermitian complex matrix, show that its characteristic values must be real.
[Recall that A is called Hermitian (or self-adjoint) if it satisfies the equal A = AT, where
AT is the complex conjugate of the transpose of A.]

3. Let V be a vector space with basis B = {v1, . . . , vn} and let w ∈ V be nonzero. Show
directly, without quoting the dimension theorem, that we can find i such that we can
replace vi in V by w and still have a basis for V.

4. Let V, ( , ) be a finite dimensional inner product space over the real numbers. If W
is a subspace of V, prove that we can write V as a direct sum V = W ⊕W⊥, where
W⊥ = {v ∈ V : (v, w) = 0 for all w ∈W}.

5. Let V and W be finite dimensional vector spaces over a field k and let T : V → W be a
linear transformation.

(a) Define the transpose map T∗ : W∗ → V∗, where W∗ = Homk(W, k) is the dual of W.

(b) Show that T∗ is injective if and only if T is surjective.

Solution:

(a) Define T∗ : W∗ → V∗ as follows: given f ∈ Homk(W, k), i.e. a k-linear map f : W → k,
define T∗( f ) by f 7→ f ◦ T. Since f and T are linear, so too is f T. Moreover, T : V →W
and f : W → k so that f T : V → k, i.e. f T ∈ V∗ = Homk(V, k).

(b) Note that functions f , g on a set S satisfy f g = 1 if and only if f is surjective and g is
injective. Now T∗ is injective if and only if there exists a map R∗ : W∗ → V∗ such that
1 = R∗T∗ = (TR)∗. But this occurs if and only if TR = 1. Of course, this occurs if and
only if T is surjective.

6. Let V and W be finite dimensional vector spaces over a field k and let T : V → W be a
linear transformation. Let S = {v1, v2, . . . , vm} be a subset of V. For each of the following
statements either prove it or give a counterexample to it.

(a) If S is linearly independent set in V, then {T(v1), T(v2), . . . , T(vm)}must be a linearly
independent set in W.
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(b) If {T(v1), T(v2), . . . , T(vm)} is a linearly independent set in W, then S must be a lin-
early independent set in V.
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August 2003

1. Let A be a n × n complex matrix and let k be a positive integer. Show that µ is an
eigenvalue of Ak if and only if µ = λk for some eigenvalue λ of A.

2. Let V be a finite dimensional vector space. A linear map σ : V → V is said to be
a reflection if σ2 = 1V . What are the possible eigenvalues of a reflection? Must every
reflection be diagonalizable? Why, or why not?

3. Let V be a finite dimensional vector space and let σ : V → V be a linear map whose
range is 1-dimensional. Prove that σ is either nilpotent or diagonalizable.

4. Prove that if a real quadratic form with matrix A is positive definite, then A is invertible
and the quadratic form with matrix A−1 is also positive definite.

5. Let φ be a linear operator on the unitary space Cn.

(a) Prove if (φx, x) > 0 for all nonzero x ∈ Cn, then al the eigenvalues of φ are positive.

(b) Give an example showing that the converse of (a) is false.

(c) Prove that if φ is self-adjoint, then the converse of (a) is true.

6. Find the Jordan canonical form of the following matrices. Justify your answers.

(a) α 0 0
0 β 0
γ 0 α


where γ 6= 0.

(b) 
1 0 0 0 · · · 0
1 2 0 0 · · · 0
...

...
...

...
. . .

...
1 2 3 4 · · · n



21



January 2004

1. Let A be a complex matrix with characteristic polynomial (x− 1)4(x + 2)3. Assume that
the rank of (A− I7)2 is 5 and the rank of (A + 2I7) is 4. What is the Jordan canonical form
of A? Justify your answer.

2.

(a) Let A be an n-by-n matrix over a field F. Then C(A) = {X ∈ Mn(F) : XA = AX} is
called the centralizer of A in Mn(F). Let Y ∈ Mn(F) be an invertible matrix. Show that
C(YAY−1) = Y[C(A)]Y−1. (Note: Y[C(A)]Y−1 = {YXY−1 : X ∈ C(A)}.)

(b) If F is the field of complex numbers and n = 2, what is the smallest dimension C(A)
can have?

3. For each of the following statements, either prove it or give an example to show that it is
false.

(a) Assume φ : V →W is a linear transformation between vector spaces. If {v1, v2, . . . , vn}
is a subset for V with {φ(v1), φ(v2), . . . , φ(vn)} linearly independent in W, then {v1, v2, . . . , vn}
is linearly independent in V.

(b) Assume V is a 5-dimensional vector space and W is a 3 dimensional vector space with
X : V → W and Y : V → W surjective linear transformations. Then there exists v ∈ V,
nonzero, such that X(v) = Y(v) = 0.

4. Show that an n-by-n matrix A over a field F is similar to a diagonal matrix if and only if
there is a basis for F(n), the space of n-by-1 matrices over F, consisting of eigenvectors for A.

5. Let P2 be the vector space of polynomials of degree at most 2 over the real numbers
togethet with the inner product 〈 f , g〉 =

∫ 2
0 f g dx. Let φ : P2 → R be the functional given

by φ( f ) = f (1). Find g ∈ P2, such that φ( f ) = 〈 f , g〉, for all g ∈ P2.

6. Let V be a finite dimensional inner product space over the complex numbers and let W
be a subspace with orthonormal basis {α1, α2, . . . , αt}. If β ∈ V, show that γ = ∑i〈β, αi〉 αi
is the unique element of W with ‖β− γ‖ =

√
〈β− γ, β− γ〉.

22



August 2004

1. Find all possible Jordan normal forms of a complex square matrix A with characteristic
polynomial x(x + 1)3(x− 3)2 if A + I has rank 4.
2. Let f be a bilinear form on a finite-dimensional vector space V over a field k, and let
B be the matrix of f with respect to some basis for V. For each α ∈ V define a function
φα : V → k by φα(β) = f (α, β).

(a) Prove that φα is a functional on V.

(b) If V̂ is the dual space of V, prove that the map σ : V → V̂ given by σ(α) = φα is a
linear transformation.

(c) Find and prove the necessary and sufficient conditions on B in order for σ to be an
isomorphism.

3. Let l1, l2, l3 be three distinct straight lines passing through the origin of the Euclidean
plane R2. Prove that if m1, m2, m3 are three distinct lines through the origin, then there
exist a linear automorphism φ of R2 satisfying φ(li) = mi, i = 1, 2, 3.
4. Let GLn(F) denote the group of n× n nonsingular matrices over a field F.

(a) Prove that the map sending a complex number a + bi to the 2× 2 real matrix
[

a −b
b a

]
is a homomorphism of the field of complex numbers into the ring of 2× 2 real matrices.

(b) Find a subgroup of GL2(R) isomorphic to the multiplicative group of nonzero complex
numbers.

(c) Prove that for every n, GLn(C) is isomorphic to a subgroup of GL2n(R).

5. Give a complete list of nonisomorphic groups of order 245, and prove your answer.
6. Let Z[X] be the ring of polynomials in the variable X with integer coefficients. Determine
whether the following statements are true or false. If a statement is true, give a proof; if it
is false, provide a counterexample.

(a) Z[X] is an integral domain.

(b) Z[X] is a Principal Ideal Domain.

(c) Z[X] is a Unique Factorization Domain.

(d) Let Z3 be the set of triples of integers. Given a matrix A =

0 0 −2
1 0 0
1 1 0

, we turn Z3

into a Z[X]-module by putting p(X) · v = p(A)v for all p(X) ∈ Z3 and v =

v1
v2
v3

.

Then Z3 is a torsion Z[X]-module.
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7. Let R be a Principal Ideal Domain with field of fractions K. If M ⊆ K is a finitely
generated R-submodule of K, show that M is generated by one element.
8. Let α be the real cube root of 2. Compute the irreducible polynomial for 1 + α2 over Q.
9. Let K = F(α) be a field extension generated by an element α, and let β ∈ K, β /∈ F. Prove
that α is algebraic over the field F(β).
10. Let K ⊃ L ⊃ F be fields of characteristic 0. Prove or disprove:

(a) IF K/F is Galois, then K/L is Galois.

(b) If K/F is Galois, then L/F is Galois.

(c) If L/F and K/L are Galois, then K/F is Galois.
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January 2005

1. Consider the following set of vectors in R3

S =


1

2
1

 ,

3
5
3

 ,

4
7
4

 ,

5
9
5


Find a subset T ⊂ S such that T is a basis for the span of S.

Solution: Let the vectors of S be x1, x2, x3, x4 in the order given. Note that x1 + x2 = x3
and 2x1 + x2 = x4 so that we can eliminate x3 and x4 from S without changing the span. It
is clear that x1 and x2 are independent. Then {x1, x2} is a basis for S.

2. Let T be the linear transformation from R2 to R2 defined by T(x, y) = (x + y, x − y).
Determine all ordered bases B for R2 such that the matrix representing T with respect to
B (the same B being used as the ordered basis for both the domain R2 and the target R2)
equals [

−1 1
1 1

]
To help make it clear that you really understand your description of all such B, do the
following: State explicitly whether the number of such B is 0, 1, a finite number greater
than 1, or infinite. If the number is 1, 2, or 3, list them explicitly. If the number is greater
than 3, list at least 3 different answers explicitly. If your description of all such B is a good
one doing those explicit things should be a triviality.

Solution: The matrix of T is
[
−1 1
1 1

]
so that

T(b1) = −1b1 + 1b2 = b2 − b1

T(b2) = 1b1 + 1b2 = b1 + b2

So if {b1, b2} =
{(

x1
y1

)
,
(

x2
y2

)}
is a basis, then

(x1 + y1, x1 − y1) = (x2 − x1, y2 − y1)

(x2 + y2, x2 − y2) = (x1 + x2, y1 + y2)

This implies

x1 = y2 =
x2 − y1

2
.
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Hence, the number of possible ordered bases is infinite. Now choosing x2 = y1 = 1,
x2 = y1 = −1, and x2 = 2, y1 = −4, we have corresponding bases

B =

{(
0
1

)
,
(

1
0

)}
B =

{(
0
−1

)
,
(
−1
0

)}
B =

{(
3
−4

)
,
(

2
3

)}

3. A square matrix A has characteristic polynomial (x− 1)6(x− 2)4, nullity (A− I) = 3,
nullity (A− I)2 = 5, nullity (A− 2I) = 2, and nullity (A− 2I)2 = 4. What is the Jordan
normal form for A?

Solution: Observe nullity (A− I) = 3 so that there are 3 Jordan blocks for the eigenvalue
λ = 1. As nullity (A− I)2− nullity (A− I) = 5− 3 = 2, there are two of the three Jordan
blocks for λ = 1 have size at least two. Furthermore, nullity (A− 2I) = 2 so that there
are 2 Jordan blocks for λ = 2. As nullity (A− 2I)2− nullity (A− 2I) = 4− 2 = 2, there
are two Jordan blocks of size at least two for λ = 2. Then the invariant factors are (x− 1),
(x− 1)2(x− 2)2, and (x− 1)3(x− 2)3 and the Jordan form, up to permutation of blocks, is

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1 2



4. Let V be an inner product space with inner product ( , ) and u and v vectors in V. Prove
that u = v if and only if (u, w) = (v, w) for all w ∈ V.

Solution: Assume that u = v, then (u, w) = (v, w) for all w ∈ V. Now assume that
(u, w) = (v, w) for all w ∈ V. Take w := u − v. Then as (u, w) = (v, w), we have
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(u− v, u− v) = 0. As (· , ·) is positive definite, it must be that u− v = 0. Then u = v.

5. For this one you do not have to show work. We are just testing to see if you remember a
famous theorem. Fill in the blanks to complete the following famous theorem.

Theorem: If A is a given m× n matrix, then

(a) The null space of A is the orthogonal complement of (blank).

(b) The null space of AT is the orthogonal complement of (blank).

Solution:

(a) The null space of A is the orthogonal complement of the row space of A.

(b) The null space of AT is the orthogonal complement of the column space of A.

6. Let g, h be elements of a group G. If g4h = hg4 and g7 = 1, prove that gh = hg.

Solution: Since g7 = 1, we have g8 = g. Then we have

gh = g8h = g4g4h = g4hg4 = hg4g4 = hg8 = hg

so that gh = hg.

7. If H is a subgroup of a group G, then G acts on the set G/H of left cosets of H in G by
g · xH = gxH. Describe the stabilizer of the coset aH explicitly as a subgroup of G.

Solution: We have

stab aH = {g ∈ G : g · aH = aH}
= {g ∈ G : gaH = aH}
= {g ∈ G : a−1gaH = H}
= {g ∈ G : a−1ga ∈ H}
= {g ∈ G : g ∈ aHa−1}

But aHa−1 = {g ∈ G : g ∈ aHa−1} is a subgroup of G: 1 ∈ H so that a1a−1 = aa−1 =
1 ∈ aHa−1 (showing that the set is nonempty). Now if ah1a−1, ah2a−1 ∈ aHa−1, we have
ah1a−1 · ah2a−1 = a(h1h2)a−1 and as h1, h2 ∈ H, h1h2 ∈ H. Therefore, a(h1h2)a−1 ∈ aHa−1.
Finally, if aha−1 ∈ aHa−1, (aha−1)−1 = (a−1)−1h−1a−1 = ah−1a−1 and as H is a subgroup,
h−1 ∈ H so that ah−1a−1 ∈ aHa−1.

8.
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(a) Prove that an integral domain with finitely many elements is a field.

(b) Is there an integral domain containing exactly 10 elements?

Solution:

(a) Let R be a finite integral domain and 0 6= α ∈ R. Define Lα : R→ R via x 7→ αx. Now
if Lα(x) = 0, we have αx = 0. Since R is an integral domain, it must be α = 0 or x = 0.
But α 6= 0 so that x = 0. Then it must be that Lα is injective. But then Lα is an injective
map between finite sets of the same cardinality. Therefore, Lα is surjective (hence a
bijection). Then there exists r ∈ R such that 1 = Lα(r) = αr. But then α is a unit. As
this holds for all 0 6= α ∈ R, it must be that R is a field.

(b) Suppose R were a finite integral domain. By (a), R is a field. In particular, char R
exists (this is defined even for an integral domain). Suppose char R = n < ∞. If
n = pq for some integers p, q ∈ Z>1< then 0 = n · 1 = (pq) · 1 = (p · 1) · (q · 1).
As R is an integral domain, p · 1 = 0 or q · 1 = 0. Since p, q > 1 divide n, we have
p, q < n. But as n = char R, it must be that p · 1, q · 1 6= 0, a contradiction. Then the
characteristic of a finite field must be prime. In particular, a finite field must have car-
dinality pn for some n and fixed prime p. Now as a finite integral domain is a field and
10 = 2 · 5, it must be that there is no integral domain containing exactly 10 elements.

9. For a prime p, the cyclotomic polynomial xp−1 + xp−2 + · · ·+ x + 1 is irreducible in Q[x].
Use this fact to prove the following statement. If ζ = e2πi/7 and η = e2πi/5 then η /∈ Q(ζ).

Solution: Suppose that η ∈ Q(ζ). Then Q(ζ, η) = Q(ζ) and consider Q(ζ, η).

Q(ζ, η)

Q(ζ) Q(η)

Q

1

6 4

Now ζ is a root of x7 − 1 = (x− 1)(x6 + · · ·+ 1). Now ζ is not a root of x− 1 so that ζ is a
root of x6 + · · ·+ 1 and x6 + · · ·+ 1 is irreducible. Therefore, the minimal polynomial for ζ
is pζ(x) = x6 + · · ·+ 1 and deg pζ(x) = 6. Therefore, [Q(ζ) : Q] = 6. Similarly, the minimal
polynomial of η is pη(x) = x4 + · · ·+ 1 and deg pη(x) = 4. Therefore, [Q(η) : Q] = 4. By
assumption, [Q(ζ, η) : Q(η)] = 1 since Q(ζ, η) = Q(ζ). But we have

[Q(ζ, η) : Q] = [Q(ζ, η) : Q(η)] [Q(η) : Q]

6 = [Q(ζ, η) : Q(η)] · 4
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But then [Q(ζ, η) : Q(η)] /∈ Z, a contradiction. Therefore, η /∈ Q(ζ).

10. Let K be a splitting field of an irreducible cubic polynomial f (x) over a field F of
characteristic 0 whose Galois group is S3. If α ∈ K satisfies f (α) = 0, determine the group
of automorphisms G(F(α)/F) of the extension F(α).

Solution: Because K is the splitting field of f , we know that K/F is normal. Furthermore
since K is the splitting field of f , K/F is algebraic. Since K/F is algebraic and char F = 0,
K/F is a separable extension. But as K/F is normal and separable, K/F is a Galois
extension. But then |Gal(F(α)/F)| = [F(α) : F] = deg pα(x) = 3, where pα(x) is the
minimal polynomial of α (which must be f since f (α) = 0 and f is irreducible). Therefore,
Gal(F(α)/F) ∼= C3.
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August 2005

1.

(a) How many elements of order 6 are there in the symmetric group S7?

(b) How many conjugacy classes in S7 consist of elements of order 6?

Solution:

(a) Recall the order of an element of Sn is the least common multiple of the cycles in the
cycle decomposition of the element. If σ ∈ Sn, the cycle decomposition of σ corresponds
to a partition of n. Therefore, σ ∈ S7 has order 6, the possible corresponding partition
of 7 is among the following: (6, 1), (3, 2, 2), (3, 2, 1, 1). [As a representative of each type,
we could take (1 2 3 4 5 6), (1 2 3)(4 5)(6 7), and (1 2 3)(4 5), respectively.]

For the first type, there are 7 ways to choose the elements of the 6-cycle and 6! ways
to arrange the elements. Then there are 7 · 6!

6 elements of the form (1 2 3 4 5 6). [The
division by 6 in 6!

6 is the fact that any cyclic permutation of a cycle still represents the
same cycle, .e.g. (a b c) = (c a b) = (b c a) as 3-cycles.]

For the second type, there are (7
3) ways to choose the elements to form the 3-cycle

and 3!
3 ways to uniquely determine the 3-cycle. Then there are 4 unused elements. If

we form one of the 2-cycles, examining any remaining element, choosing where it is
mapped (there are 3 choices) determines one of the two cycles. But with 2 elements
remaining, it also determines the remaining 2-cycle. There are then (7

3) ·
3!
3 · 3 elements

of this form.

For the third type, there are again (7
3) ways to choose the elements for the 3-cycle and

3!
3 to uniquely determine the 3-cycle. There are then 4 unused elements so that there
are (4

2) ways to choose elements for the 2-cycle and the 2-cycle is uniquely determined
by that choice. There are then (7

3) ·
3!
3 · (

4
2) elements of this form.

Therefore, the number of elements of order 6 in S7 is:

7 · 6!
6
+

(
7
3

)
· 3!

3
· 3 +

(
7
3

)
· 3!

3
·
(

4
2

)
= 840 + 210 + 420 = 1470.

(b) In any group, conjugate elements have the same order (conjugation preserves order).
Two elements of Sn are conjugate if and only if the elements have the same cycle
decomposition, i.e. they have the same cycle type. The elements of order 6 in S7 have
cycle decompositions which can be represented by (1 2 3 4 5 6), (1 2 3)(4 5)(6 7), and
(1 2 3)(4 5), i.e. cycle decompositions corresponding to the following partitions of
7: (6, 1), (3, 2, 2, ), (3, 2, 1, 1), respectively. Therefore, there are three conjugacy classes
consisting of elements of order 6.
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2. Show that a group of order 48 cannot be simple.1

Solution: Let G be a group of order 48 and np denote the number of Sylow p-subgroups of
G. By Sylow’s Theorem, np ≡ 1 mod p and np | m, where |G| = prm, where (p, m) = 1
and r ∈ Z is maximal (the largest power of p dividing |G|). Note |G| = 48 = 24 · 3. By
Sylow’s Theorem, n2 ∈ {1, 3}. If n2 = 1, then G contains a unique (hence normal) Sylow
2-subgroup. But then G is not simple. Suppose then that n2 = 3. Then the action of G on
the set of Sylow 2-subgroups (the action being conjugation) induces a homomorphism of
φ : G → S3. If ker φ were trivial, then G would be isomorphic to a subgroup of S3. But
|G| = 48 and |S3| = 6 and 48 - 6. Therefore, ker φ 6= {1}. [Note that the action of G on
the set of Sylow 2-subgroups is nontrivial so that ker φ 6= G.] But the kernel of a group
homomorphism is always a normal subgroup so that G is then not simple. Therefore, no
group of order 48 can be simple.

OR

The class equation for G is

|G| = |Z(G)|+
r

∑
i=1

[G : CG(ai)]

where the Z(G) is the center of G, CG(x) is the centralizer of x in G, and the summation
is over a1, . . . , ar representatives for the distinct conjugacy classes of G. The center of a
group is always normal. Then if Z(G) 6= G and |Z(G)| 6= 1, then Z(G) ≤ G is a normal
subgroup. If |Z(G)| = |G|, then G is abelian. By Cauchy’s Theorem, G would then contain
an element of order p for every prime p | |G|. But in an abelian group, every subgroup is
normal so that then G would not be simple. Suppose then that |Z(G)| = 1. Then we have

r

∑
i=1

[G : CG(ai)] = |G| − |Z(G)| = 48− 1 = 47.

Then there must be a conjugacy class of size 1 or 3. If 1 6= x ∈ G has a conjugacy class of
size 1, then x ∈ Z(G) so that Z(G) is nontrivial, a contradiction. If x ∈ G has a conjugacy
class of size 3, there is a homomorphism φ : G → S3 given by the action of G on the set of
conjugacy classes of 〈x〉 via conjugation. As im φ ≤ S3 and |S3| = 6, using im φ ∼= G/ ker φ
(by the First Isomorphism Theorem), we must have | ker φ| ≥ 8. Now if ker φ = G, then
every element of G fixes the conjugacy classes of 〈x〉. But if {1〈x〉1−1, g〈x〉g−1, h〉x〉h−1}

1Note this is trivial by Burnside’s Theorem: if G is a finite group of order paqb, where a, b ∈ Z≥0 and p, q
are primes, then G is solvable (so that G cannot be simple). Note that use of such a ‘sledgehammer’ for this
problem would not be allowed.
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are the distinct conjugacy classes of 〈x〉, where g, h ∈ G. But g · 〈x〉 := g〈x〉g−1 6= 〈x〉 so
that the action cannot be trivial. Therefore, ker φ is a proper nontrivial subgroup of G so
that G cannot be simple.

OR

We claim that if G is a finite simple group of order at least 3 and H is a nontriv-
ial proper subgroup of G with |G : H| = n > 1, then G is isomorphic to a subgroup
of An: Since H < G and |G : H| = n > 1, the action of G on the (left) cosets of H
via left multiplication induces a map φ : G → Sn with ker φ ≤ H. But as G is sim-
ple, ker φ = {1}. By the First Isomorphism Theorem, im φ ∼= G/ ker φ = G. Suppose
φ(G) 6⊆ An. Then we must be Anφ(G) = Sn. By the Second Isomorphism Theorem,
Sn/An = Anφ(G)/An ∼= φ(G)/(An ∩ φ(G)). Now as G is simple, An ∩ φ(G) is triv-
ial or An ∩ φ(G) = φ(G). If An ∩ φ(G) = φ(G), then Sn/An = 1, a contradiction. If
An ∩ φ(G) = 1, then Sn/An ∼= Z/2Z ∼= φ(G) ∼= G, i.e. |G| = 2, a contradiction. Therefore,
φ(G) ⊆ An.

3. Let G be a finite group with subgroups H, K ≤ G. Consider the restriction to K of the
left action of G on the left cosets of H in G.

(a) Show that the stabilizer in K of the coset H = 1H is H ∩ K.

(b) Show that [K : H ∩ K] ≤ [G : H].

(c) Conclude [G : H ∩ K] ≤ [G : H] [G : K].

Solution:

(a)

stabK(H) = {k ∈ K : k · H = H}
= {k ∈ K : kH = H}
= {k ∈ K : k ∈ H}
= H ∩ K

(b) By the Orbit-Stabilizer Theorem, |OH | = |G : stabH | so that |OH ∩ K| = |K : H ∩ K| by
(a). But |OH | ≤ |OH | = |G : GH | and

GH = {g ∈ G : g · H = H} = {g ∈ G : gH = H} = {g ∈ G : g ∈ H} = H.

But then |OH ∩ K| ≤ |O| = |G : GH | = |G : H|. But then |K : H ∩ K| ≤ |G : H|.
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(c) Using (b),
|G : H ∩ K| = |G : K| |K : H ∩ K| ≤ |G : K| |G : H|

Therefore, |G : H ∩ K| ≤ |G : K| |G : H|.

4. Let A be a real, symmetric m×m matrix.

(a) Show that the eigenvalues of A are real.

(b) Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

Solution:

(a) Let v be an eigenvector of A associated with eigenvalue λ. Then Av = λv. If M is a
matrix, M∗ denote the conjugate transpose and M denote the conjugate of M. Since
A is symmetric, A = AT. Furthermore since A is a real matrix, A∗ = A. We compute
v∗Av two different ways:

v∗Av = v∗(Av) = v∗(λv) = λ(v · v)
v∗Av = (Av)Tv = (λv)Tv = λ(v · v).

Since v 6= 0, v · v 6= 0. But then λ = λ. Thus, λ ∈ R.

(b) Note that if A is a real symmetric matrix, 〈Ax, y〉 = 〈x, ATy〉 = 〈x, Ay〉. Let λ, µ be
distinct eigenvalues with corresponding eigenvectors x, y, respectively. Then

λ〈x, y〉 = 〈λx, y〉 = 〈Ax, y〉 = 〈x, ATy〉 = 〈x, Ay〉 = 〈x, µy〉 = µ〈x, y〉.

Therefore, (λ− µ)〈x, y〉 = 0. Since λ, µ are distinct, λ− µ 6= 0. Therefore, 〈x, y〉 = 0 so
that x and y are orthogonal.

5. Let C[0,π] be the real vector space of continuous real-valued functions defined on the
closed interval [0, π], and let V be teh subspace of C[0,π] spanned by the linearly inde-
pendent functions 1, cos t, sin t, cos2 t, and sin 2t. For all f , g ∈ V consider the expression
B( f , g) =

∫ π
0 (t + 1) f (t)g(t) dt.

(a) Prove that B( f , g) is a bilinear form on V; first define a bilinear form.

(b) Give the definition of a symmetric bilinear form. Is B( f , g) symmetric?
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(c) Give the definition of a positive definite real quadratic form and determine whether
the quadratic form associated to B( f , g) is positive definite.

(d) Is there a basis e1, . . . , em for V, for some m > 0, with respect to which the m × m
identity matrix Im is the matrix of B( f , g)?

Solution:

(a) A bilinear form for a vector space V over a field K is a function 〈 , 〉 : V ×V → K such
that

〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
〈u, v + w〉 = 〈u, v〉+ 〈u, w〉

k〈u, v〉 = 〈ku, v〉 = 〈u, kv〉

for all u, v, w ∈ V and k ∈ K. Now let f , g, h ∈ C[0,π] and r ∈ R. Then

B( f + g, h) =
∫ π

0
(t + 1)( f + g)h dt

=
∫ π

0
(t + 1) f h + (t + 1)gh dt

=
∫ π

0
(t + 1) f h dt +

∫ π

0
(t + 1)gh dt

= B( f , h) + B(g, h)

B( f , g + h) =
∫ π

0
(t + 1) f (g + h) dt

=
∫ π

0
(t + 1) f g + (t + 1) f h dt

=
∫ π

0
(t + 1) f g dt +

∫ π

0
(t + 1) f h dt

= B( f , g) + B( f , h)

B(r f , g) =
∫ π

0
(t + 1)(r f )g dt = r

∫ π

0
(t + 1) f g dt = rB( f , g)

B( f , rg) =
∫ π

0
(t + 1) f (rg) dt = r

∫ π

0
(t + 1) f g dt = rB( f , g)

Therefore, B( f , g) is a bilinear form on V.

(b) The definition of a bilinear was given in (a). A bilinear form 〈· , ·〉 is symmetric if
〈v, w〉 = 〈w, v〉 for all v, w ∈ V. The given form B( f , g) (which is bilinear from (a), is
symmetric since

B( f , g) =
∫ π

0
(t + 1) f (t)g(t) dt =

∫ π

0
(t + 1)g(t) f (t) dt = B(g, f ).
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(c) A quadratic form associated to a symmetric bilinear form 〈· , 〉 on V over a field K is a
function q : V → K such that q(v) = 〈v, v〉. The form q is positive definite if q(v) = 0 if
and only if v = 0. Now for the given bilinear form, B( f , g)

q( f ) = 〈 f , f 〉 = B( f , f ) =
∫ π

0
(t + 1) f 2(t) dt ≥ 0

since f 2(t) ≥ 0. Since f , t + 1, f 2 are continuous on [0, π], we have (t + 1) f 2(t) contin-
uous on [0, π]. Then if B( f , f ) = 0, we must have (t + 1) f 2(t) ≡ 0 on [0, π]. But since
t + 1 6≡ 0 on [0, 1], we must have f 2(t) ≡ 0 on [0, 1]. Therefore, f (t) = 0 for all t ∈ [0, 1].
Clearly if f ≡ 0 on [0, 1], then B( f , f ) = 0. But then q( f ) = B( f , f ) is positive definite.

6. Find all possible Jordan normal forms of a complex m × m matrix A with the char-
acteristic polynomial (x2 + 3)2(x + 5)4 if the matrix A + 5Im is of rank 7. No proof is
needed.
7.

(a) Prove that the kernel of the homomorphism φ : C[x, y] → C[t] of polynomial rings
given by φ(x) = t2 and φ(y) = t3 is the principal ideal generated by the polynomial
y2 − x3.

(b) Determine the image of φ explicitly.

Solution:

(a)

(b)

8.

(a) Give the definition of an integral domain.

(b) Give the definition of the characteristic of a nontrivial commutative ring.

(c) Is there an integral domain of characteristic 6? Explain.

(d) Is there an integral domain with 12 elements? Explain.

Solution:

(a) An integral domain is a commutative ring with identity with no zero divisors, i.e. for
all a, b ∈ R, ab = ba and if ab = 0, then a = 0 or b = 0.
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(b) We demand 1 ∈ R. The characteristic of a commutative ring R is the smallest integer
positive integer n ∈ Z such that n · 1 = 0. If no such n exists, we say R has characteristic
0.

(c) The characteristic of an integral domain is either 0 or prime: let R be an integral domain.
If char R = 0, we are done. If not, let char R = n. If n = rs for some integers r, s, neither
of which are 1, then 1 < r, s < n. But 0 = n · 1 = (rs) · 1 = (r · 1)(s · 1). Now since
r, s < n, neither r · 1 nor s · 1 are 0. But then R contains zero divisors, a contradiction.
Then it must be that either r = 1 or s = 1 so that n must be prime.

Since 6 is not prime, there can be no integral domain with characteristic 6.

(d) A finite integral domain is a field: let R be an integral domain and consider the map
φa : R→ R given by r 7→ ar, where a ∈ R \ {0} is a fixed element. If φa(ra) = 0, then
ra = 0 so that either r = 0 or a = 0. But a 6= 0 so that r = 0. But then ker φ = {0}.
Therefore, φ is injective. Since R is finite, φ is an injection map between finite sets,
hence an isomorphism. But then there exists r′ ∈ R such that 1 = φa(r′) = ar′. But
then a is invertible. Since a ∈ R \ {0} was arbitrary, R is a field.

Now since R is finite, we know char R 6= 0. But then char R = p, where p is a prime.
Now R (a field) must contain the subfield Fp ∼= Z/pZ (since 1 ∈ R generates this
subfield). But then R is a vector space over Fp so that it is free over Fp. But R is finite
and Fp has cardinality p so that |R| ∼= pn for some n ∈ Z.

Alternatively, if q | |R|, where q 6= p and char R = p, then by Cauchy’s Theorem, R
contains an element of order q, say x ∈ R. Now q · x = 0 and p · x = 0. Since (p, q) = 1,
we can find r, s ∈ Z such that rp + sq = 1. But then 1 · x = (rp + sq) · x. However,

1 · x = (rp + sq) · x = rp · x + sq · x = r(p · x) + s(q · x) = 0

so that x = 0. But since |x| = q > 0 in (R,+), this is a contradiction. Then the only
prime dividing |R| is p so that |R| = pn.

Now 12 = 22 · 3 has two distinct prime divisors. Therefore, no integral domain with 12
elements can be a field.

9. Determine the irreducible polynomial for β =
√

2 +
√

7 over each of the following fields.

(a) Q(
√

7)

(b) Q(
√

14)

(c) Q

10. Let ζ = e
2πi

5 .
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(a) Prove that K = Q(ζ) is a splitting field for the polynomial x5− 1 over Q and determine
the degree [K : Q]. Use the fact that for a prime p, the cyclotomic polynomial xp−1 +
xp−2 + · · ·+ x + 1 is irreducible over Q.

(b) Determine the Galois group G(K/Q) explicitly and up to isomorphism.
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January 2006

1. Assume A is a n-by-n matrix such that rk[A − 2In] − rk[(A − 2In)2] = 5. (Here rk
denotes the rank of the matrix and In is the identity matrix.) How much can be concluded
about the Jordan canonical form of A?

Solution: We have rk A + nullity A = n. Then we have

5 = rk[A− 2In]− rk[(A− 2In)
2]

= (n− nullity(A− 2In))− (n− nullity(A− 2In)
2)

= nullity(A− 2In)
2 − nullity(A− 2In)

Then we know there are 5 Jordan blocks associated to λ = 2 that are of at least size 2. In
particular, there are at least 5 Jordan blocks associated to λ = 2.

2. Let V = R2 be the Euclidean plane and assume that T : V → V is a linear operator. Let
l1, l2, and l3 be three distinct lines passing through the origin with T(li) = li for i = 1, 2, 3.
Show that T is a dilation, that is, T is multiplication by some constant.

3. Let k be a field and let T : V →W be a linear transformation between two vector spaces
over k.

(a) Define the adjoint2 T∗ : W∗ → V∗ of the linear operator T.

(b) Show that T∗ is injective if and only if T is onto.

4. Show that a finite group of order 24 cannot be simple.

Solution: The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. By Sylow’s Theorem n2(G) ≡ 1
mod 2 and divides 24. The only possibilities are n2(G) = 1 or n2(G) = 3. If n2(G) = 1,
then G contains a unique 2-Sylow subgroup, which is necessarily normal. This implies that
G has a nontrivial, proper, normal subgroup. Thus, G is not simple.

Suppose that n2(G) = 3. Let X denote the set of 2-Sylow subgroups. Note that G acts
on X by conjugation. This induces a homomorphism φ : G → SX. Since |G| = 24 and
|SX| = 3! = 6, φ is not injective. Therefore, | ker φ| > 1. Note that | ker φ| 6= 24 since
any two 2-Sylow subgroups are conjugate (so they all can not be fixed by the action of
conjugation). Thus, ker φ is a proper, nontrivial, normal subgroup of G, which implies that
G is not simple.

2The exam says transpose but clearly the adjoint is meant.
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5. Let Sn denote the symmetric group on n letters and let An denote the alternating
subgroup. Recall that if σ ∈ G, where G is a group, the centralizer of σ in G is the subgroup
CG(σ) = {τ ∈ G : τσ = στ}.

(a) If σ ∈ An, use the sign homomorphism from Sn to {±1}, to show that CAn(σ), the
centralizer of σ in An, is either equal to CSn(σ) or it is a subgroup of CSn(σ) of index 2.

(b) If n = 5 and σ ∈ An is a 3-cycle, show that [CSn(σ) : CAn(σ)] = 2.

(c) We know that all 3-cycles are conjugate in S5. Use this and part (b) to show that all
3-cycles are conjugate in A5.

Solution:

(a) If H ≤ Sn, we claim either all permutations in H are even or exactly half of them are
even. If all permutations of H are even, then we are done. So suppose σ ∈ H is an odd
permutation. Let HE be the set of even permutations of H and HO be the set of odd
permutations of H. Define a map φ : HE → HO by ρ 7→ σρ. First, we show that φ is
well defined. If ρ1 = ρ2, then σρ1 = σρ2 which implies φ(ρ1) = φ(ρ2). Furthermore,
if φ(ρ1) = φ(ρ2), then σρ1 = σρ2, which implies ρ1 = ρ2. But then φ is injective. Let
γ ∈ HO. Then σ−1γ ∈ HE since σ−1γ is even. But then γ = σ(σ−1γ) = φ(σ−1γ) so
that φ is surjective. Then φ is a bijection between finite sets. Therefore, |HE| = |HO|.
Then |H| = |HE|+ |HO| = 2|HE|, half the permutations of H are even. As CSn(σ) ≤ Sn,
either CSn(σ) = CAn(σ) or |CSn(σ) : CAn(σ)| = 2.

(b) There are (5
3)2! = 20 3-cyles. So |orb σ| = |Sn : CSn(σ)| so that 20 = 120

|CSn (σ)|
. But then

|CSn(σ)| = 6. By the work below in (c), the 3-cycles are conjugate in A5. Therefore,
20 = 60

|CA5 |
and then |CA5(σ)| = 3. Therefore, |CS5(σ) : CA5(σ)| = 6

3 = 2.

(c) Consider (σ1 σ2 σ3). Any other 3-cycle will either have 1, 2, or 3 indices in common.
Without loss of generality, consider (σ1 σ4 σ5), (σ1 σ2 σ4), (σ1 σ3 σ2), respectively.
Define τ := (σ2 σ4)(σ3 σ5). Then τ(σ1 σ2 σ3)τ−1 = (σ1σ3σ2). Since τ ∈ A5, (σ1 σ2 σ3)
and (σ1 σ4 σ5) are conjugates. Furthermore, τ = (σ3 σ4 σ5) so that τ(σ1 σ2 σ3)τ−1 =
(σ1 σ2 σ4) so that (σ1 σ2 σ3) and (σ1 σ2 σ4) are conjugates. Finally, τ = (σ2 σ3)(σ4 σ5)
so that τ(σ1 σ2 σ3)τ−1 = (σ1 σ3 σ2). Therefore, (σ1 σ2 σ3) and (σ1 σ3 σ2) are conjugates.
But then all 3-cycles are conjugate in A5.

6. Let G be a finite p-group for some prime p. Show that the center of G is not trivial.
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Solution: Let |G| = pn for some n ≥ 0. If n = 0, the result is trivial. If p = 1, then
G ∼= Z/pZ, which is abelian. So suppose p > 1. The Class equation for G is

|G| = |Z(G)|+
r

∑
i=1

[G : CG(ai)]

where the Z(G) is the center of G, CG(x) is the centralizer of x in G, and the summation
is over a1, . . . , ar representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G : CG(ai)] > 1 since ai /∈ Z(G). The
Class equation for G can be rewritten as

|Z(G)| = |G| −
r

∑
i=1

[G : CG(ai)].

Each term on the right hand side is a divisor of |G| = pn. Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so that
|Z(G)| 6= 1.

7. Let Q denote the field of rational numbers and let f = x3 + 2x2 + 7 ∈ Q[x].

(a) Show that f has precisely one real root.

(b) Show that f is irreducible in Q[x].

(c) Show that the Galois group of f over Q is isomorphic to the symmetric group S3.

Solution:

(a) Observe that f (−3) = −14 and f (−1) = 8 so that by the Intermediate Value Theorem,
there is α ∈ (−3,−1) such that f (α) = 0. By Descartes Rule of Signs, f can have no
positive root and only one negative root. But then it must be that f has only one real
root.

(b) Since f is degree 3, f is reducible if and only if f has a rational root. By the Rational
Root Theorem, the only possible roots of f (x) are ±1,±7. But f (1) = 10, f (−1) = 8,
f (7) = 448, and f (−7) = −238. Therefore, f has no root in Q so that f is irreducible in
Q[x].

(c) Let K denote the splitting field of f . We know K/Q is Galois so that [K : Q] =
# Gal(K/Q). Since there are 3 roots, we know Gal(K/Q) ≤ S3. Then # Gal(K/Q)
is either 3 or 6, i.e. Gal(K/Q) = A3 or S3. If f (x) ∈ K[x] has one real root and a two
complex roots, we may consider complex conjugation as an automorphism of order
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2. But then this complex conjugation generates a subgroup of order two in Gal(K/Q).
Then any irreducible and separable extension of a cubic with a unique real root must
have Galois group isomorphic to S3 since A3 ∼= Z/3Z has no subgroup of order 2.

8.

(a) Let K/F be a finite extension of fields. Show that K/F is algebraic.

(b) Let L/K and K/F be algebraic field extensions. Show that L/F is also algebraic.

Solution:

(a) Let α ∈ K. We have F ⊆ F(α) ⊆ K. Since K/F is a finite extension, F(α)/F is a finite
extension since [K : F] = [K : F(α)][F(α) : F]. Suppose [F(α) : F] = n. Then α is a root
of a polynomial of at most degree n over F so that α is algebraic. Therefore, K/F is
algebraic.

(b) Let α ∈ L. Since L/K is algebraic, α satisfies some polynomial equation, say f (α) =
anαn + an−1αn−1 + · · ·+ a0 = 0, where ai ∈ K. Consider the extension F(α, a0, . . . , an).
Since K/F is a finite extension, ai is algebraic over F for all i by (a). Now α generates
an extension of at most degree n since the minimal polynomial must divide f (x). Then

[F(α, a0, . . . , an) : F] = [F(α, a0, . . . , an) : F(a0, . . . , an)] [F(a0, . . . , an) : F]

is also finite and F(α, a0, . . . , an)/F is algebraic. But then the element α is algebraic over
F. Therefore, L/F is an algebraic extension.

9.

(a) Assume R is a commutative ring and I ⊆ R is an ideal. Show that I[X] ⊆ R[X] is an
ideal.

(b) Using the First Isomorphism Theorem or otherwise, show that R[X]/I[X] is isomorphic
to (R/I)[X].

Solution:

(a) Clearly, I[x] is nonempty since I is nonempty. Furthermore, it is clear that 0 ∈ I[x].
Now suppose f (x), g(x) ∈ I[x]. Then f (x) = anxn + an−1xn−1 + · · · + a0, g(x) =
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bmxm + bm−1xm−1 + · · ·+ b0, where ai, bi ∈ I. Without loss of generality, assume n ≥ m.
Then

f (x) + g(x) =
n

∑
i=0

(ai + bi)xi ∈ I[x],

where we take bi = 0 if i > m, since ai + bi ∈ I for i = 0, 1, . . . , n. Now let h(x) ∈ R[x].
Write h(x) = crxr + cr−1xr−1 + · · ·+ c0, where ci ∈ R for i = 0, 1, . . . , r. Then

h(x) f (x) =
r+n

∑
i=0

i

∑
j=0

cjai−jxi

where we take cj = 0 if j > r and ai−j = 0 if i− j > n. Since I is an ideal and ai ∈ I,
cj ∈ R, we have cjai−j ∈ I. But then h(x) f (x) ∈ I[x]. Therefore, I[x] is an ideal of R[x].

(b) Define a map φ : R[x] → (R/I)[x] via reducing coefficients mod I, i.e. rnxn + · · ·+
r0 7→ (rn + I)xn + · · · + (r0 + I). We first check this is a homomorphism. Clearly,
φ(1) = 1 + I and φ(0) = 0 + I = I. Suppose f (x), g(x) ∈ R[x] are as given in (a) but
with ai, bi ∈ R (again taking n ≥ m and bi = 0 if i > m). Then

φ( f (x) + g(x)) = φ

(
n

∑
i=0

(ai + bi)xi

)

=
n

∑
i=0

(
(ai + bi) + I

)
xi

=
n

∑
i=0

(ai + I)xi +
n

∑
i=0

(bi + I)xi

=
n

∑
i=0

(ai + I)xi +
m

∑
i=0

(bi + I)xi

= φ( f (x)) + φ(g(x))

Finally, assume h(x), f (x) ∈ R[x], where we again assume cj = 0 if j > r and ai−j = 0
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if i− j > n. Then

φ(h(x) f (x)) = φ

(
r+n

∑
i=0

i

∑
j=0

cjai−jxi

)

=
r+n

∑
i=0

i

∑
j=0

(cjai−j + I)xi

=
r+n

∑
i=0

i

∑
j=0

(cj + I)(ai−j + I)xi

=

(
r

∑
i=0

(ci + I)xi

)(
n

∑
i=0

(ai + I)xi

)

= φ

(
r

∑
i=0

(ci + I)xi

)
φ

(
n

∑
i=0

(ai + I)xi

)
= φ(h(x))φ( f (x))

Therefore, φ is a homomorphism. It is clear that φ is surjective: if ∑n
i=0(ri + I)xi ∈

(R/I)[x], then φ(rnxn + · · ·+ r0) = ∑n
i=0(ri + I)xi. We claim ker φ = I[x]. If f (x) =

anxn + an−1xn−1 + · · ·+ a0 ∈ I[x], then

φ( f (x)) = φ(anxn + an−1xn−1 + · · ·+ a0)

= (an + I)xn + (an−1 + I)xn−1 + · · ·+ (a0 + I)

= (0 + I)xn + (0 + I)xn−1 + · · ·+ (0 + I)
= 0 + I = I

so that I[x] ⊆ ker φ. Finally, if f (x) = anxn + an−1xn−1 + · · ·+ a0 ∈ ker φ, then

φ( f (x)) = φ(anxn + an−1xn−1 + · · ·+ a0)

= (an + I)xn + (an−1 + I)xn−1 + · · ·+ (a0 + I)

= (0 + I)xn + (0 + I)xn−1 + · · ·+ (0 + I)

but then ai ∈ I for all i. Therefore, f (x) ∈ I[x] so that ker φ ⊆ I[x]. Then we have
ker φ = I[x]. By the First Isomorphism Theorem,

R[x]/I[x] ∼= (R/I)[x].

10.
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(a) Let S be a commutative ring and assume that I = S f + Sg is the ideal generated by
two elements f and g. Show that if h ∈ S is any element, then I is also generated by
the elements f and g− h f .

(b) Let Z be the ring of integers and assume I is an ideal of Z[x] generated by the set
f , g ∈ Z[x]. Show that we can replace f and g by two generators, one of which has a
zero constant term.

Solution:

(a) Let h ∈ S. We need to show that I = 〈 f , g− h f 〉. Let x ∈ I, then

x = s1 f + s2g = s1 f + s2(g− h f ) + s2h f = (s1 + s2h) f + s2(g− h f ) ∈ 〈 f , g− h f 〉

Therefore, I ⊆ 〈 f , g− h f 〉. Now suppose x ∈ 〈 f , g− h f 〉. Then

x = s1 f + s2(g− h f ) = s1 f + s2g− s2h f = (s1 − s2h) f + s2g ∈ 〈 f , g〉 = I.

But then 〈 f , g− h f 〉 ⊆ I. Therefore, I = 〈 f , g− h f 〉. But then I is generated by f and
g− h f .

(b) Clearly, I := 〈 f (x), g(x)〉 ⊂ Z[x] is an ideal. By (a) for any h(x) ∈ Z[x], I =
〈 f (x), g(x)− h(x) f (x)〉.
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August 2006

1.

(a) If G is an abelian group, prove that the map φ : G → G defined by φ(g) = gm, for all
g ∈ G and some integer m > 0, is an endomorphism.

(b) Give an example showing that one cannot drop the assumption that G is abelian in (a).

(c) In the setting of (a), suppose that the order of G is n and that the integers m and n are
coprime. Prove that the map φ : G → G is an automorphism.

Solution:

(a) Let g, h ∈ G. Since φ(gh) = (gh)m and φ(g)φ(h) = gmhm, it suffices to show that
(gh)m = gmhm for all g, h ∈ G, m ∈ N. We prove this with induction on m. If m = 1,
then (gh)1 = gh = g1h1. Assume that (gh)m = gmhm for some m. Then

(gh)m+1 = (gh)(gh)m = ghgmhm = ggmhhm = gm+1hm+1

By induction, (gh)m = gmhm for all m ∈N and g, h ∈ G. Thus, φ is an endomorphism.

(b) Let G = D3 = 〈σ, τ | σ3 = τ2 = 1, στ = τσ2 and m = 2. Of course, D3 is a nonabelian
group. As defined above, φ is not a homomorphism since

φ(στ) = στστ = τσ2στ = τ2 = 1

φ(σ)φ(τ) = σ2τ2 = σ2

and σ2 6= 1.

(c) Let x ∈ ker φ, then xm = 1. This implies that |x| divides m. However, |x| divides n.
Since m and n are relatively prime, |x| = 1. Thus, |x| = 1. But then x = 1. This implies
that ker φ is trivial so that |phi is injective. But G is a finite group and φ : G → G
is an injective map from a finite set to itself, therefore surjective. But then φ is an
automorphism.

2.

(a) If G is a group, S is a left G-set, and Perm S is the group of permutations of S, the map
Φ : G → Perm S defined by Φ(g)(s) = gs, for all s ∈ S, is a homomorphism of groups.
Using this fact, prove that N = {g ∈ G : gs = s for all s ∈ S} is a normal subgroup of
G.
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In the rest of the problem, let H be a subgroup of G and let S be the set of left cosets of
H in G.

(b) Prove that N ⊂ H.

Let |G| = n < ∞ and [G : H] = k > 1.

(c) Prove that if n > k! then {1} 6= N 6= G.

(d) If k is the least prime dividing n, prove H = N. Hint: Find the cardinality of im Φ.

(a)

ker Φ = {g ∈ G : Φ(g) = 1}
= {g ∈ G : Φ(g)s = s for all s ∈ S}
= {g ∈ G : gs = s for all s ∈ S}
= N

Since N is the kernel of a group homomorphism, N is a normal subgroup of G.

(b) If g ∈ N and a ∈ G, then g · aH = gaH = aH for all a ∈ G. In particular, this is true
when a = 1. But then g · H = gh = H. Thus, g ∈ H and N ⊆ H.

(c) Note that |S| = [G : H] = k, so |Perm S| = k!. From above, we know there is a
homomorphism

Φ : G → Perm S.

Since |G| = n > k! = |Perm S|, Φ cannot be injective. Therefore, ker Φ = N 6= {1}.
Also, N ⊂ H ( G, so ker Φ = N 6= G. Thus, {1} 6= N 6= G, as needed.

(d) By the First Isomorphism Theorem, G/N ∼= im Φ. Therefore, |G| = |N| | im Φ|, so
| im Φ| divides both n and k!. It is clear that im Φ 6= {1}. The claim is that | im Φ| = k.
Suppose not. Then there exists a prime integer p 6= k dividing | im Φ| (since k2 does
not divide k!). However, k is the largest prime divisor of k!, so p < k and p divides n.
This contradicts the minimality of k, so | im Φ| = k = [G : N] and

[G : N] = [G : H][H : N]

k = k[H : N]

Thus, [H : N] = 1 and H = N.
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3. Prove that a group of order 35 is cyclic.

Solution: The divisors of 35 are 1, 5, 7, and 35. Let G be a group of order 35. For p = 5, 7,
let np(G) denote the number of p-Sylow subgroups of G. By Sylow’s Theorem, n5(G) ≡ 1
mod 5 and divides 7. The only possibility is n5(G) = 1. Similarly, n7(G) ≡ 1 mod 7 and
divides 5 so this implies that n7(G) = 1.

Let H denote the unique 5-Sylow subgroup of G, let J denote the unique 7-Sylow
subgroup of G and consider x ∈ G \ (H ∪ J). Now |x| divides |G| = 35. If |x| = 1, then
x = 1 ∈ H ∪ J, a contradiction. If |x| = 5, then |〈x〉 = 5. This implies that 〈x〉 = H, so
x ∈ H, a contradiction. Therefore, |x| 6= 5. Similarly, |x| 6= 7. Thus, |x| = 35, which implies
that G = 〈x〉. Therefore, G is cyclic.

4. Let V be a fixed vector space of finite dimension n > 0 over a field F, and let λ ∈ F.
If T : V → V is a linear operator with an eigenvalue λ, let m be the maximal number of
linearly independent eigenvectors with eigenvalue λ.

(a) Prove that the multiplicity of λ as a root of the characteristic polynomial T is at least m.

(b) Among all linear operators on V with an eigenvalue λ, what are the smallest and
largest possible values of m? Justify your answer (remember, n is arbitrary but fixed).

Solution:

(a) Let I = {e1, . . . , em} be a maximal set of linearly independent eigenvectors in V
with eigenvalue λ. Since I is linearly independent, it can be extended to a basis
B = {e1, . . . , em, bm+1, . . . , bm} of V. The matrix of T with respect to B is the block
matrix

A =

[
λIM B

0 C

]
.

Therefore, det(xI − T) = det(xI − A) = det(xIm − λIm)det(xIn−m − C) = (x −
λ)m det(xIn−m − C) and the multiplicity of λ as a root of the characteristic polyno-
mial of T is at least m.

(b) The smallest possible value of m is 1. Since V is finite dimensional, V ∼= Fn when
a basis B is chosen. Consider a linear operator whose matrix with respect to B is a
diagonal matrix with a λ in the a11 spot and λ + 1 in the a22, a33, . . ., and ann spots.
Then the characteristic polynomial of T is (x− λ)(x− (λ + 1))n−1. By part (a), m ≤ 1
so m = 1.

The largest possible value of m is n. Consider the linear operator T : V → V defined
by T(v) = λv. Then every nonzero vector in V is an eigenvector with eigenvalue λ,
so the maximal number of linearly independent eigenvectors with eigenvalue λ is the
maximal number of linearly independent vectors in V, which is n.
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5. Let V be a finite-dimensional complex vector space with a positive definite Hermitian
form 〈 , 〉, and let T : V → V be a linear operator.

(a) Give the definition of the adjoint operator T∗ : V → V.

(b) Give the definition of when T is a normal linear operator.

(c) Assuming T is normal, prove that ker T = (im T)⊥ where, for a subspace W of V, W⊥

denotes the orthogonal complement of W.

Solution:

(a) For any vector v, T∗(v) is the unique element of V satisfying 〈T∗v, w〈= 〈v, Tw〉 for all
w ∈ V.

(b) T is a normal operator if TT∗ = T∗T.

(c) First, we show ker T = ker T∗. Observe that

x ∈ ker T ⇐⇒ Tx = 0
⇐⇒ 〈Tx, Tx〉 = 0
⇐⇒ 〈x, T∗Tx〉 = 0
⇐⇒ 〈x, TT∗x〉 = 0
⇐⇒ 〈T∗x, T∗x〉 = 0
⇐⇒ T∗x = 0
⇐⇒ x ∈ ker T∗

proving the claim. If x ∈ ker T, then x ∈ ker T∗, so for any y ∈ V, 0 = 〈y, T∗x〉 =
〈Ty, x〉. This implies that x ∈ (im T)⊥. Thus, ker T ⊂ (im T)⊥.

If x ∈ (im T)⊥, then 〈Ty, x〉 = 0 for all y ∈ V. This implies that 〈y, T∗x〉 = 0 for
all y ∈ V. Take y = T∗x. Then 〈T∗x, T∗x〉 = 0, which implies that T∗x = 0. Thus,
x ∈ ker T∗ = ker T. Therefore, (im T)⊥ ⊂ ker T and ker T = (im T)⊥.

6. Let R be a commutative ring with identity and let I ⊂ R be an ideal. Define the radical
of I, denoted

√
I, by

√
I = {r ∈ R : rn ∈ I for some positive integer n}.

(a) Prove that
√

I is an ideal of R.
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(b) We ay that I is a radical ideal if and only if I =
√

I. Recall that an element r is called
nilpotent if and only if rn = 0 for some positive integer n. Prove that I is a radical ideal
if and only if 0 + I is the only nilpotent element of the quotient ring R/I.

Solution:

(a) It is clear that I ⊂
√

I, which implies that
√

I is nonempty. Let a, b ∈
√

I. There then
exist m, n ∈N such that am, bn ∈ I. Then

(a + b)2(m+n) = a2(m+n) + a2(m+n)−1b + · · ·+ am+nbm+n + · · ·+ b2(m+n)

Each of the terms above is of the form ajbk for some j, k ≥ 0. The claim is that either
j ≥ m or k ≥ n in each term. Note that j + k = 2(m + n) so if j < m, k = 2m + 2n− j >
2m2n− m = m + 2n > n. This implies that in each term of the above, either aj ∈ I
or bk ∈ I. Since I is an ideal, this implies that every term is an element of I so
(a + b)2(m+n) ∈ I. Thus, a + b ∈

√
I and

√
I is closed under addition. If r ∈ R, a ∈

√
I,

then there is a n ∈ N such that an ∈ I. Therefore, (ra)n = rnan ∈ I since I is an ideal.
Thus, ra ∈

√
I. Therefore,

√
I is an ideal.

(b) Assume that I is a radical ideal and let r + I be a nilpotent element of R/I. Then there
is a n ∈N such that (r + I)n = rn + I = I. Thus, rn ∈ I. Thus implies that r ∈

√
I = I,

so r + I = 0 + I. Therefore, 0 + I is the only nilpotent element of R/I.

Now assume that 0 + I is the only nilpotent element of R/I. It was noted above that
I ⊂
√

I; it remains to show that
√

I ⊂ I. Let r ∈
√

I, then there exists a n ∈ N such
that rn ∈ I. This implies that (r + I)n = rn + I = I. Thus, r + I is a nilpotent element
of R/I, so r + I = 0 + I. This implies that r ∈ I. Therefore,

√
I ⊂ I and I =

√
I. But

then I is a radical ideal.

7. Let R be a PID and let a and b be two nonzero nonunits in R.

(a) Give the definition of the greatest common divisor of a and b.

(b) Prove that a greatest common divisor of a and b exists.

(c) Let c be a greatest common divisor of a and b. Prove there exists x, y ∈ R such that
c = xa + yb.

Solution:

(a) An element d ∈ R is a greatest common divisor of a and b if d | a and d | b and for any
c ∈ R such that c | a and c | b, c | d.
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(b) Since R is a PID, the ideal (a, b) is principal, so there exists d ∈ R such that (d) = (a, b).
The claim is that d is a greatest common divisor of a and b. Since a, b ∈ (d), d | a and
d | b. If c ∈ R, c | a and c | b, then a ∈ (c), b ∈ (c), which implies that (a, b) ⊂ (c). So
(d) ⊂ (c), which implies that d ∈ (c). Thus, c | d. But then d is a greatest common
divisor of a, b.

(c) If c is a greatest common divisor of a and b, then (c) = (a, b) by the previous part. In
particular, c ∈ (a, b), so there exists x, y ∈ R such that xa + yb = c.

8. Let F be a finite field, F[x] the polynomial ring over F, and M and F[x]-module.

(a) Explain why M is also an F-vector space in a natural way. Denote by dimF(M) the
dimension of M as a F-vector space.

(b) Prove that for each positive integer n, there exists a simple F[x]-module Mn such that
n < dimF(Mn) < ∞.

Solution:

(a) Since M is an F[x]-module, M is an abelian group with an action of F[x] on M. Since
F ⊂ F[x], this action can be restricted to F, leading to a scalar multiplication which
makes M into an F-vector space. Also for any m, m′ ∈ M, a ∈ F, x · (m + m′) =
xm + xm′ and x · (am) = a(xm), so x can be viewed as a linear operator on the F-vector
space M.

(b) If there were finitely many irreducible polynomials f1, f2, . . . , fk, then the polynomial
p = f1 f2 · · · fk + 1 is an irreducible polynomial distinct from each fi, which is a contra-
diction. hence, the claim holds.

Let q = |F|. Then there are qk polynomials of degree k for each k. Let n be a positive
integer. Then there are only finitely many irreducible polynomials in F[x] of degree
at most n and infinitely many irreducible polynomials in F[x], so there exists an
irreducible polynomial p(x) ∈ F[x] of degree m > n.

View F[x] as a module over itself. The submodules of F[x] are precisely the ideals of
F[x]. Since p(x) is irreducible, the ideal (F[x]-submodule) (p(x)) ⊂ F[x] is maximal.
By the Fourth/Correspondence/Lattice Isomorphism Theorem, there are no proper,
nontrivial submodules of F[x]/(p(x)), so F[x]/(p(x)) is a simple F[x]-module. A
basis for F[x]/(p(x)) as a vector space over F is {1, x, x2, . . . , xm−1}, so F[x]/(p(x)) has
dimension m > n as a vector space over F.
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9. Let A be a square matrix over the complex numbers. Assume the characteristic poly-
nomial of A is (x − 2)4(x − 3)5. Also assume that nullity (A − 2I) = 4 and nullity
(A− 3I) = 1.

(a) What are the possible Jordan normal forms of A?

(b) For each possible Jordan normal form of A give its minimal polynomial.

Solution:

(a) The two eigenvalues of A are 2 and 3. Since nullity (A − 2I) is 4, there are four
Jordan blocks corresponding to the eigenvalue 2. Since the power of (x − 2) in the
characteristic polynomial is 4, each Jordan block is a 1× 1 block. For the eigenvalue
3, since nullity (A − 3I) = 1, there is only one Jordan block corresponding to the
eigenvalue 3. This block must have size 5 since the power of (x− 3) in the characteristic
polynomial is 5. Thus, there is only one possibility for the Jordan canonical form of A
(up to the order of Jordan blocks), given below:

2 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 3 0 0 0 0
0 0 0 0 1 3 0 0 0
0 0 0 0 0 1 3 0 0
0 0 0 0 0 0 1 3 0
0 0 0 0 0 0 0 1 3


(b) Note that the elementary divisors of A are (x− 2) (with multiplicity 4) and (x− 3)5.

The minimal polynomial is the product of the largest power of (x− 2) and the largest
power of (x− 3) in the elementary divisors, which is (x− 2)(x− 3)5. Thus, m(x) =
(x− 2)(x− 3)5.

10. Let f (x) ∈ Q[x] be an irreducible cubic polynomial (Q is of course the rational numbers)
and let F be the splitting field for f (x) over Q.

(a) Prove that the Galois group of F over Q is isomorphic to either S3 or Z/3Z.

For (b) and (c) suppose that f (x) = x3 − x + 2.
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(b) Prove that f (x) is irreducible over Q.

(c) Still denoting by F the splitting field for f (x) over Q decide which of the two possi-
bilities in (a) for the Galois group of F over Q is the vase for this f (x).

Solution:

(a) Since f is an irreducible polynomial and Q has characteristic 0, f is separable. Let
G = Gal(F/Q) denote the Galois group of F over Q. Since F is the splitting field of
a separable polynomial, |G| = [F : Q]. Let α1, α2, and α3 denote the roots of f . Since
Q(α1) ⊂ F and [Q(α1) : Q] = 3, it follows that [F : Q] ≥ 3. Note that if σ ∈ G, σ(αi) is
a root of f for i = 1, 2, 3. Therefore, there exists an action of G on the three roots of f
which induces a homomorphism φ : G → S3. If σ ∈ ker φ, then σ(αi) = αi for i = 1, 2, 3.
Since F is generated by Q, α1, α2, and α3, this implies that σ is the identity on F. Hence,
ker φ = {1} and φ is an injection. This implies that G is isomorphic to a subgroup of S3,
so |G| = 3 or |G| = 6 by Lagrange’s Theorem. If |G| = 3, then G ∼= Z/3Z. If |G| = 6,
then G ∼= S3.

(b) Since f has degree 3, f is irreducible if and only if f has no rational roots. By the
Rational Roots Theorem, the only possible rational roots are±1,±2. However, f (±1) =
2 and f (2) = 8, f (−2) = −4. Hence, f has no rational roots and is irreducible over Q.

(c) The claim is that f has only one real root. It is clear that there is at least one. If 0 ≤ x ≤ 1,
x3 − x + 2 ≥ x2 − 1 + 2 = x3 + 1 > 0. If x ≥ 1, then x3 ≥ x and x3 − x + 2 ≥ 2 > 0.
If −1 ≤ x ≤ 0, then x3 − x + 2 ≥ (−1)3 − 0 + 2 = 1 > 0. Finally, if x < −1, then
f ′(x) = 3x2 − 1 ≥ 3− 1 = 2, so f is strictly increasing when x < −1. Hence f will
have exactly one real root, as claimed.

Let α denote the unique real root of f . Then Q(α) ⊂ R cannot be the splitting field of f
over Q. Hence, Q(α) ( F and

[F : Q] = [F : Q(α)] [Q(α : Q] = 3 [F : Q(α)] > 3

so [F : Q] = 6 and Gal(F/Q) ∼= S3.
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January 2007

1. Let G be a finite group having exactly one nontrivial proper subgroup. Prove that G is
cyclic of order p2 for some prime number p.

Solution: Let H denote the one nontrivial, proper subgroup of G and consider g ∈ G \ H.
Then 〈g〉 is a nontrivial subgroup of G (since g 6= 1) distinct from H. Therefore, 〈g〉 = G
and G is cyclic. Let n = |G|. Then G contains a subgroup of order d for every d that divides
n. This implies that n is a number with exactly order d for every d that divides n. This
implies that n is a number with exactly one divisor other than 1 and n. This immediately
rules out the possibility that n is prime and the possibility that n has more than one prime
divisor. Therefore, n = pk for some prime p ∈ N, k ∈ N, k > 1. If k > 2, then p and
p2 are divisors of pk = n, contrary to the choice of n. Thus, n = p2 for some prime p, as
desired.

2. Let G be a finite group having n distinct conjugacy classes.

(a) Prove the identity ∑
x∈G
|C(x)| = n|G|.

(b) Compute the probability that two randomly chosen elements of G commute. The
random selection is done “with replacement” so that choosing the same element twice
is a possible outcome.

Solution:

(a) Let G act on itself by conjugation. The orbits of this action are the conjugacy classes
of G. The stabilizer of any g ∈ G is C(x), the centralizer of x. Let Ox. denote the
conjugacy class of x. The Orbit-Stabilizer Theorem implies that

|Ox| = [G : C(x)] =
|G|
|C(x)| ,

which implies that |C(x)| = |G|
|Ox|

. Therefore,

∑
x∈G
|C(x)| = ∑

x∈G

|G|
|Ox|

= |G| ∑
x∈G

1
|Ox|

.

Now let x1, x2, . . . , xn be representatives of the n distinct conjugacy classes of G. In the
sum above, 1/Ox is counted for every element of Ox. Hence, it is counted a total of
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|Ox| times. This implies that

∑
x∈G
|C(x)| = |G| =

n

∑
i=1

1
|Oxi |

|Oxi | = |G|
n

∑
i=1

1 = n|G|,

as desired.

(b) The probability is p/q, where q is the number of ways to choose two elements from
the group G with replacement and p is the number of ways to choose two commuting
elements of G with replacement. It is clear that q = |G|2. If two elements x, y ∈ G are
chosen, then x and y commute if and only if y ∈ C(x). Therefore, the total number of
ways to choose two commuting elements is ∑

x∈G
|C(x)| = n|G|. Thus,

p
q
=

n|G|
|G|2 =

n
|G|

3. Let A be an n×n real matrix, and prove that the following (criteria for A to be orthogonal)
are equivalent.

(a) ‖AX‖ = ‖X‖ for all X ∈ Rn

(b) 〈AX, AY〉 = 〈X, Y〉 for all X, Y ∈ Rn

(c) AT A = In

Solution: Suppose (a) holds and let X, Y ∈ Rn be arbitrary. By (a), ‖A(X + Y)‖2 =
‖X + Y‖2. In other words, 〈A(X + Y), A(X + Y)〉 = 〈X + Y, X + Y〉. The left hand side of
this equation simplifies as

〈A(X + Y), A(X + Y)〉 − 〈AX + AY, AX + AY〉
= 〈AX, AX〉+ 2〈AX, AY〉+ 〈AY, AY〉
= ‖AX‖2 + 2〈AX, AY〉+ ‖AY‖2

= ‖X‖2 + 2〈AX, AY〉+ ‖Y‖2

Also,

〈X + Y, X + Y〉 = 〈X, X〉+ 2〈X, Y〉+ 〈Y, Y〉 = ‖X‖2 + 2〈X, Y〉+ ‖Y‖2
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Combining these leads to

‖X‖2 + 2〈AX, AY〉+ ‖Y‖2 = ‖X‖2 + 2〈X, Y〉+ ‖Y‖2

2〈AX, AY〉 = 2〈X, Y〉
〈AX, AY〉 = 〈X, Y〉,

as desired.
Assume that (b) holds, use the matrix notation AT A = (aij). Let {ei}n

i=1 denote the
standard basis for Rn. Then

〈Aei, Aej〉 = (Aei)
T(Aej) = eT

i AT Aej = aij.

Using (b), we have

〈Aei, Aej〉 = 〈ei, ej〉 =
{

1, if i = j
0, if i 6= j.

Thus,

aij =

{
1, if i = j
0, if i 6= j.

This implies that AT A = In.
Now suppose (c) holds. Then for any X ∈ Rn,

‖AX‖2 = 〈AX, AX〉 = (AX)T(AX) = XT AT AX = XTX = 〈X, X〉 = ‖X‖2.

Since ‖AX‖ and ‖X‖ are both nonnegative, this implies that ‖AX‖ = ‖X‖, as needed.

4. Let G be a simple group of order 60. Prove that G has 10 Sylow 3-subgroups. (Do not
use the fact that G ∼= A5.)

Solution: The divisors of 60 are 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60. Let n3(G) denote
the number of 3-Sylow subgroups of G. By Sylow’s Theorem, n3(G) ≡ 1 mod 3 and
divides 20. The only possibilities are n3(G) = 1, n3(G) = 4, or n3(G) = 10. If n3(G) = 1,
then G contains a unique 3-Sylow subgroup, which must be normal. Thus, G has a proper,
nontrivial, normal subgroup, contrary to the assumption that G is simple.

Suppose n3(G) = 4. Let S denote the set of 3-Sylow subgroups. Let G act on S by
conjugation. This action is nontrivial since any two 3-Sylow subgroups are conjugate (by
Sylow’s Theorem). Therefore, this action induces a homomorphism φ : G → S4 with
ker φ 6= G. However, since |G| = 60 and |S4| = 4! = 24, it is impossible for φ to be injective.
Therefore, | ker φ| > 1. Thus, ker φ is a proper, nontrivial subgroup of G. Since the kernel
of a group homomorphism is a normal subgroup, this implies that G has a proper, nontriv-
ial, normal subgroup, which again is a contradiction. Therefore, n3(G) = 10, as desired.

5. Let S5 denote the symmetric group on five elements.
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Cycle Type Representative Size of Conjugacy Class
(a b c d e) (1 2 3 4 5) 4! = 24
(a b c d) (1 2 3 4) (5

4) 3! = 30
(a b c) (1 2 3) (5

3) 2! = 20
(a b c)(d e) (1 2 3)(4 5) (5

3) 2! = 20
(a b)(c d) (1 2)(3 4) 1

2 (
5
2) (

3
2) = 15

(a b) (1 2) (5
2) = 10

1 1 1

(a) Find a representative for each conjugacy class of S5, and determine the number of
elements in each class.

(b) Find all elements of S5 that commute with the 4-cycle (1234). Justify your answer.

Solution:

(a) Note that two permutations in S5 are conjugate if and only if they have the same cycle
type. Note that |S5| = 120 = 24 + 30 + 20 + 20 + 15 + 10 + 1.

(b) We need to compute C((1234)). In general, if G is a group acting on itself by conjuga-
tion, x ∈ G and Gx is the stabilizer of G, then

Gx = {g ∈ G : g · x = x}{g ∈ G : gxg−1 = x} = C(x).

Return to the situation where G = S5. By the Orbit-Stabilizer Theorem, [S5 : C((1234))]
is equal to the size of the conjugacy class containing (1234), i.e. [S5 : C((1234))] = 30.
Therefore, |C((1234))| = 120

30 = 4. Since (1234) has order 4, this implies that C(1234) =
〈(1234)〉, so the elements of S5 that commute with (1234) are 1, (1234), (1234)2, and
(1234)3, which are

1
(1234)(1234) = (13)(24)

(1234)3 = (1234)(13)(24) = (1432).

6. Let Q be the rational numbers.

(a) Find the minimal polynomial for
√

6 +
√

10 over Q. Be sure to prove that it is the
minimal polynomial.
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(b) What is the degree of the field extension Q ⊂ Q[
√

6 +
√

10]?

Solution:

(a) Observe that (
√

6 +
√

10)2 = 6 + 10 + 2
√

6
√

10. Therefore,

(
√

6 +
√

10)2 − 16 = 2
√

6
√

10

((
√

6 +
√

10)2 − 16)2 = 4(6)(10)

(
√

6 +
√

10)4 − 32(
√

6 +
√

10)2 + 256 = 240

(
√

6 +
√

10)4 − 32(
√

6 +
√

10)2 + 16 = 0

Therefore,
√

6 +
√

10 is a root of the polynomial m(x) = x4 − 32x2 + 16. To show that
m(x) is the minimal polynomial of

√
6 +
√

10 over Q, it suffices to prove that m(x) is
irreducible over Q. By Gauss’ Lemma, it is sufficient to prove that m(x) is irreducible
over Z. Write m(x) = x4− 25x2 + 24. By the Rational Roots Theorem, the only possible
rational roots are ±1,±2,±4,±8,±16. However, none of these are a zero of m(x).

The only other possibility for m(x) to be reducible is that m(x) is a product of irre-
ducible quadratics. Suppose that m(x) = (x2 + ax + b)(x2 + cx + d) = x4 + (a+ c)x3 +
(b + d + ac)x2 + (ad + bc)x + bd for some a, b, c, d ∈ Z. Comparing the constant term
yields bd = 16. The only possibilities are b = 2, d = 8 or b = −2, d = −8 or b = 4, d = 4
or b = −4, d = −4. Comparing the x3 terms yields a = −c. Comparing the x2 terms
yields d + b− c2 = −32, so c2 = d + b + 32. All of these yield a contradiction. For
example in the first case, b = 4, d = 4, we would then have c2 = 2 + 8 + 32 = 42, a
contradiction since 42 is not a perfect square. The other cases are handled the same
way. But then m(x) must be an irreducible polynomial.

(b) Since the minimal polynomial of
√

6 +
√

10 over Q has degree 4, the extension must
also have degree 4.

7. Let F ⊂ K ⊂ L be a tower of field extensions. Provide either a proof or a counterexample
for the following statement: If F ⊂ K and K ⊂ L are both Galois extensions then F ⊂ L is a
Galois extension.

Solution: The statement is false. Take F = Q, K = Q(
√

2), and L = Q( 4
√

2). Then K ⊂ K
is Galois since K is the splitting field of the separable polynomial p(x) = x2 − 2 ∈ F[x].
Also, K ⊂ L is Galois since L is the splitting field of the separable polynomial q(x) =
x2 −

√
2 ∈ K[x]. The polynomial m(x) = x4 − 2 ∈ F[x] has a root in L (namely, 4

√
2).

However, m(x) = (x + 4
√

2)(x − 4
√

2)(x2 +
√

2) does not split completely since x2 +
√

2
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has no real roots and L ⊂ R. This implies that F ⊂ L is not a Galois extension.

8. Let R be a commutative ring with identity and let I and J be ideals of R. Prove: if
I + J = (1) then I J = I ∩ J.

Solution: Note that I J is an ideal generated by products of the form xy, where x ∈ I and
y ∈ J. Since I and J are both ideals, it is clear that every such product is contained in I ∩ J.
Therefore, I J ⊂ I ∩ J. Now since 1 ∈ I + J, there exist a ∈ I and b ∈ J such that 1 = a + b.
For any c ∈ I ∩ J, c = c · 1 = c(a + b) = ca + cb. Since a ∈ I, c ∈ J, ca ∈ I J and b ∈ J, c ∈ I,
cb ∈ I J. Therefore, ca + cb = c ∈ I J. Thus, I ∩ J ⊂ I J. Therefore, I J = I ∩ J.

9. Let A be a square matrix over the complex numbers. Assume that the minimal polyno-
mial of A is (x− 2)2 and the characteristic polynomial of A is (x− 2)5.

(a) Give all the possible Jordan canonical forms for such an A.

(b) For each of the possibilities in (a) compute the nullity of (A − 2I)k for all positive
integers k. (I is the identity matrix of the same size as A.)

Solution:

(a) First, the possible invariant factors are:

(x− 2), (x− 2), (x− 2), (x− 2)2

(x− 2), (x− 2)1, (x− 2)2

In each case, the elementary divisors are the same as the invariant factors. In the first
case, the Jordan canonical form is, up to permutation of the Jordan blocks,

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 1 2


In the second case, the Jordan canonical form is, up to permutation of the Jordan blocks,

2 0 0 0 0
0 2 0 0 0
0 1 2 0 0
0 0 0 2 0
0 0 0 1 2


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(b) The nullity of (A− 2I) is the number of Jordan blocks corresponding to the eigenvalue
2. In the first case, there are 4 Jordan blocks, so the nullity of (A − 2I) is 4. The
difference fo the nullity (A− 2I)2− nullity (A− 2I) is the number of Jordan blocks of
at least size 2. Since there is only one such block, nullity (A− 2I)2 − 4 = 1, so nullity
(A− 2I)2 = 5. Since there are no Jordan blocks of at least size 3, nullity (A− 2I)k = 5
for all k ≥ 3.

In the second case, there are 3 Jordan blocks, so nullity (A− 2I) = 3. There are 2 blocks
of at least size 2, so nullity (A− 2I)2 − 3 = 2. Thus, nullity (A− 2I)2 = 5. Since there
are no Jordan blocks of at least size 3, nullity (A− 2I)k = 5 for all k ≥ 3.

10. An abelian group is generated by w, x, y, and z subject to the relations: w + 3x + 3y +
5z = 0, w + x + y + y = 0, 2x + 2y + 2z = 0, and 3z = 0. Express what group that is in
each of the two ways that appear in the structure theorem for finitely generated abelian
groups.

Solution: The generators satisfy the relations

w + 3x + 3y + 5z = 0
w + x + y + 0z = 0

0w + 2x + 2y + 2z = 0
0w + 0x + 0y + 3z = 0

The coefficient matrix for this system of equations is then
1 3 3 5
1 1 1 0
0 2 2 2
0 0 0 3


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Performing the following row/column operations

−R1 + R2 −→ R2

R2 + R3 −→ R3

R3 + R4 −→ R4

−C2 + C3 −→ C3

−2C2 + C4 −→ C4

−3C1 + C2 −→ C2

−2C1 + C4 −→ C4

−R3 + R2 −→ R2

C3 ←→ C4

−C3 −→ C3

−C4 −→ C4

yields the matrix 
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 0


Thus,

A ∼= Z/Z×Z/2 ×Z/3Z×Z/0Z ∼= Z/2Z×Z/3Z×Z

The above is the elementary divisor decomposition of A. By the Chinese Remainder
Theorem, Z/2Z×Z/3Z ∼= Z/6Z, this gives the invariant factor decomposition A ∼=
Z/6Z×Z.
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August 2007

1. Let G be a group of order p2 for some prime number p. Prove that G is abelian.

Solution: Let Z(G) denote the center of G. Consider the class equation for G:

|G| = |Z(G)|+
r

∑
i=1

[G : Ci]

where Ci denotes the stabilizer of some x ∈ Oi for every distinct orbit Oi which contains
more than one element (for otherwise the element is in the center). In particular, [G : Ci] > 1
and divides p2 for each i. Therefore, p divides [G : Ci] for each i. This also implies that
p divides |Z(G)|. Since |Z(G)| divides |G|, there are then two possibilities: |Z(G)| = p2

or |Z(G)| = p. If |Z(G)| = p2, then G = Z(G) and G is abelian. If |Z(G)| = p, then
|G/Z(G)| = p so that G/Z(G) must by cyclic. But then G is abelian.

2. Prove that a finite group of order 24 is not simple.

Solution: The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. By Sylow’s Theorem n2(G) ≡ 1
mod 2 and divides 24. The only possibilities are n2(G) = 1 or n2(G) = 3. If n2(G) = 1,
then G contains a unique 2-Sylow subgroup, which is necessarily normal. This implies that
G has a nontrivial, proper, normal subgroup. Thus, G is not simple.

Suppose that n2(G) = 3. Let X denote the set of 2-Sylow subgroups. Note that G acts
on X by conjugation. This induces a homomorphism φ : G → SX. Since |G| = 24 and
|SX| = 3! = 6, φ is not injective. Therefore, | ker φ| > 1. Note that | ker φ| 6= 24 since
any two 2-Sylow subgroups are conjugate (so they all can not be fixed by the action of
conjugation). Thus, ker φ is a proper, nontrivial, normal subgroup of G, which implies that
G is not simple.

3. Let H ⊂ K ⊂ G be groups. Prove that H is normal in K if and only if K ⊂ NG(H) where
NG(H) is the normalizer of H in G.

Solution: Suppose that H is normal in K and that x ∈ K. Then xHx−1 ⊂ H, which implies
that x ∈ NG(H). Therefore, K ⊂ NG(H). Now suppose that K ⊂ NG(H). Then for any
x ∈ K, xHx−1 ⊂ H, which implies that H is normal in K.

4. Let T : Cn → Cn be a linear operator. Prove that ker T = (im T∗)⊥, where the orthogonal
complement is taken with respect to the usual Hermitian inner product on Cn.

Solution: Suppose x ∈ ker T, then for all y ∈ Cn, 〈T∗y, x〉 = 〈x, Tx〉 = 〈y, 0〉 = 0. There-
fore, x ∈ (im T∗)⊥ and ker T ⊂ (im T∗)⊥. Suppose that x ∈ (im T∗)⊥. Then for all y ∈ Cn,
0 = 〈T∗y, x〉 = 〈y, Tx〉. In particular, 〈Tx, Tx〉 = 0, so Tx = 0. This implies that x ∈ ker T,
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so ker T = (im T∗)⊥.

5. Let A be an n× n real matrix with transpose AT, and prove that the following (criteria
for A to be orthogonal) are equivalent.

1. ‖AX‖ = ‖X‖ for all X ∈ Rn, where ‖ · ‖ is the usual norm on Rn;

2. 〈AX, AY〉 = 〈X, Y〉 for all X, Y ∈ Rn, where 〈·, ·〉 is the usual inner product on Rn;

3. AT A = In, the n× n identity matrix.

Solution: Suppose that (1.) holds. Then 〈AX, AX〉 = ‖AX‖2 = ‖X‖2 = 〈X, X〉 for all
X ∈ Rn. If X, Y ∈ Rn, then

〈A(X + Y), A(X + Y)〉 = 〈X + Y, X + Y〉 = 〈X, X〉+ 2〈X, Y〉+ 〈Y, Y〉.

On the other hand,

〈A(X + Y), A(X + Y)〉 = 〈AX + AY, AX + AY〉
= 〈AX, AX〉+ 2〈AX, AY〉+ 〈AY, AY〉
= 〈X, X〉+ 2〈AX, AY〉+ 〈Y, Y〉.

Combining these yields

〈X, X〉+ 2〈X, Y〉+ 〈Y, Y〉 = 〈X, X〉+ 2〈AX, AY〉+ 〈AY, AY〉

so that 2〈X, Y〉 = 2〈AX, AY〉 so that 〈X, Y〉 = 〈AX, AY〉.
Now suppose that (2.) holds. Observe that for X, Y ∈ Rn, 〈AX, AY〉 = (AX)T(AY) =

XT AT AY. Let {ei}n
i=1 denote the standard basis for Rn and write AT A = (aij). Then

〈Aei, Aej〉 = eT
i AT Aej = aij = 〈ei, ej〉 =

{
1, if i = j
0, if i 6= j

.

Thus, AT A = In.
Finally, suppose that (3.) holds. Then for any X ∈ R,

‖AX‖2 = 〈AX, AX〉 = (AX)T(AX) = XT AT AX = XTX = 〈X, X〉 = ‖X‖2.

Since ‖AX‖ ≥ 0 and ‖X‖ ≥ 0, this implies that ‖AX‖ = ‖X‖, as desired.

6. Let Q be the rational numbers. Prove the degree of the field extension [Q(
√

6,
√

10,
√

15) :
Q] equals 4 and not 8.
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Solution: Now that
√

6
√

10 = 2
√

15. Therefore,
√

15 = 1
2

√
6
√

10 ∈ Q(
√

6,
√

10). Thus,
Q(
√

6,
√

10,
√

15) = Q(
√

6,
√

10). Consider the extensions Q ⊂ Q(
√

6) ⊂ Q(
√

6,
√

10).
The minimal polynomial of

√
6 over Q is m(x) = x2 − 6. This polynomial is irreducible

over Q using Eisenstein’s criterion with p = 3 (or p = 2). Therefore, [Q(
√

6) : Q] = 2 and

[Q(
√

6,
√

10) : Q] = [Q(
√

6,
√

10 : Q(
√

6)] [Q(
√

6 : Q] = 2[Q(
√

6,
√

10) : Q(
√

6)].

It remains to show that [Q(
√

6,
√

10) : Q(
√

6)] = 2. Note that
√

10 is a root of the poly-
nomial p(x) = x2 − 10 = (x +

√
10)(x −

√
10). If p(x) is reducible over Q(

√
6), then√

10 ∈ Q(
√

6). This implies that there exist a, b ∈ Q such that
√

10 = a + b
√

6. Squaring
yields 10 = a2 + 6b2 + 2ab

√
6. Now 2ab = 0, so either a = 0 or b = 0. If a = 0, then

6b2 = 10 so b2 = 5
3 , impossible since b ∈ Q. If b = 0, then a2 = 10, which is impossible

since a ∈ Q. Therefore,
√

10 /∈ Q(
√

6), implying p(x) is irreducible over Q(
√

6). Thus,
[Q(
√

6,
√

10 : Q(
√

6)] = 2 and [Q(
√

6,
√

10,
√

15 : Q] = 2 · 2 = 4 6= 8, as desired.

7. Let K ⊂ L be a finite field extension, and let f be an irreducible polynomial with
coefficients in K. Assume that the degree of f , and [L : K] are relatively prime. Prove that f
has no roots in L.

Solution: Without loss of generality, it may be assumed that f is monic. Assume that there
exists α ∈ L such that f (α) = 0. Then K ⊂ K(α) ⊂ L and [L : K] = [L : K(α)] [K : (α) : K].
Since f is irreducible and monic, f is the minimal polynomial of α over K. Therefore,
[K(α) : K] = deg f and deg f divides [L : K]. Thus, the greatest common divisor of the
degree of f and [L : K] is the degree of f . This contradicts the assumption that the degree
of f and [L : K] are relatively prime. Thus, f has no roots in L.

8. Let R be a commutative ring with identity and let I and J be ideals of R. Prove: if
I + J = R then we also have I2 + J3 = R.

Solution: It suffices to show that 1 ∈ I2 + J3. Since 1 ∈ I + J, there exist a ∈ I, b ∈ J such
that 1 = a + b. Using the Binomial Theorem,

1 = 14 = (a + b)4 = a4 + 4 · a3b + 6 · a2b2 + 4 · ab3 + b4

where n · x denotes the n-fold sum of x with itself. Since a ∈ I and I2 is an ideal,
a4, a3b, a2b2 ∈ I2. Similarly, ab3, b4 ∈ J3. Then 1 is a sum of elements from I2 and J3,
implying 1 ∈ I2 + J3. Thus, I2 + J3 = R.

9. Let R be a commutative ring and let M be a cyclic R-module, that is, M is generated by
a single element. Prove that there exists an ideal I in R such that M ∼= R/I.
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Solution: By assumption, there exists x ∈ M such that M = Rx. Therefore, there is a
natural R-module homomorphism φ : R → M given by r 7→ rx. To show that φ is a
homomorphism, let r, s ∈ R. Then

φ(r + s) = (r + s)x = rx + sx = φ(r) + φ(s)
φ(rs) = (rs)x = r(sx) = rφ(s)

Therefore, φ is a homomorphism. It is clear that φ is surjective (since 1 ∈ R). By the
First Isomorphism Theorem, R/ ker φ ∼= M. Now ker φ is a submodule of R. But the
submodules of R are precisely ideals. Taking ker φ = I, completing the proof.

10. Let A 2 2 2
2 2 0
2 0 2


be the presentation matrix for the abelian group X, that is we have the presentation

Z3 A−→ Z3 −→ X −→ 0

Find a direct sum of cyclic groups which is isomorphic to X.

Solution: Perform the following row/column operations

R3 − R1 −→ R3

R2 − R2 −→ R2

−R2 −→ R2

−R3 −→ R3

R2 ←→ R3

R1 − R2 −→ R1

R1 − R3 −→ R1

which yields 2 0 0
0 2 0
0 0 2


Thus, X ∼= Z/2Z⊕Z/2Z⊕Z/2Z.
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January 2008

1. Let G, H be cyclic groups generated by elements x, y of finite orders m, n respectively.

(a) Determine the necessary and sufficient condition on m, n so that sending xi to yi, for
all i ∈ Z, is a well-defined homomorphism of groups.

(b) Describe all homomorphisms of the cyclic group of order 6 into the cyclic group of
order 24.

Solution:

(a) Let φ : G → H be defined by φ(xi) = yi. Then φ(xm) = φ(1) = 1 = φ(x)m. Since
H has order n, n divides m. It is clear that this condition is necessary. We claim this
condition is also sufficient.

Suppose that n divides m. We need show that φ is well-defined. If xi = xj for
some i, j ∈ Z, then j = i + mk for some k ∈ Z. This implies that φ(xi) = yi =
yj+mk = yjymk = yj(ym)k = yj = φ(xj). Thus, φ is well-defined. Notice that φ is a
homomorphism since for any i, j ∈ Z, φ(xixj) = φ(xi+j) = yi+j = yiyj. Therefore, it is
necessary and sufficient that n divide m.

(b) Let C6 = 〈x〉 be the cyclic group of order 6 and C24 = 〈y〉 be the cyclic group of order
24. If φ : C6 → C24 is a homomorphism, then φ(x) generates a cyclic subgroup of C24,
which has order at most 6. Furthermore since φ is a homomorphism, φ(xi) = φ(x)i.
By the previous part, this means that φ is well-defined if and only if |φ9x)| divides
|C6| = 6, i.e. if φ(x)6 = 1. This implies that φ(x) ∈ {1, y4, y8, y12, y16, y20}. Thus, there
are 6 such homomorphisms.

2. Given a subgroup K of a group G, the set S of left cosets of K in G is a left G-set by means
of g · xK = gxK, for all g, x ∈ G. If H is another subgroup of G, then S is a left H-set by
restriction. Recall that the set HxK = {y ∈ G : y = hxk for some h ∈ H, k ∈ K} is called a
double coset. For any set X, |X| denotes the cardinality of X.

(a) Prove that the orbit of the element xK of the H-set S is the set of left cosets of K in G
contained in the double coset HxK and compute the stabilizer of xK.

(b) Prove that the double cosets form a partition of G.

In the rest of the problem, assume |G| < ∞.

(c) Prove that |HxK| = |K| [H : H ∩ xKx−1] = |H| [K : K ∩ x−1Hx].
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(d) Do all double cosets have the same cardinality? If yes, give a proof; if no, give a
counterexample.

Solution:

(a) Let O(xK) denote the orbit of xK in S. Then

O(xK) = {h · xK : h ∈ H} = {hxK : h ∈ H}.

This shows that O(xK) is a subset of the set of left cosets of K contained in HxK. If aK
is a coset contained in HxK, then aK ⊂ HxK. In particular, a = hxk for some h ∈ H,
k ∈ K, so h · xK = hxK = hxkK = aK. This shows that aK ∈ O(xK). This proves
that O(xK) is equal to the set of left cosets of K in G contained in HxK. Note that
a · xK = xK if and only if x−1ax ∈ K, which is true if and only if a ∈ xKx−1. Therefore,
the stabilizer of xK in H is H ∩ xKx−1.

(b) Define a relation on G by x ∼ y if and only if x ∈ HyK. We claim that this is an
equivalence relation.

• x = 1x1 ∈ HxK for all x ∈ G, so x ∼ x for all x ∈ G
• If x ∼ y, then x ∈ HyK so x = hyk for some h ∈ H, k ∈ K. Then y = h−1xk−1 ∈

HxK so y ∼ x
• If x ∼ y, y ∼ z, then x ∈ HyK so x = hyk for some h ∈ H, k ∈ K. Similarly,

y = h′zk′ for some h′ ∈ H, k′ ∈ K. Then x = hyk = hh′zk′k ∈ HzK so x ∼ z

This proves that ∼ is an equivalence relation. Notice the equivalence classes of ∼ are
the double cosets HxK for x ∈ G. This implies that the double cosets form a partition
of G, as desired.

(c) By part (a), the orbit of xK is the set of left cosets of K contained in HxK. By the Orbit-
Stabilizer Theorem, there are [H : H ∩ xKx−1] elements of O(xK), i.e. [H : H ∩ xKx−1]
cosets of K contained in HxK. Furthermore, every element of HxK is contained in one
of these cosets of K. Since the cardinality of all left cosets of K is |K|,

|HxK| = |K| [H : H ∩ xKx−1].

The equality |HxK| = |H| [K : x−1Hx] is obtained by letting K act on the set of right
cosets Hx for x ∈ G (via Hx · y = Hxy for y ∈ K) and repeating parts (a) and (b) above.

(d) Not all double cosets have the same cardinality. Consider G = S3, H = 〈(12)〉,
K = 〈(13)〉, x = (23), and y = (123). Then

HxK = {(23), (123)}
HyK = {(123), (132), (13), (12)}

So 2 = |HxK| 6= |HyK| = 4.
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3. Prove that if a group has order pea where p is a prime, 1 ≤ a < p, and e ≥ 1, then the
group has a proper normal subgroup.

Solution: Let G be a group of order pea, where p, e, and a are given above. The divisors
of p are 1, p, p2, . . . , pe−1, pe, . . . , pa, p2a, . . . , pe−1a, pea. Let np(G) denote the number of
p-Sylow subgroups of G. By Sylow’s Theorem, np(G) ≡ 1 mod p and divides |G| = pea.
Now p does not divide np(G), so the only possibilities are np(G) = 1 or np(G) = a. How-
ever, if 1 < a < p, then a is not congruent to 1 mod p (since a− 1 cannot be divisible by
p), so the only possibility is np(G) = 1. Thus, G has a unique p-Sylow subgroup. This
unique p-Sylow subgroup is a normal subgroup of order pe. Thus, G contains a proper,
nontrivial, normal subgroup.

4. Let A be a square matrix over the field C of complex numbers.

(a) Prove that the matrix is invertible if and only if all of its eigenvalues are different from
zero.

(b) Prove that the matrix is nilpotent if and only if zero is its only eigenvalue. Recall that a
square matrix B is called nilpotent if Bm = 0 for some positive integer m.

(c) Prove that if A is nilpotent, it is similar to an upper triangular matrix with diagonal
entries zero. Recall that matrix X and Y are called similar if X = CYC−1 for some
invertible matrix C.

Solution:

(a) Suppose that A is an invertible n× n matrix. Then the linear operator on Cn defined
by multiplication by A has a trivial kernel. Therefore, there are no nonzero vectors
v ∈ Cn satisfying Av = 0v = 0. Thus, 0 is not an eigenvalue of A.

Suppose all the eigenvalues of A are nonzero. Note that A is invertible if and only if
Av 6= 0 for all nonzero Av 6= 0 for all nonzero v ∈ Cn. Since 0 is not an eigenvalue of
A, the latter condition is satisfied.

(b) Suppose that A is an n× n matrix and assume A has a nonzero eigenvalue λ. Then
there exists a nonzero v ∈ Cn such that Av = λv. For any m ∈N, Amv = λmv, which
is nonzero since λm and v are both nonzero. Therefore, A is not nilpotent.

Suppose that the only eigenvalue of A is zero. Since A is a matrix over the com-
plex numbers, its characteristic polynomial splits. This implies that the characteristic
polynomial of A is cA(x) = xn. Therefore, cA(A) = An = 0 and A is nilpotent.
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(c) Assume that A is nilpotent. Since cA(x) = xn, every elementary divisor of A is of the
form xk, where k ≤ n. The Jordan block corresponding to the elementary divisor xk is
a k× k matrix of the following form:

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


Therefore, the Jordan canonical form of A is an upper triangular matrix with zeros
along the diagonal. Since A is similar to its Jordan canonical form, the result follows.

5. Let A be a real symmetric n× n matrix, and let T : Rn → Rn be the linear operator on
the Euclidean space Rn given by T(X0 = AX, for all column vectors X ∈ Rn.

(a) Prove that every vector in ker T is orthogonal vector in im T.

(b) Prove that Rn = ker T ⊕ im T.

(c) Prove that T is an orthogonal projection onto im T if and only if A, in addition to
being symmetric, satisfies A2 = A. Recall that for any subspace W ⊂ Rn, the equality
Rn = W ⊕W⊥ says that every vector v ∈ Rn can be uniquely written as v = w + w′,
where w ∈ W and w′ ∈ W⊥. The linear operator on Rn sending v to w, for all v, is
called the orthogonal projection onto W.

Solution:

(a) Let x ∈ ker T, y ∈ Rn. Then 〈x, Ay〉 = xT Ay and 〈Ax, y〉 = (Ax)Ty = xT ATy =
xT Ay = 〈x, Ay〉. Therefore, 〈x, Ay〉 = 〈Ax, y〉 = 〈0, y〉 = 0, i.e. every vector in ker T is
orthogonal to every vector in im T.

(b) By the previous part, if v ∈ ker T ∩ im T, then 〈v, v〉 = 0, so v = 0. Thus, ker T ∩
im T = 0. By the Rank-Nullity Theorem, dim ker T + dim im T = n. Therefore,

dim(ker T + im T) = dim ker T + dim im T − dim(ker T ∩ im T) = n.

Thus, ker T + im T = Rn and ker T ∩ im T = 0. Therefore, Rn = ker T ⊕ im T.

(c) Suppose T is an orthogonal projection onto im T. Let y ∈ Rn be arbitrary and let
x ∈ ker T. Then T(x + Ty) = Ty since T is an orthogonal projection onto im T. On the
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other hand, T(x + Ty) = Tx + T2y = 0 + T2y = T2y. Thus, T2y = T(x + Ty) = Ty
and A2y = Ay for every y ∈ Rn. Therefore, A2 = A.

Suppose that A2 = A. For v ∈ Rn, write v = a + b, where a ∈ ker T, b ∈ im T. Then
b = Tw for some w ∈ Rn. Clearly, v = a + Tw = a + Aw. Now Tv = T(a) + T(Aw) =
0 + T(Aw) = A(Aw) = A2w = Aw = Tw. Then T is the orthogonal projection onto
im T.

6. Let Z[x] be the ring of polynomials in one variable with coefficients in the integers. Let
(3, x) = M ⊂ Z[x] be the ideal generated by 3 and x. Prove that M is a maximal ideal.3

Solution: If p(x) ∈ M, p(x) = 3q(x) + xr(x) for some p(x), r(x) ∈ Z[x]. This implies
that p(x) = 3k + s(x) for some s(x) ∈ xZ[x]. Conversely, every element of this form is
contained in M. Suppose I is an ideal in Z[x] properly containing M. Consider f (x) ∈
I \M. Let a be the constant term of f and let g(x) = f (x)− a. Observe that g(x) ∈ (x) ⊂
M ⊂ I, which implies that a ∈ I. By the remarks above, a is not a multiple of 3. Observe
that 3k ∈ (3) ⊂ M ⊂ I. If a = 3k + 1, then 1 = a− 3k ∈ I, which implies I = Z[x]. If
a = 3k + 2, then 2 = a− 3k ∈ I, so 3− 2 = 1 ∈ I. Thus, I = Z[x]. But then M is maximal.

OR

Define a map φ : Z[x] → Z/3Z given by a0 + a1x + a2x2 + · · ·+ anxn 7→ a0 mod 3,
i.e. evaluation at 0 modulo 3 (p(0) mod 3). If p(x) = a0 + a1x + a2x2 + · · ·+ anxn and

3All the maximal ideals of Z[x] are of the form (p, f (x)), where p is a prime and f (x) is a polynomial in
Z[x] which is irreducible mod p, i.e. f (x) ∈ (Z/pZ)[x] is irreducible. To see this, take p and f (x) as stated.
We have

Z[x]/(p, f (x)) ∼= (Z/pZ)[x]/( f (x))

But (Z/pZ)[x]/( f (x)) is a field since f (x) is irreducible. But then (p, f (x)) is maximal. We now prove the
converse. Suppose M ⊂ Z[x] is a maximal ideal. Then k = Z[x]/M is a field. Let φ : Z → k be the given
by φ = π ◦ i, where i : Z → Z[x] is the canonical inclusion and π : Z[x] → k is the canonical projection. If
φ were injective, then φ extends to an injection Φ : Q → k. Choosing x 7→ π(x), π extends to a morphism
Π : Q[x] → k. Clearly, Π is surjective. If Π were injective, there would be an isomorphism Q[x] ∼= k.
However, Q[x] is not a field (x is not invertible). Then Π is not injective which shows ker Π = (g(x)) for some
nonzero polynomial g, which necessarily be irreducible. Without loss of generality, we may assume that g
is primitive. Then Q[x]/(g) ∼= k. But then Z[x] → Q[x] gives surjection Z[x] → Q[x]/(g). Therefore, we
have an isomorphism Z[x]/(g) ∼= Q[x]/(g). Write g(x) = a0 + a1x + · · ·+ an−1xn−1 + anxn. In Q[x]/(g),
we have g(x) = 0. But then xn = (−a0/an) + (−a1/an)x + · · ·+ (−an−1/an)xn−1. Then every element of
Q[x]/(g) can be written as a linear combination of the set {1, x, . . . , xn−1} with coefficients in Z[1/an]. But
{1, x, . . . , xn−1} is linearly independent in Q[x]/(g). Choose a prime not dividing an. Then 1/p is not spanned
by {1, x, . . . , xn−1}with coefficients in Z[1/an]. Then ker φ = (n) for some n ∈ Z \ {0}. But im φ is an integral
domain, n must be prime, say p. Then p ∈ M. The maximal ideals in Z[x] containing p are the maximal ideals
in Z[x]/pZ ∼= (Z/pZ)[x]. But then M/(p) = ( f (x)) for some irreducible polynomial f (x) ∈ (Z/pZ)[x].
Therefore, M = (p, f (x)) for some polynomial f (x) ∈ Z[x].
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q(x) = b0 + b1x + b2x2 + · · ·+ bnxn are elements of Z[x] and r ∈ Z, then

φ(p(x) + q(x)) = φ((a0 + b0) + (a1 + b1)x + a2x2 + · · ·+ (an + bn)xn) = (a0 + b0) mod 3
φ(p(x)) + φ(q(x)) = a0 mod 3 + b0 mod 3 ≡ (a0 + b0) mod 3

φ(rp(x)) = ra0 mod 3
rφ(p(x)) = r · (a0 mod 3) ≡ (r mod 3)(a0 mod 3) ≡ ra0 mod 3

Clearly, φ is surjective. Let K denote the kernel of φ. If p(x) ∈ (3, x), p(x) has constant term
divisible by 3. Then φ(p(x)) ≡ 0 mod 3 so that p(x) ∈ K. Therefore, (3, x) ⊂ K. Now if
p(x) ∈ K, then φ(p(x)) = a0 mod 3 and φ(p(x)) ≡ 0 mod 3. Then a0 ∈ (3). But then
for some k ∈ Z, p(x) = a0 + a1x + a2x2 + · · ·+ anxn = 3k + a1x + a2x2 + · · ·+ anxn =
3k + x(a1 + a2x + · · ·+ anxn−1). But then p(x) ∈ (3, x). Therefore, K = (3, x). By the First
Isomorphism Theorem, Z[x]/K ∼= Z/3Z. However, Z/3Z is a field so that K must be
maximal.

OR

Using the Second Isomorphism Theorem

Z[x]/(3, x) ∼=
Z[x]/(x)
(3, x)/(x)

∼= Z/3Z

But Z/3Z is a field so that the ideal (3, x) must be maximal.

7. Let R be a commutative ring with identity. Let I and J be ideals of R. Recall that I J
equals the ideal generated by {ij : i ∈ I, j ∈ J}.

(a) Prove that I J ⊂ I ∩ J

(b) Give an example where I J = I ∩ J. Make the example nontrivial in the sense that
neither I nor J equals either 0 or R.

(c) Give an example where I J 6= I ∩ J.

Solution:

(a) Since I ∩ J is an ideal, it is sufficient to show that I ∩ J contains every element of the
form xy, where x ∈ I, y ∈ J. Since x ∈ I and I is closed under multiplication by R,
xy ∈ I. Mutatis mutandis, xy ∈ J. Thus, xy ∈ I ∩ J and I J ⊂ I ∩ J.

(b) Take R = Z, I = 2Z, and J = 3Z. Then 2Z ∩ 3Z = 6Z since a ∈ 2Z ∩ 3Z if and
only if 2 | a and 3 | a so that 6 | a (as 6 = lcm(2, 3)). We claim (2Z)(3Z) = 6Z.
Since 6 = 2 · 3, 6 ∈ (2Z)(3Z) implying 6Z ⊆ (2Z)(3Z). If a ∈ (2Z)(3Z), then
a = (2j)(3k) = 6(jk) for some j, k ∈ Z. But then a ∈ 6Z. Therefore, 6Z = (2Z)(3Z)
and 2Z ∩ 3Z = (2Z)(3Z).
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(c) Take R = Z, I = 2Z, and J = 4Z. Then I ∩ J = 4Z. We claim 4 /∈ I J. If 4 ∈ I J, then
4 = a1b1 + · · ·+ akbk, where ai ∈ 2Z and bi ∈ 4Z. For each i, there exist mi, ni ∈ Z

such that ai = 2mi and bi = 4ni so that aibi = 8mini ∈ 8Z. Hence, a1b1 + · · ·+ akbk =
4 ∈ 8Z, a contradiction. Thus, 4 /∈ (2Z)(4Z), then 2Z∩ 4Z 6= (2Z)(4Z).

8. Let F be a field and F[x] the ring of polynomials in one variable with coefficients in F.

(a) Show that a module M over F[x] is also in a natural way a vector space over F.

(b) Assume that F is algebraically closed and that M is a simple module over F[x]. Prove
that the dimension of M as a vector space over F is one.

(c) Assume that F is not algebraically closed. Prove that there exists a simple module M
over F[x] such that the dimension of M as a vector space over F is greater than one.

Solution:

(a) Since M is an F[x]-module, there exists an action of F[x] on M. Note F ⊂ F[x]. The
restriction of the action of F[x] to F gives a scalar multiplication of F on M, making M
into an F-vector space. Furthermore for any m, m′ ∈ M, a ∈ F, x · (m+m′) = xm+ xm′

and x · (am) = axm so x is a linear operator on the F-vector space M.

(b) Let m ∈ M be nonzero. Then F[x]m is a nonzero submodule of M. Since M is simple,
F[x]m = M. This implies that the function φ : F[x]→ M given by φ( f (x)) = f (x) ·m
is a surjective F[x]-homomorphism. By the First Isomorphism Theorem, F[x]/ ker φ ∼=
M. Since M is simple, the Lattice Isomorphism Theorem implies there are no F[x]-
submodules (ideals of F[x]) I such that ker φ ( I ( F[x]. Thus, ker φ is a maximal ideal
of F[x]. This implies that ker φ = (p(x)) for some irreducible p(x) ∈ F[x]. Since F is
algebraically closed, p must have degree 1. Without loss of generality, assume that p
is monic so that p(x) = (x − α) for some α ∈ F. Viewing F[x] as an F-vector space,
define T : F[x]→ F via f (x) 7→ f (α). Then T is a surjective linear transformation with
kernel (x− α). By the First Isomorphism Theorem,

M ∼= F[x]/ ker φ ∼= F,

so M has dimension 1 as an F-vector space.

(c) Since F is not algebraically closed, there exists an irreducible polynomial p(x) ∈ F[x]
with degree greater than 1. Then the maximal ideal (p(x)) is a maximal submodule of
F[x], so the module M = F[x]/(p(x)) is a simple F[x]-module.

View M as an F-vector space. We claim the set {1, x} is linearly independent. Suppose
a 1 + b x = 0. Then a + bx ∈ (p(x)), so p(x) divides a + bx. Since deg p(x) > 1, this
implies that a + bx = 0 so a = b = 0. Then dimF M ≥ 2.
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9. Let T be a linear operator on a finite dimensional vector space over the complex numbers.
Assume that T has two eigenvalues: 3, 4. Assume that the Jordan canonical form of a
matrix representing T has the following form. For the eigenvalue 3 there are 2 blocks of
size 1, 2 blocks of size 2, and 1 block of size 4. For the eigenvalue 4 there are 1 block of size
1, 3 blocks of size 3, and 1 block of size 5.

(a) What is the characteristic polynomial of T?

(b) What is the minimal polynomial of T?

(c) What is the nullity of (T − 3I)3? I is the identity linear transformation.

Solution:

(a) The elementary divisors of T are (x − 3), (x − 3), (x − 3)2, (x − 3)2, (x − 3)4, (x −
4), (x− 4)3, (x− 4)3, (x− 4)3, and (x− 4)5. The characteristic polynomial of T is the
product of the elementary divisors: c(x) = (x− 3)10(x− 4)15.

(b) The minimal polynomial is the product of the largest power of (x− 3) and the largest
power of (x− 4) that are elementary divisors, which is m(x) = (x− 304(x− 4)5.

(c) Since there are 5 blocks corresponding to the eigenvalue 3, the nullity of (T − 3I) is
5. The quantity nullity (T − 3I)2− nullity (T − 3I) is the number of Jordan blocks
corresponding to the eigenvalue 3 that have size at least 2. Since there are 3 such blocks,
it follows that nullity (T− 3I)2 = 3 + 5 = 8. By a similar reasoning, nullity (T− 3I)3−
nullity (T − 3I)2 = nullity (T − 3I)3 − 8 = 1. Therefore, nullity (T − 3I)3 = 9.

10. Let F ⊂ K be an extension of fields of characteristic 0. Let G be the Galois group of K
over F. We do not assume that the field extension F ⊂ K is a Galois extension. Assume
that G is a finite group and that p is a prime number that divides the order of G. Prove that
there exists a field L with F ⊂ L ⊂ K satisfying all of the following properties.

(a) L ⊂ K is a Galois field extension with Galois group isomorphic to Z/pZ.

(b) The degree of the field extension L ⊂ K is p.

(c) There does not exist any field strictly between L and K.
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Solution: By Cauchy’s Theorem, G contains an element of order p and hence a subgroup
of order p. Let H ⊂ G be a subgroup of order p. Let F = Fix H be the subfield of K
that is fixed by H. Then Gal(K/L) = H and |Gal(K/L)| = [K : L] = p, so L ⊂ K is
a Galois extension whose Galois group has order p. Hence, Gal(K/L) ∼= Z/pZ. But
[K : L] = p so that (a) and (b) hold. Suppose there exist a field F′ such that L ⊂ F′ ⊂ K.
Then p = [K : L] = [K : F′][F′ : L], so either [K : F′] = 1 or [F′ : L] = 1. That is, either
K = F′ or L = F′. This proves (c).
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August 2008

1. Let R2 be the Euclidean plane with the standard basis e1 =

[
1
0

]
, e2 =

[
0
1

]
.

(a) The counterclockwise rotation about the origin through an angle α, where −∞ < α <
∞, is a linear operator on R2. Find the representation matrix of this linear operator
with respect to the standard basis {e1, e2}.

(b) The orthogonal reflection about a linear through the origin is a linear operator on
R2. Denote by L1 the x-axis, and by L2 the line obtained by rotating L1 about the
origin through a counterclockwise angle θ, where 0 < θ < π/2. Denote by ri the
orthogonal reflection about Li, i = 1, 2. Find the representation matrices of r1, r2, and
the composition r2r1 with respect to the standard basis {e1, e2}.

(c) Using part (a), prove that r2r! is the counterclockwise rotation about the origin through
the angle 2θ.

Solution:

(a) Let Rα denote the rotation about the origin through an angle α. Let B denote the
standard basis for R2. Then the matrix of Rα, with respect to B, is

A = [ [Rα(e1)]B [Rα(e2)]B ]

where Rα(e1) =

[
cos α
sin α

]
and Rα(e2) =

[
cos(α + π/2)
sin(α + π/2)

]
. Thus,

A =

[
cos α cos(α + π/2)
sin α sin(α + π/2)

]
=

[
cos α cos α cos(π/2)− sin α sin(π/2)
sin α sin α cos(π/2) + sin(π/2) cos α

]
=

[
cos α − sin α
sin α cos α

]
(b) The matrix of r1 with respect to B is

[ [r1(e1)]B [r1(e2)]B ]

Note that e1 is fixed by r1 and that r1(e2) = −e2. Therefore,

[ [r1(e1)]B [r1(e2)]B ] =

[
1 0
0 −1

]
.

The matrix of r2 with respect to B is

[ [r2(e1)]B [r2(e2)]B ] =

[
cos 2θ cos(θ − (π/2− θ))
sin 2θ sin(θ − (π/2− θ))

]
=

[
cos 2θ cos(2θ − π/2)
sin 2θ sin(2θ − π/2)

]
=

[
cos 2θ cos 2θ cos(π/2) + sin 2θ sin(π/2)
sin 2θ sin 2θ cos(π/2)− cos 2θ sin(π/2)

]
=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.
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Now the matrix of the composition r2r1 is[
cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
1 0
0 −1

]
=

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
(c) Let A denote the matrix of the counterclockwise rotation about the origin through

the angle 2θ with respect to the standard basis. Let B denote the matrix of r2r1 with
respect to the standard basis. By parts (a) and (b), A = B. Therefore, r2r! is the
counterclockwise rotation about the origin through the angle 2θ.

2.

(a) Prove that the set of elements of finite order in an abelian group is a subgroup.

Denote by GL(R2) the group of invertible linear operators on R2. In the rest of the
problem, use the notation and results of Problem 1, without necessarily solving that
problem.

(b) Determine the orders of r1 and r2 in GL(R2).

(c) Prove that r2r1 is of finite order if and only if the quotient θ/π is a rational number.
Find the order of r2r1 if θ = π/m where m > 2 is an integer.

(d) Explain that (a) will fail if one drops the assumption that the group is abelian.

Solution:

(a) Let G be an abelian group. The claim is that for any n ∈N and g, h ∈ G, (gh)n = gnhn.
For n = 1, this is (gh)1 = gh = g1h1. Suppose the claim is true for some given n. Then

(gh)n+1 = (gh)n(gh) = gnhn(gh) = gnghnh = gn+1hn+1

Therefore, the claim follows by induction.

Let H denote the set of elements of finite order in G. The set H is nonempty as 1 ∈ H.
If g, h ∈ H, then g, h have finite order, say n, m, respectively. Then (gh)nm = gnmhnm =
(gn)m(hm)n = 1m1n = 1. Therefore, gh ∈ H. For g as stated, we also have (g−1)n = 1
as 1 = (gg−1)n = gn(g−1)n = (g−1)n. But then g−1 ∈ H and H is then a subgroup of
G.
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(b) Geometrically, each has order 2 since a vector in R2 that is reflected twice about the
same line will return to where it started. Alternatively, use the matrixes for r1 and r2 to
see that [

1 0
0 −1

]2

=

[
1 0
0 1

]
Therefore, |r1| = 2. Similarly,[

cos 2θ sin 2θ
sin 2θ − cos 2θ

] [
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
=

[
cos2(2θ) + sin2(2θ) cos 2θ sin 2θ − sin 2θ cos 2θ

sin 2θ cos 2θ − cos 2θ sin 2θ sin2(2θ) + cos2(2θ)

]
=

[
1 0
0 1

]
Thus, |r2| = 2.

(c) Suppose that r2r1 is of finite order. Note that for n ∈N, (r2r1)
n is a counterclockwise

rotation about the origin through angle 2nθ. If (r2r1)
n is the identity transformation,

then 2nθ = 2πm for some m ∈ Z. Therefore, θ
π = m

n ∈ Q.

If θ
π ∈ Q, then θ

π = p
q for some p ∈ Z, q ∈ N. This implies that pθ = qπ. For any

n ∈N, (r2r1)
n is a counterclockwise rotation about the origin through angle 2nθ. This

implies that (r2r1)
p is a counterclockwise rotation about the origin through the angle

2pθ = 2πq. This implies that (r2r!)
p is the identity transformation. Hence r2r1 has

finite order.

(d) Take G = GL2(R). Let θ = π2. Let r1, r2 be as above. Then |r1| = |r2| = 2, but since
π2

π = π /∈ Q. Part (c) implies that |r2r1| = ∞. Thus, the subset of elements of finite
order of G is not closed under multiplication.

3. Let H and K be subgroups of a group G, and set HK = {hk : h ∈ H, k ∈ K}.

(a) Prove that if HK ⊂ KH then KH is a subgroup of G.

(b) Prove that if K ∩ H = {1} then the map ρ : K × H → G given by ρ(k, h) = kh is
injective and im ρ = KH.

(c) Let G be of order n = pm where p is a prime that does not divide m, let S be the
set of all Sylow p-subgroups of G, and let H ∈ S. Then S is a left G-set by means of
g ◦ K = gKg−1 for all g ∈ G, K ∈ S, so S is a left H-set by restriction. Using (a) and (b),
prove that exactly one orbit of the H-set S consists of a single element, and each of the
remaining orbits consists of p elements.

Solution:
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(a) The set KH is clearly nonempty (1 = 1 · 1 ∈ KH). Let x, y ∈ KH be arbitrary. Then
x = kh, y = k′h′ for some k, k′ ∈ K, h, h′ ∈ H. Therefore, xy−1 = hk(h′k′)−1 =
hk(k′)−1(h′)−1. Now hk(k′)−1 ∈ HK ⊂ KH, so there exists h′′ ∈ H, k′′ ∈ K such that
hk(k′)−1 = k′′h′′. Therefore, xy−1 = k′′h′′(h′)−1 ∈ KH. Therefore, KH is a subgroup of
G.

(b) If x ∈ KH, then x = kh for some k ∈ K, h ∈ H. Therefore, ρ(k, h) = kh = x. This shows
that KH ⊂ im ρ. It is clear that im ρ ⊂ KH, so im ρ = KH.

Suppose h, h′ ∈ H, k, k′ ∈ K and that ρ((h, k)) = ρ((h′, k′)). Then hk = h′k′, so
(h′)−1h = k′k−1 ∈ H ∩ K, so (h′)−1h = k′k−1 = 1. Thus, h = h′ and k = k′. Therefore,
ρ is injective.

Notice that this implies that |KH| = |K× H| (this will play a role in part (c)).

(c) For K ∈ S, let HK = {x ∈ H : xK = K} = {x ∈ H : xKx−1 = K}. It is clear that
HH = H. By the Orbit-Stabilizer Theorem, [H : HH ] = 1 = |OH |, where |OH | denotes
the orbit of H in S. Now, suppose K 6= H. Since |H| = p, either HK = {1} or HK = H.
If HK = H, then xKx−1 = K for all x ∈ H. This implies that xK = Kx for all x ∈ H.
Therefore, HK = KH. By part (a), KH is a subgroup of G. By part (b),

|KH| = |K× H| = |K| |H| = p2,

and p2 does not divide |G| = pm since p does not divide m. This contradicts Lagrange’s
Theorem. Hence, HK = {1}, and Orbit-Stabilizer Theorem,

|OK| = [H : HK] =
|H|
|HK|

= p.

Thus, exactly one orbit of S consists of a single element and each of the remaining
orbits of S consists of p elements.

4. Prove that a group of order 77 is cyclic.

Solution: Let G be a group of order 77 = 7 · 11. The divisors of 77 are 1, 7, 11, and 77. For
p = 7, 11, let np(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
n7(G) ≡ 1 mod 7 and divides 77. Therefore, n7(G) = 1. Also, n11(G) ≡ 1 mod 11 and
divides 77, so n11(G) = 1. Let H denote the unique Sylow 7-subgroup and let J denote the
unique Sylow 11-subgroup.

It is clear that G 6= H∪ J (since |G| = 77 and |H| = 7 and |J| = 11), so let x ∈ G \ (H∪ J)
be arbitrary. The claim is that G = 〈x〉. If |x| = 1, then x = 1 ∈ H ∪ J, contrary to the
assumption x /∈ H ∪ J. If |x| = 7, then 〈x〉 is a subgroup of G or order 7. Since the Sylow
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7-subgroup of H is unique, this implies that H = 〈x〉. Thus, x ∈ H, a contradiction.
Similarly, if |x| = 11, then x ∈ J, a contradiction. Thus, |x| = 77, which proves the claim.
Thus, G is cyclic.

5. Let w be a vector of length 1 in the Euclidean space Rn of n× 1 matrices.

(a) Prove that the matrix P = In − wwT is orthogonal. Here In is the n× n identity matrix,
and wT is the transpose of w.

(b) Prove that multiplication by P is a reflection about 〈w〉⊥, the orthogonal complement
of the subspace spanned by w, that is, prove that if we write an arbitrary v ∈ Rn in the
form v = cw + w′ where c ∈ R and w′ ⊥ w, then Pv = −cw + w′.

(c) Let X, Y be arbitrary vectors in Rn of the same length. Determine a vector w satisfying
PX = Y.

Solution:

(a) Observe that

PT = IT
n − 2(wwT)T = In − 2(wTTwT) = In − 2wwT = P.

Therefore, P is symmetric. It is therefore sufficient to prove P2 = In. This can be shown
directly:

P2 = (In − 2wwT)2

= I2
n − 2wwT − 2wwT + 4(wwT)2

= In − 4wwT + 4wwTwwT.

Since w is a unit vector, wTw = 1 and

P2 = In − 4wwT + 4wwT = In.

Thus, P is orthogonal.

(b) IF v = cw + w′ with c, w, w′ as above, then

Pv = P(cw + w′) = cP(w) + P(w′)

= c(In − 2wwT)w + (In − 2wwT)w′

= cw + w′ − 2cwwTw− 2wwTw′.

Since w is a unit vector, wTw = 1. Since w′ ⊥ w, wTw′ = 0 and

Pv = cw + w′ − 2cw = −cw + w′,

as required.
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(c) First suppose there exists a w ∈ Rn such that PX = Y. Then there are unique c, c′ ∈
R, w′, w′′ ∈ 〈w〉⊥ such that X = cw + w′, Y = c′w + w′′. Using part (b), PX =
−cw + w′ = c′w + w′′. So c′ = −c and w′ = w′′. Therefore, Y = −cw + w′ and
X−Y = (cw + w′)− (−cw + w′) = 2cw. Thus, X−Y ∈ Span{w}. If X = Y, then take
w = 0. Otherwise, w ∈ Span{X−Y} and w must be a unit vector. Take w = X−Y

‖X−Y‖ .

Now, it needs to be checked that if w = X−Y
‖X−Y‖ , then PX = Y. Note that

X =
‖X−Y‖

2

(
X−Y
‖X−Y‖

)
+

X + Y
2

.

Also, 〈
X−Y,

X + Y
2

〉
=

1
2
〈X−Y, X + Y〉

=
1
2
(〈X, X〉+ 〈X, Y〉 − 〈X, Y〉 − 〈Y, Y〉)

=
1
2
(1 + 〈X, Y〉 − 〈X, Y〉 − 1)

= 0

which shows that X+Y
2 ∈ 〈w〉⊥. Finally,

PX =
‖X−Y‖

2

(
Y− X
‖X−Y‖

)
+

X + Y
2

=
Y− X

2
+

X + Y
2

= Y,

as desired.

6.

(a) Let R be a commutative ring with S a subring of R which contains the identity. If P is a
prime ideal of R, show that P ∩ S is a prime ideal of S.

(b) Let Z[x] be the ring of polynomials in one variable with coefficients in the integers.
Assume P is a prime ideal of Z[x]. Show that P is generated as an ideal by at most two
elements.

Solution:

(a) The set P ∩ S is certainly nonempty — 0 ∈ P ∩ S. If x, y ∈ P ∩ S, then x + y ∈ P since
P is closed under addition and x + y ∈ S since S is closed under addition. Hence,
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x + y ∈ P ∩ S and P ∩ S is closed under addition. Suppose x ∈ P ∩ S and s ∈ S. Since
x, y ∈ S, sx ∈ S. Since P is an ideal of R, xs ∈ P. This shows that xs ∈ P ∩ S, so P ∩ S is
an ideal of S. Also, P ∩ S is a proper ideal of S since 1 ∈ S but 1 /∈ P ∩ S.

If a, b ∈ S and ab ∈ P ∩ S, then ab ∈ P. Since P is a prime ideal of R, either a ∈ P or
b ∈ P. If a ∈ P, then a ∈ P ∩ S. If b ∈ P, then b ∈ P ∩ S. Hence, either a ∈ P ∩ S or
b ∈ P ∩ S. This prove that P ∩ S is prime ideal of S.

(b) Note that Z ⊂ Z[x] is a subring that contains the identity. By part (a), P ∩Z is a prime
dieal of Z, so P ∩Z = pZ for some prime integer p. Define

φ : Z[x] −→ (Z/pZ)[x]
q(x) 7→ q(x),

where q(x) is the polynomial in (Z/pZ)[x] given by reducing the coefficients of q
mod p. Since φ is surjective, φ(P) is an ideal of (Z/pZ)[x]. Since (Z/pZ)[x] is a PID,
φ(P) = ( f (x)) for some f (x) ∈ (Z/pZ)[x]. Choose f ∈ P such that φ( f ) = f . The
claim is that P = (p, f (x)).

It is clear that (p, f (x)) ⊂ P. If g(x) ∈ P, then g(x) = φ(g(x)) ∈ φ(P), so there exists
h(x) ∈ (Z/pZ)[x]. In other words, g(x)− f (x)h(x) = pq(x) for some q(x) ∈ Z[x].
This implies that g(x) = f (x)h(x) + pq(x) ∈ (p, f (x)). Thus, P ⊂ (p, f (x)) and
P = (p, f (x)).

In the case that P ∩Z = 0, the problem remains unsolved.

7. Let R be an integral domain.

(a) Let p be a prime ideal of R. Must p be irreducible? Give either a proof or a counterex-
ample.

(b) Let x be an irreducible element of R. Must x be prime? Give either a proof of a coun-
terexample.

Solution:

(a) The answer is in the affirmative. Suppose p = ab for some a, b ∈ R. Then p divides ab
or so either p divides a or p divides b. Without loss of generality, suppose p divides a.
Then a = pr for some r ∈ R. This implies that p = prb. Cancel a p from both sides to
see that 1 = rb, so that b is a unit. This implies that p is irreducible.
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(b) The answer is in the negative. For a counterexample, consider R = Z[
√
−5]. There is

norm N on R defined by N(a + b
√
−5) = (a + b

√
−5)(a− b

√
−5) = a2 + 5b2. Note

that for any x, y ∈ R, N(xy) = N(x)N(y). Observe that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

The claim is that 2 is an irreducible element of R which is not prime. If 2 = ab for
some a, b ∈ R, then 4 = N(2) = N(a)N(b). If N(a) = 2, for some a = x + y

√
−5,

then x2 + 5y2 = 2, so y = 0 and x2 = 2, a contradiction since x is rational. Mutatis
mutandis, N(b) 6= 2. Therefore, either N(a) = 1 or N(b) = 1. If N(a) = 1, with a as
before, then N(a) = x2 + 5y2 = 1 so that y = 0 and x = ±1. But then a = ±1 is a unit.
Mutatis mutandis, if N(b) = 1, then b is a unit. Therefore, either a or b is a unit and 2
is irreducible.

Note that 2 divides (1 +
√
−5)(1−

√
−5). If 2 divides 1 +

√
−5, then 1 +

√
−5 = 2a

for some a ∈ R. But then 6 = N(1 +
√
−5) = N(2)N(a) = 4N(a), a contradiction as

4 - 6. Thus, 2 does not divide 1 +
√
−5 or 1−

√
−5 despite the fact that 2 divides the

product. Hence, 2 is not prime in Z[
√
−5].

Note: If R were assumed to be a UFD, then the answer is yes. So when looking for
counterexamples, one need search for integral domains which are not UFDs (hence,
not fields, Euclidean domains or PIDs).

8. Let A be a matrix with characteristic polynomial (x − 2)6(x − 3)2. Assume A− 12I8
has rank 5, while (A− 2I8)2 has rank 3. What are the possible Jordan canonical forms for A?

Solution: Note that A is an 8× 8 matrix since its characteristic polynomial has degree 8.
By the Rank-Nullity Theorem,

nullity(A− 2I8) = 8− rank(A− 2I8) = 8− 5 = 3

nullity((A− 2I8)
2) = 8− rank[(A− 2I8)

2] = 8− 3 = 5

Since nullity(A− 2I8) = 3, there are 3 Jordan blocks corresponding to the eigenvalue 2 in
the Jordan canonical form of A. Since

nullity[(A− 2I8)
2]− nullity(A− 2I8) = 5− 3 = 2

there are two Jordan blocks corresponding to the eigenvalue 2 which have size at least 2.
This means that there is one Jordan block of size 1. Since the multiplicity of the eigenvalue
2 is 6. This means that there is one Jordan block of size 3 and one Jordan block of size 2.
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For the eigenvalue 3, there are two possibilities: either there are two Jordan blocks of
size 1 or one Jordan block of size 2. This means that there are two possible Jordan canonical
forms for A, up to permutation of the Jordan blocks, given below:

2 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 1 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3


or



2 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 1 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 1 2 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 1 3



9. Let a be a positive rational number that is not a square in Q. Prove that 4
√

a has degree 4
over Q.

Solution: Note that 4
√

a is a root of the polynomial

m(x) := x4 − a = (x− 4
√

a)(x + 4
√

a)(x− i 4
√

a)(x + i 4
√

a)

The claim is that m(x) is irreducible over Q. It is clear that m(x) contains no rational
roots. [For instance, by the Rational Roots Theorem, the only possible roots are ±1,±2,±4
— none of which are a root of m(x).] It remains to show that m(x) cannot be factored
into products of irreducible quadratic polynomials over Q. If such a factorization exists,
then the quadratic polynomials must have the same irreducible factors in C[x] as m(x)
(since C[x] is a UFD). If (x− 4

√
a)(x + 4

√
a) ∈ Q[x], then

√
a = 4
√

a 4
√

a ∈ Q, contrary to the
assumption that a is not a square in Q. Any possible quadratic factor for m(x) in Q[x] can
be a product of either x− i 4

√
a, x + i 4

√
a with either of x− 4

√
a, x + 4

√
a as then the product

will not be in Q[x]. Finally, (x− i 4
√

a)(x + i 4
√

a) = x2 +
√

a. However,
√

a is not rational
since a is not a square in Q. Thus, m(x) is irreducible over Q and m(x) is the minimal
polynomial of 4

√
a. Hence, 4

√
a has degree 4 over Q.

10. Let K = Q(
√

2,
√

3,
√

5). Determine the degree of the extension [K : Q], prove that K is
a Galois extension of Q, and determine its Galois group.

Solution: Observe that K is the splitting field of the separable polynomial p(x) = (x2 −
2)(x2− 3)(x2− 5) over Q, so K is a Galois extension of Q. For any σ ∈ Gal(K/Q), σ is com-
pletely determined by σ(

√
2), σ(

√
3), and σ(

√
5). Since σ permutes the roots of x2− 2, there

are two possibilities for σ(
√

2): σ(
√

2) =
√

2 or σ(
√

2) = −
√

2. Similarly, σ(
√

3) = ±
√

3
and σ(

√
5) = ±

√
5. Hence, there are eight elements of Gal(K/Q). Let σi,j,k denote the
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element of Gal(K/Q) sending
√

2 to (−1)i
√

2,
√

3 to (−1)j
√

3, and
√

5 to (−1)k
√

5 for
i, j, k ∈ {0, 1}. It is clear that σi,jk commutes with σi′,j′,k′ for all i, j, k, i′, j′, k′ ∈ {0, 1}. More-
over, each of these elements has order 2 (except σ0,0,0 which has order 1) and are distinct
from every other element. By the Fundamental Theorem of Finitely Generated Abelian
Groups, we have Gal(K/Q) ∼= Z/2Z×Z/2Z×Z/2Z. Since K/Q is a Galois extension,
[K : Q] = |Gal(K/Q)| = 8.
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January 2009

1. Let G be a group of order 132 = 22 · 3 · 11. prove that G is not simple.

Solution: Note that the divisors of 132 are 1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, and 132. For any
prime p, let np(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
np(G) divides |G| = 132 and np(G) ≡ 1 mod p. Therefore, the only possibilities are:

n2(G) ∈ {1, 3, 11, 33}
n3(G) ∈ {1, 4}

n11(G) ∈ {1, 12}

If np(G) = 1 for p ∈ {2, 3, 11}, then the Sylow p-subgroup is unique and therefore normal.
But then G is not simple.

Suppose then that np(G) > 1. Then it must be that n11(G) = 12. Since the intersection
of any two Sylow 11-subgroups is the identity. Then there are 12(11− 1) = 12(10) =
120 distinct non-identity elements of G in these two distinct subgroups. Similarly since
n3(G) = 4, the 4 Sylow 3-subgroups contain 4(3− 1) = 4(2) = 8 distinct non-identity
elements. Together, these account for 128 distinct elements of G.

Now, let S1, S2, and S3 denote three distinct Sylow 2-subgroups of G. Notice it is
possible to have |S1 ∩ S3| = 2. Observe that for i 6= j, |Si ∩ Sj| ≤ 2. The Inclusion-Exclusion
Principle implies that

|S1 ∪ S2 ∪ S3| = |S1|+ |S2|+ |S3| − |S1 ∩ S2| − |S1 ∩ S3| − |S2 ∩ S3|+ |S1 ∩ S2 ∩ S3|
≥ 4 + 4 + 4− 2− 2− 2 + 1 = 7

Therefore, there are at least 128+ 7 = 135 distinct elements of G, a contradiction. Therefore,
one of n2(G), n3(G), or n11(G) is 1, implying that G is not simple.

2. Let H and K be normal subgroups of a group G, and assume that G = HK. Prove that
there is an isomorphism

G(H ∩ K) ∼= G/H × G/K

(Formal manipulations with isomorphism theorems will not be enough; you’ll need to
explicitly define a map.)

Solution: Define φ : G → G/H × G/K by g 7→ (gH, gK). The map φ is a homomorphism
since for all g, g′ ∈ G

φ(gg′) = (gg′H, gg′K) = (gHg′H, gKg′K) = (gH, gK) · (g′H, g′K) = φ(g)φ(g′).

To see that φ is surjective, suppose (gH, g′K) ∈ G/H × G/K. Since G = HK, g = h1k1 for
some h1 ∈ H, k1 ∈ K. This implies that g = (h1k1h−1)h1 = k2h1 for k2 = h1k1h−1

1 ∈ K (since
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K is normal in G). Therefore, gH = k2h1H = k2H. Also, g′ = h2k3 for some h2 ∈ H, k3 ∈ K,
so g′K = h2k3K = h2K. Define g′′ = h2k2 = k2(k−1

2 h2k2) = k2h3 for h3 = k−1
2 h2k2 ∈ H

(since H is normal in G). Then φ(g′′) = (k2h3H, h2k2K) = (k2H, h2K) = (gH, g′K) so that
φ is surjective.

Now g ∈ ker φ if and only if (gH, gK) = (H, K) if and only if g ∈ H and g ∈ K, i.e.
g ∈ H ∩ K. Thus, ker φ = H ∩ K. By the First Isomorphism Theorem,

G/(H ∩ K) ∼= G/H × G/K.

3. Let A be a complex square matrix of size n.

(a) Define what it means for A to be Hermitian.

(b) If XAX∗ has real entries for every X ∈ Cn, prove that A is Hermitian.

Solution:

(a) A is a hermitian matrix is a matrix which is its own conjugate transpose, i.e. if aij = aji.

(b) Let B = {e1, . . . , en} denote the standard basis for Cn and A∗ denote the conjugate
transpose of A. Let A = (aij). Then ei Ae∗i = aii is real so that aii = aii. For i 6= j, take
X = ei + ej. Then XAX∗ is real, so

(ei + ej)A(ei + ej)
∗ = ei Ae∗i + ej Ae∗j + ei Ae∗j + ej Ae∗i

is a real number. By assumption, ei Ae∗i and ej Ae∗j are both real. This implies that
ei Ae∗j + ej Ae∗i is real. Now ei Ae∗j + ej Ae∗i = aij + aji has imaginary part zero. Therefore,
Im(aij) = −Im(aji), where for z ∈ C, Im z is the imaginary part of z.

Now for i 6= j, take X = iei + ej. By hypothesis, XAX∗ is real. Therefore,

(iei + ej)A(iei + ej)
∗ = iei A(−i)(e∗i ) + iei Ae∗j + ej A(−i)(e∗i ) + ej Ae∗j
= ei Ae∗i + ej Ae∗j + i(ei Ae∗j − ej Ae∗i )

= aii + ajj + i(aij − aji)

Since XAX∗, aii and ajj are real, i(aij − aji) must be real. Therefore, Re(aij) = Re(aji).
For each i 6= j, it has been shown that Re(aij) = Re(aji) and that Im(aij) = Im(aji).
This implies that aji = aij. Since this is true when i = j, this implies that A = A∗.
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4. Let F be a field and V a vector space over F, not necessarily of finite dimension. Let S
and T be subsets of V such that S is linearly independent and T spans V. Prove that V has
a basis B with S ⊆ N ⊆ S ∪ T.

Solution: Consider the set

I = {I : S ⊂ I ⊂ S ∪ T and I is linearly independent}.

Note that I is nonempty since S ∈ I . Also, I is a partially ordered set under the inclusion
relation. Let C be a chain in I . The claim is that C has an upper bound in I . To prove this
consider the set

I =
⋃

C∈C
C.

It is clear that C ⊂ I for all C ∈ C. It is also clear that S ⊂ I ⊂ S ∪ T. Thus, to prove the
claim, it suffices to show that I is a linearly independent set. Let x1, x2, . . . , xn ∈ I and let

a1x1 + a2x2 + · · ·+ anxn = 0

be a relation of linear dependence among the xi. Notice that each xi ∈ Ci for some Ci ∈ C.
Let C = max{Ci : i = 1, 2, . . . , n}. Then xi ∈ C for all i and the above is a relation of linear
dependence among elements of C. Since C is linearly independent, a1 = a2 = · · · = an = 0.
Thus, I is linearly independent and I ∈ I . Thus, the chain C has an upper bound in I , as
claimed. By Zorn’s Lemma, there exists a maximal element B ∈ I .

The claim is that B is a basis for V. Since B ∈ I , B is a linearly independent subset of
V. Notice that if T ⊂ Span B, then Span B = V since T spans V. If the claim is false, there
exists v ∈ T such that v /∈ Span B. Then B ∪ {v} is linearly independent, contradicting the
maximality of B. Thus, B is a basis for V. Since B ∈ I , S ⊂ B ⊂ S ∪ T.

5. A linear operator T : V → V, with V a finite-dimensional vector space, is called nilpotent
if some power of T is zero.

(a) Prove that T is nilpotent if and only if its characteristic polynomial is p(t) = tk for
some k.

(b) Prove that if T is nilpotent then Tdim V = 0.

Solution:

(a) Assume that T is nilpotent. Then there exists a n ∈ N such that Tn = 0. Let m(t)
denote the minimal polynomial of T. Then m(t) divides tn. This implies that m(t) = tj

for some j ≤ n. Every irreducible factor of the characteristic polynomial is a factor of
the minimal polynomial, which implies that p(t) = tk for some k.

If p(t) = tk, then m(t) = tj for some j ≤ k. Therefore, 0 = m(T) = T j. Thus, T is
nilpotent, as required.
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(b) By part (a), m(t) = tj for some j ≤ dim V. This implies that T j = 0, so Tl = 0 for all
l ≥ j. Since dim V ≥ j, Tdim V = 0.

6. Let R be an integral domain and let a and b be nonzero elements of R. Recall that we
say an element c of R is a least common multiple of a and b if and only if c satisfies the
following two conditions

(a) a | c and b | c

(b) For any nonzero d ∈ R if a | d and b | d then c | d.

Prove that if R is a Principal Ideal Domain and a and b are nonzero elements of R then a
least common multiple of a and b exists. (The problem does not require facts about UFDs.
If you use any, you should prove them.)

Solution: Since R is a PID and (a) ∩ (b) is an ideal, there exists c ∈ R such that (c) =
(a) ∩ (b). The claim is that c is a least common multiple of a and b. Since c ∈ (a), a divides
c. Similarly, b divides c. Now suppose d ∈ R is nonzero and that a | d and b | d. Then
d ∈ (a) ∩ (b) = (c). Therefore, c | d, as needed.

7. Let A be a 10× 10 matrix over the complex numbers, and let I be the 10× 10 identity
matrix. Assume the characteristic values of A are 2 and 2i. Assume further that (A− 2I)
has nullity 3, (A− 2I)2 has nullity 5, (A− 2I)3 has nullity 6, (A− 2iI) has nullity 2, and
(A− 2iI)2 has nullity 4.

(a) Find the Jordan canonical form of A.

(b) Find the characteristic polynomial of A.

(c) Find the minimal polynomial of A.

Solution:

(a) Since (A− 2I) has nullity 3, there are 3 Jordan blocks associated to the eigenvalue 2.
Since

nullity[(A− 2I)3]− nullity[(A− 2I)2] = 6− 5 = 1,

the eigenvalue 2 has one Jordan block of at least size 3. Since

nullity[(A− 2I)2]− nullity(A− 2I) = 5− 3 = 2,

the eigenvalue 2 has two Jordan blocks of size at least 2, so exactly one Jordan block of
size 2. Therefore, the remaining Jordan block has size 1.
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Now consider the eigenvalue 2i. Since (A− 2iI) has nullity 2, there are 2 Jordan blocks
associated to the eigenvalue 2i. Since

nullity[(A− 2iI)2]− nullity(A− 2iI) = 4− 2 = 2,

there are two Jordan blocks of size at least 2 for the eigenvalue 2i. Now since

3 + 2 + 1 + 2 + 2 = 10,

this means that the Jordan block associated to the eigenvalue 2 that has size at least
3 is a 3× 3 Jordan block. It also means that each of the Jordan blocks associated to 2i
has size exactly 2. Thus, the Jordan canonical form is, up to permutation of the Jordan
blocks, 

2 0 0 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0
0 1 2 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0
0 0 0 1 2 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 2i 0 0 0
0 0 0 0 0 0 1 2i 0 0
0 0 0 0 0 0 0 0 2i 0
0 0 0 0 0 0 0 0 1 2i


(b) The elementary divisors of A are (x− 2)3, (x− 2)2, (x− 2), (x− 2i)2, and (x− 2i)2.

Since the characteristic polynomial is the product of the elementary divisors, it follows
that

c(x) = (x− 2)3(x− 2)2(x− 2)(x− 2i)2(x− 2i)2 = (x− 2)6(x− 2i)4

(c) The minimal polynomial is the product of the largest power of (x− 2) and the largest
power of (x− 2i) in the elementary divisors, which is m(x) = (x− 2)3(x− 2i)2.

8. Consider the following group

G =
Z

120Z
× Z

50Z

(a) Express G as a direct sum of groups of the form Z/pkZ for (not necessarily distinct)
prime integers p and positive integers k.
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(b) Express G in the form

G ∼=
u⊕

i=1

Z

miZ
,

where mi divides mi+1 for each i < u.

Solution:

(a) Note that 120 = 23 · 3 · 5. By the Chinese Remainder Theorem,

Z/120Z ∼= Z/8Z×Z/3Z×Z/5Z.

Also, 50 = 2 · 52. By the Chinese Remainder Theorem,

Z/50Z ∼= Z/2Z×Z/25Z.

Thus,

G ∼= Z/2Z×Z/23Z×Z/3Z×Z/5Z×Z/25Z

∼= Z/2Z⊕Z/23Z⊕Z/3Z⊕Z/5Z⊕Z/25Z.

(b) Using the Chinese Remainder Theorem, write

Z/23Z×Z/3Z×Z/52Z ∼= Z/600Z

Similarly,
Z/2Z×Z/5Z ∼= Z/10Z.

Therefore,
G ∼= Z/10Z⊕Z/600Z,

and 10 | 600.

9. Find the minimal polynomial for
√

2 +
√

3 over Q. Make sure you prove that it is the
minimal polynomial, not just some polynomial of which it is a root.

Solution: Let α =
√

2 +
√

3. Observe

α =
√

2 +
√

3

α2 = 5 + 2
√

2
√

3

(α2 − 5)2 = 4(2)(3)

α4 − 10α2 + 25 = 24

α4 − 10α2 + 1 = 0
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Then α is a root of the polynomial m(x) = x4 − 10x2 + 1. It remains to show that m(x)
is the minimal polynomial of α by showing that m(x) is irreducible over Q. By Gauss’
Lemma, it is sufficient to show that m(x) is irreducible over Z.

By the Rational Roots Theorem, the only possible roots of m(x) are ±1, neither of
which are roots of m(x). Therefore, m(x) has no linear factors. Suppose m(x) can be
written as a product of two irreducible quadratic polynomials. Without loss of gen-
erality, assume these factors are monic. Write m(x) = (x2 + ax + b)(x2 + cx + d) =
x4 + (a + c)x3 + (b + d + ac)x2 + (bc + ad)x + bd for some a, b, c, d ∈ Z. Comparing
the constant terms, bd = 1, so either b = d = 1 or b = d = −1. Comparing the x3

terms of the two polynomials, a + c = 0, so a = −c. Now comparing the x2 terms:
b + d + ac = 2b− a2 = −10. If b = 1, then a2 = 10, a contradiction since a ∈ Z and 10 is
not a perfect square in Z. If b = −1, then a2 = 8, again a contradiction. Therefore, m(x)
cannot be written as a product of quadratic polynomials, implying that m(x) is irreducible.
Hence, m(x) is the minimal polynomial of

√
2 +
√

3 over Q.

Note: If p(x) is monic and p(x) = (ax2 + bx + c)(rx2 + sx + t), then ar = 1. So p(x) =
(ax2 + bx + c)(rx2 + sx + t) = (ar)(ax2 + bx + c)(rx2 + sx + t) = r(ax2 + bx + c)(a(rx2 +
sx + t) = (rax2 + rbx + rc)(arx2 + asx + at) = (x2 + rbx + rc)(x2 + asx + at), so you may
assume that the factors are also monic.

10. Let F ⊂ K ⊂ L be field extensions. Assume that F ⊂ L is a Galois field extension and
that its Galois group is abelian. Be sure to give reasons for your answers to (a) and (b).

(a) Is K ⊂ L a Galois field extension?

(b) Is F ⊂ K a Galois field extension?

Solution:

(a) Since F ⊂ L is a Galois extension, L is the splitting field of a separable polynomial
f (x) ∈ F[x] over F. Since F[x] ⊂ K[x], L is also the splitting field of a separable
polynomial over K. Thus, K ⊂ L is a Galois field extension.

(b) By the Fundamental Theorem of Galois Theory, F ⊂ K is a Galois extension if and only
if the subgroup of Gal(L/F) that fixes K is normal. Since Gal(L/F) is abelian, every
subgroup of Gal(L/F) is normal, so F ⊂ K is a Galois field extension.
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August 2009

1. Let V be a real vector space with subspaces A, B and X and with A ⊆ B. Prove that if
A + X = B + X and A ∩ X = B ∩ X, then A = B.

Solution: Let b ∈ B. If b ∈ X, then b ∈ B ∩ X = A ∩ X ⊂ A, as required. Otherwise, b /∈ X
but b ∈ B + X = A + X. Therefore, there exist a ∈ A, x ∈ X such that b = a + x. Since
x = b− a and B is a vector space, x ∈ B. But then x ∈ B ∩ X = A ∩ X. Therefore, x ∈ A
and b = a + x ∈ A since A is a vector space. Thus, B ⊂ A and A = B.

2.

(a) Let G be a finite abelian and let p be a prime number that divides the order of G.
Without using the Fundamental Theorem of Finite Abelian Groups, prove that G
contains an element of order p.

(b) Let G = {1 = g1, g2, . . . , gn} be a finite abelian group. If g1g2 · · · gn 6= 1, prove that the
order of G must be even.

Solution:

(a) We prove this by induction on |G|. If |G| = p, then G is cyclic of order p (essentially
by Lagrange’s Theorem), so any generator of G has order p. Suppose p | n, let G be a
group of order n, and suppose the conclusion holds for all groups of order m < n such
that p | m. Let x ∈ G. If p divides |x|, then |x| = pk for some k ∈N, and it is clear that
xk has order p.

Suppose p does not divide |x|. Let N = 〈x〉. Since G is abelian, N is normal in G. Note
that N is proper since p does not divide |N|. Now |G/N| = |G|

|N| , so

|G| = |N| · |G/N|.

Since p is prime and p divides |N| · |G/N|, either p divides |N| or p divides |G/N|.
But p does not divide |N|, so p divides |G/N|. By the inductive hypothesis, G/N
contains an element of order p. Let yN be an element of G/N of order p. Then
(yN)p = ypN = N, which implies that yp ∈ N. However, y /∈ N since p > 1.
This implies that 〈yp〉 ( 〈y〉 since the former is contained in N and the latter is not.
Therefore, |yp| < |y|. Since |yp| = |y|

gcd(p,|y|) < |y|, gcd(p, |y|) > 1, so gcd(p, |y|) = p.
Thus, p divides |y|. But then G has an element of order p.

OR
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Let #G denote the order of G. If #G = p, then any non-identity element has order p as
p is prime. So assume n > p, p | n, and the result is true for all groups with size less
than n and divisible by p. Since p | n and n > p, #G is not prime. Then G has a proper
non-trivial subgroup, say G. Since G is abelian, H is normal and G/H is a group. Now

#H · #(G/H) = #G = n,

either p divides #H or #(G/H). By induction, H or G/H has an element of order p.
If H does, so too does G. Now suppose G/H has an element of order p, say g. Let m
denote the order of g in G. Then gm = 1 in G so that gm = 1 in G/H. But then p | m.
Thus, g has order divisible by p so that gm/p is an element of G with order p.

(b) Suppose that the order of G is odd. Then 2 - |G|, implying that G has no element
of order 2. Therefore, if g 6= 1, then g 6= g−1. Reindex the elements of G as fol-
lows: g1 = 1 and for each even k, gk+1 = g−1

k . Therefore, g1g2g3 · · · gn−1gn =
1(g2g3)(g4g5) · · · (gn−1gn) = 1.

Note: One need only consider the primes dividing |G| since Lagrange’s Theorem forces G
to contain no elements of prime order not dividing |G|.

3. Prove that no group of order 48 is simple.

Solution: Let G be a group of order 48 = 23 · 3. The divisors of 48 are 1, 2, 3, 4, 6, 8, 12,
16, 24, and 48. For each prime p, let np(G) denote the number of Sylow p-subgroups of G.
By Sylow’s Theorem, n2(G) ≡ 1 mod 2 and n2(G) divides 48. The only possibilities are
n2(G) = 1 and n2(G) = 3. If n2(G) = 1, then G has a unique Sylow 2-subgroup, which is
necessarily normal. In this case, G has a proper, nontrivial, normal subgroup, implying
that G is not simple.

Otherwise, n2(G) = 3. In this case, let X denote the set of Sylow 2-subgroups and let
G act on X by conjugation, i.e. g · S = gSg−1 for all g ∈ G, S ∈ X. Since any two Sylow
2-subgroups are conjugate in G, this action must be nontrivial. Therefore, the action of G
on X induces a nontrivial homomorphism φ : G → S3. Since |G| = 48 and |S3| = 3! = 6,
this homomorphism cannot be injective. Therefore, ker φ is a proper, nontrivial, normal
subgroup of G. Thus, G is not simple.

4.

(a) Let E be an Euclidean space—that is, a finite dimensional vector space over R, the
real numbers, with a positive definite, symmetric, inner product denoted by ( , ).
Let E∗ = HomR(E, R) be the dual space. Prove that the map φ : E → E∗, given by
φ(v) = ρv, where ρv(w) = (w, v) for all v, w ∈ E, is an isomorphism.
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(b) Let E be the Euclidean space consisting of all polynomials in one variable with real
coefficients of degree less than or equal to 2 with inner product given by ( f , g) =∫ 1

0 f (t)g(t) dt. Let α be the element of E∗ given by α( f ) = f (1). In the notation of part
(a), find the v ∈ E such that φ(v) = α.

Solution:

(a) Let v, v′ ∈ V, a ∈ |R. Observe ρv+v′(w) = (w, v + v′) = (w, v) + (w, v′) = ρv(w) +
ρv′(w) for all w ∈ V. Thus, ρv+v′ = ρv + ρv′ . This proves that φ(v + v′) = φ(v) + φ(v′).
For any w ∈, ρav(w) = (w, av) = a(w, v) = aρv(w). Therefore, φ(av) = aφ(v). But
then φ is a linear transformation.

Suppose v ∈ ker φ. Then ρv(w) = 0 for all w ∈ V. In particular, ρv(v) = (v, v) = 0.
Since the form is positive definite, v = 0. But then ker φ = 0 so φ is injective.

Note that E has a orthonormal basis {e1, e2, . . . , en}. If f ∈ E∗, let ci = f (ei) for
i = 1, 2, . . . , n. Define v = c1e1 + · · ·+ cnen. Then for any w = a1e1 + · · ·+ anen ∈ E,

(w, v) = (a1e1 + · · ·+ anen, c1e1 + · · ·+ cnen)

= a1c1(e1, e1) + · · ·+ ancn(en, en)

= a1 f (e1) + · · ·+ an f (en)

= f (a1e1 + · · ·+ anen)

= f (w).

Therefore, ρv = f , which implies that φ is surjective. Therefore, φ is an isomorphism.

(b) The goal is to find a v ∈ V such that ρv(w) = (w, v) = w(1) for all w ∈ E. Take w = 1,
w′ = x, w′′ = x2. Write v = a0 + a1x + a2x2. Since w(1) = w′(1) = w′′(1) = 1, it
follows that

1 = (w, v) =
∫ 1

0
(a0 + a1x + a2x2) dx =

(
a0x +

1
2

a1x2 +
1
3

a2x3
) ∣∣∣∣1

0
= a0 +

1
2

a1 +
1
3

a2

1 = (w′, v) =
∫ 1

0
(a0x + a1x2 + a2x3) dx =

(
1
2

a0x2 +
1
3

a1x3 +
1
4

a2x4
) ∣∣∣∣1

0
=

1
2

a0 +
1
3

a1 +
1
4

a2

1 = (w′′, v) =
∫ 1

0
(a0x2 + a1x3 + a2x4) dx =

(
1
3

a0x3 +
1
4

a1x4 +
1
5

a2x5
) ∣∣∣∣1

0
=

1
3

a0 +
1
4

a1 +
1
5

a2

This leads to a system of three equations in three unknowns which can be solved:

a0 +
1
2

a1 +
1
3

a2 = 1

1
2

a0 +
1
3

a1 +
1
4

a2 = 1

1
3

a0 +
1
4

a1 +
1
5

a2 = 1
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The solution to this is a0 = 3, a1 = −24, a2 = 30. Hence, v = 3− 24x + 30x2.

5. Let Sn denote the symmetric group on n letters with An the alternating subgroup. Let
α ∈ An. CSn(α) denotes the centralized in Sn of α. Similarly, CAn(α) denotes the centralizer
in An of α.

(a) Prove that [An : CAn(α)] is equal to either [Sn : CSn(α)] or 1
2 [Sn : CSn(α)]. (Hint:

Consider the natural homomorphism from Sn to Sn/An.)

(b) Prove that if α is centralized by some permutation not in An, then the conjugacy class
of α in An is equal to the conjugacy class of α in Sn.

Solution:

(a) Consider the homomorphisms

CAn(α)
i−→ CSn(α)

φ−→ Sn
σ−→ {±1},

where i and φ are the identity functions and σ is the sign map. There are two cases: ei-
ther im(σ ◦ φ) = {1} or im(σ ◦ φ) = {±1}. If im(σ ◦ φ) = {1}, then every permutation
that centralizes α must be even. Therefore, CAn(α) = CSn(α). This implies that

[Sn : CSn(α)] = [Sn : An] [An : CAn(α)] = 2[An : CAn(α)].

Thus, [An : CAn(α)] =
1
2 [Sn : CSn(α)].

Otherwise, im(σ ◦ φ) = {±1}. Note that ker(σ ◦ φ) = CAn(α). By the First Isomor-
phism Theorem,

CSn(α)/CAn(α)
∼= {±1}.

In particular, [CSn(α) : CAn(α)] = 2. Therefore,

2 =
|CSn(α)|
|CAn(α)|

=
|Sn|
|An|

,

which implies that

[Sn : CSn(α)] =
|Sn|
|CSn(α)|

=
|An|
|CAn(α)|

= [An : CAn(α)],

as required.
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(b) Note that if Sn acts on itself by conjugation, then the stabilizer of α is CSn(α). If An
is acting on Sn by conjugation, then the stabilizer of α is CAn(α). Let OAn(α) and
OSn(α) denote the orbit of α in the action of An on Sn and the action of Sn on itself,
respectively. If α is centralized by some permutation not in An, then im(σ ◦ φ) 6= {±1},
so im(σ ◦ φ) = {±1}. In this case, [Sn : CSn(α)] = [An : CAn(α)]. By the Orbit-Stabilizer
Theorem,

|OAn(α)| = [An : CAn(α)] = [Sn : CSn(α)] = |OSn(α)|.

Since OAn(α) ⊂ OSn(α) and both sets are finite. It follows that OAn(α) = OSn(α).
Hence, the conjugacy class of α in An is equal to the conjugacy class of α in Sn.

6.

(a) Let A be an n-by-n matrix over the complex numbers, λ a complex number, and k a
nonnegative integer. Explain the significance of rank[(A− λIn)k+1]− rank[(A− λIn)k]
in the Jordan canonical form of A.

(b) Let A and B be n-by-n matrices over the complex numbers such that for every complex
number λ and every positive integer k, rank[(A− λIn)k] = rank[(B− λIn)k]. Prove
that A and B are similar.

Solution:

(a) Using the Rank-Nullity Theorem,

rank[(A− λIn)
k+1]− rank[(A− λIn)

k] = (n− nullity[(A− λIn)
k+1])− (n− nullity[(A− λIn)

k])

= nullity[(A− λIn)
k]− nullity[(A− λIn)

k+1]

Therefore, | rank[(A− λIn)k+1]− rank[(A− λIn)k] | is the number of Jordan blocks in
the Jordan canonical form with eigenvalue λ and size at least k + 1.

(b) By the Rank-Nullity Theorem, it is clear that nullity[(A− λIn)k] = nullity[(B− λIn)k]
for all λ ∈ C, k ∈N. The claim is that A and B have the same Jordan canonical form.
Let λ ∈ C. Since nullity(A− λIn) = nullity(B− λIn), A and B have the same number
of Jordan blocks associated to the number λ. Since

nullity[(A− λIn)
2]− nullity(A− λIn) = nullity[(B− λIn)

2]− nullity(B− λIn),

A and B have the same number of Jordan blocks associated to the number λ of size
at least 2. Therefore, A and B have the same number of Jordan blocks associated to
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the number λ of size 1. Assume that A and B have the same number of Jordan blocks
associated to the number λ of size 1, 2, . . . , and k. Since

nullity[(A−λIn)
k+2]−nullity[(A−λIn)

k+1] = nullity[(B−λIn)
k+2]−nullity[(B−λIn)

k+1],

A and B have the same number of Jordan blocks of size at least k + 2 and since they
have the same number of blocks of size at most k, they must have the same number
of Jordan blocks of size k + 1. By induction on k, A and B have the same number of
Jordan blocks of size k for all k ∈N associated to each complex number λ. Therefore,
A and B have the same Jordan canonical form, which implies that A and B are similar.

7. Let α =
√

7 +
√

2.

(a) Find the minimal polynomial of α over Q, the field of rational numbers.

(b) Find the Galois group of the field extension Q ⊂ Q(α). (Hint: First prove that
Q(α) = Q(

√
7,
√

2).)

Solution:

(a) Observe that

α =
√

7 +
√

2

α2 = 9 + 2
√

2
√

7

(α2 − 9) = 4(2)(7)

α4 − 18α2 + 81 = 56

α4 − 18α2 + 25 = 0

Therefore, α is a root of m(x) = x4 − 18x2 + 25. It remains to show that m(x) is
irreducible over Q. By Gauss’ Lemma, it is sufficient to show that m(x) is irreducible
over Z. By the Rational Roots Theorem, the only possible rational roots of m(x) are
±1,±5,±25, none of which are zeros for m(x). Therefore, m(x) has no factors of
degree 1. It remains to show that m(x) cannot be factored into a product of irreducible
quadratic equations over Z. Suppose that m(x) = (x2 + az + b)(x2 + cx + d) for
a, b, c, d ∈ Z (we can without loss of generality assume that the factors are monic).
Then

m(x) = (x2 + az+ b)(x2 + cx + d) = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x + bd.
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Comparing coefficients, bd = 25. If b = 1, d = 25, then b + d = 26 so comparing the
coefficients of x2, x3, we have

0 = a + c
0 = ac + 26

Implying a = −c so that c2 = 26, a contradiction as c ∈ Z. If b = 2, d = 5, then
b + d = 10. Repeating the process from above,

0 = a + c
0 = ac + 10

Then a = −c so that c2 = 10, a contradiction as before. The negative cases are
handled mutatis mutandis. Note this completes the cases as we can always switch
the ordering/labeling of the quadratic factors. Thus, m(x) is not the product of two
irreducible quadratic polynomials over Z, so m(x) is irreducible over Z and hence
over Q.

(b) It is clear that α ∈ Q(
√

2,
√

7). Since Q ⊂ Q(
√

2,
√

7), it follows Q(α) ⊂ Q(
√

7,
√

2).
Notice that

(
√

7 +
√

2)(
√

7−
√

2) = 7− 2 = 5.

This implies that (
√

7 +
√

2)−1 = 1
5 (
√

7−
√

2) ∈ Q(α). Then
√

7−
√

2 ∈ Q(α). Now

1
2
(
(
√

7 +
√

2) + (
√

7−
√

2)
)
=
√

7 ∈ Q(α)

1
2
(
(
√

7 +
√

2)− (
√

7−
√

2)
)
=
√

2 ∈ Q(α)

Thus, Q(α) is a field containing Q,
√

2, and
√

7. Since Q(
√

2,
√

7) is the smallest
subfield of C containing Q,

√
2, and

√
7, Q(

√
2,
√

7) ⊂ Q(α). Therefore, Q(α) =
Q(
√

2,
√

7).

Now consider σ ∈ Gal(Q(α)/Q). Since σ fixes Q, σ is completely determined by σ(
√

2)
and σ(

√
7). Now since (

√
2)2 − 2 = 0,

σ((
√

2)2 − 2) = σ(0)

σ(
√

2)2 − σ(2) = σ(0)

σ(
√

2)2 − 2 = 0,

i.e. that σ(
√

2) is a root of m(x) = x2 − 2. There are now two possibilities: either
σ(
√

2) =
√

2 or σ(
√

2) = −
√

2.
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Similarly, there are two possibilities for σ(
√

7): either σ(
√

7) =
√

7 or σ(
√

7) = −
√

7.
Thus, there are four elements of Gal(Q(α)/Q).

σ1(
√

2) =
√

2 σ2(
√

2) =
√

2

σ1(
√

7) =
√

7 σ2(
√

7) = −
√

7

σ3(
√

2) = −
√

2 σ4(
√

2) = −
√

2

σ3(
√

7) =
√

7 σ4(
√

7) = −
√

7

It is clear that σ1 is the identity of Gal(Q(α)/Q) and that every non-identity element
has order 2. Thus, Gal(Q(α)/Q) ∼= Z/2Z×Z/2Z ∼= V4, the Klein 4-group.

8. Let R be a Principal Ideal Domain.

(a) Let I = (x) be a nonzero ideal of R. Prove that I is a maximal ideal if and only if x is
irreducible.

(b) Let I be a nonzero ideal of R. Prove that I is a maximal ideal if and only if I is a prime
ideal.

Solution:

(a) Suppose that I is a maximal ideal and that x = rs for some r, s ∈ R. Without loss of
generality, suppose r is not a unit. Then x ∈ (r) so that (x) ⊂ (r). Since r is not a unit,
(r) 6= R. So (x) = (r) by the maximality of (x). This implies that r = ux for some
u ∈ R×. Therefore, x = rs = uxs, which implies 1 = us, i.e. that s is a unit. Therefore,
x is irreducible.

Suppose that x is irreducible and J is an ideal such that I ⊂ J ⊂ R. Then J = (y) for
some y ∈ R. Since x ∈ J, x = ry for some r ∈ R. However, x was assumed to be
irreducible, so either r is a unit or y is a unit. If r is a unit, then (x) = (y), i.e. I = J. If y
is a unit, then the ideal J contains a unit, which implies that J = R. Therefore, I is a
maximal ideal.

(b) Since I is a maximal ideal, the quotient ring R/I is a field. But then R/I is an integral
domain so that I must be prime. [Recall, I is a prime ideal if and only if R/I is an
integral domain.]

Suppose I = (x) is a prime ideal. We claim that x is irreducible. If x = ry for some
r, y ∈ R, then y ∈ I. Since I is a prime ideal, either r ∈ I or y ∈ I. Without loss of
generality, assume that r ∈ I. Then r = xu for some u ∈ R. This implies x = ry = xuy.
Then 1 = uy. Therefore, y is a unit. But then x is irreducible. Therefore, I = (x) is
maximal.
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9.

(a) Give an example of a commutative ring with at least two simple modules that are not
isomorphic.

(b) Let R be a commutative ring and let M be a simple R-module. Prove that any nonzero
endomorphism of M is an isomorphism.4

Solution:

(a) Take the commutative ring Z and the Z-modules Z/2Z and Z/3Z. These modules
are not isomorphic since they have different cardinalities. Clearly, Z/2Z and Z/3Z

have no proper, nontrivial subgroups, which implies they are both simple.

(b) Let f : M→ M be a nonzero endomorphism. Then ker f is a submodule of M. Since
M is simple, either ker f = 0 or ker f = M. It was assumed that f is nonzero, so
ker f 6= M. Thus, ker f = 0 and f is injective. Furthermore, the image of f is a
submodule of M. Since M is simple, either im f = 0 or im f = M. Since f is nonzero,
im f 6= 0. Therefore, im f = M and f is surjective. Therefore, f is an isomorphism.

10. Suppose E is a finite field. Prove that the order of E is pn, where p is a prime number
and n is a positive integer.

Solution: Since E is a finite field, it has characteristic p for some prime number p. In this
case, E contains a subfield isomorphic to Fp, the field with p elements. In this case, E can
be viewed as a vector space over Fp, so E ∼= Fn

p for some n ∈N, the latter clearly has order
pn.

4This is Schur’s Lemma.
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January 2010

1. Recall that a subgroup H of a group G is called characteristic if φ(H) ⊆ H for every
automorphism φ of G.

(a) Prove that characteristic subgroups are always normal.

(b) Let P be a p-Sylow subgroup of a finite group G and assume that P is normal in G.
Prove that P is a characteristic subgroup of G.

Solution:

(a) Let x ∈ G and define φx : G → G via φx(g) = xgx−1. We claim that φx is an
automorphism of G. Clearly, φ is a homomorphism as

φx(g)φx(h) = (xgx−1)(xhx−1) = x(gh)x−1 = φx(gh)

Now g ∈ ker φx if and only if xgx−1 = 1 if and only if g = x−1x = 1. There-
fore, ker φx = {1} so that φx is injective. Furthermore for any g ∈ G, φx(x−1gx) =
x(x−1gx)x−1 = g so that φx is surjective. But then φ is an automorphism of G.

By assumption, φx(H) ⊂ H for all x ∈ G. That is, xHx−1 ⊂ H for all x ∈ G. Then H is
a normal subgroup of G.

(b) We claim that P is the unique Sylow p-subgroup of G (hence normal). Suppose Q is
also a Sylow p-subgroup of G. Then by Sylow’s Theorem, P and Q are conjugate, i.e.
there is a x ∈ G such that xPx−1 = Q. By assumption, P is normal in G so that Q ⊂ P.
But P and Q have the same (finite) order, but then P = Q, as claimed.

Now if φ is an automorphism of G, then φ(P) is a subgroup of G with the same order
as P, i.e. φ(P) is a Sylow p-subgroup of G. But by uniqueness (proved above), it must
be that φ(P) = P. Thus, P is a characteristic subgroup of G.

2. Prove that there are no simple groups of order 20 or 57.

Solution: Note that if |G| = 20 = 22 · 5. Let n5(G) denote the number of Sylow 5-subgroups
of G. By Sylow’s Theorem, n5(G) ≡ 1 mod 5 and n5(G) divides 4. But then it must be that
n5(G) = 1 so that G contains a unique Sylow 5-subgroup. But by Sylow’s Theorem, unique
Sylow p-subgroups are normal so that this Sylow 5-subgroup is necessarily normal. Hence,
a group of order 20 must contain a proper, nontrivial, normal subgroup and therefore
cannot be simple.

If |G| = 57 = 3 · 19, let n19(G) denote the number of Sylow 19-subgroups of H. By
Sylow’s Theorem, n19(H) ≡ 1 mod 19 and n19(H) divides |H| = 57. But then n19(G) = 1.
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Then as above, G must contain a proper, nontrivial, normal subgroup. Therefore, G cannot
be simple.

3. Let G be an abelian group of order n and assume that G has at most one subgroup of
order d for each d | n. Prove that G is a cyclic group.

Solution: By the Fundamental Theorem of Finitely Generated Abelian Groups (or Funda-
mental Theorem of Finite Abelian Groups, if one prefers), we have

G ∼= Z/pα1
1 Z× · · · ×Z/pαk

k

where the pi are (not necessarily distinct) primes and αi ∈ N. If pi = pj, then Z/pαi
i and

Z/p
αj
j each contain a subgroup of order pi. Hence, G has at most one subgroup for every

divisor of n. This implies that the pi as distinct primes, hence relatively prime. But then by
the Chinese Remainder Theorem,

G ∼= Z/pα1
1 Z× · · · ×Z/pαk

k
∼= Z/(pα1

1 pα2
2 · · · p

αk
k )Z

which is cyclic.

4. Let R be a commutative ring such that the polynomial ring R[x] is a PID. Prove that R is
a field.

Solution: Let (x) denote the ideal generated by x in R. If (x) were a maximal ideal of R[x],
then R[x]/(x) ∼= R would be a field. It remains then to show that (x) is maximal. However
since R[x] is assumed to be a PID, (x) is maximal if and only if (x) is irreducible if and only
if x is irreducible. Suppose x = p(x)q(x) for some p(x), q(x) ∈ R[x]. Clearly, p(x) and
q(x) must have degree at most 1 and cannot both be degree 1. Without loss of generality,
assume that p(x) has degree 0, i.e. p(x) := p ∈ R is a ‘constant’. Now q(x) has degree one.
Write q(x) = ax + b for some a, b ∈ R. Then x = pax + pb which implies pa = 1. But then
p is a unit. Therefore, x is irreducible. The result then follows.

5. Recall that a n× n matrix A is normal if AA∗ = A∗A. Prove that if A is a normal lower
triangular matrix over the complex numbers, the A is a diagonal matrix.

Solution: We prove this by induction on n. If n = 1, the result is trivial. If n = 2, suppose
A = (aij). Then

AA∗ =
(

a11 0
a21 a22

)(
a11 a21
0 a22

)
=

(
a11a11 a11a21
a11a21 a22a22 + a21a21

)
A∗A =

(
a11 a21
0 a22

)(
a11 0
a21 a22

)
=

(
a11a11 + a21a21 a22a21

a21a22 a22a22

)
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Since AA∗ = A∗A, a11a11 = a11a11 + a21a21. Thus, a21a21. Thus, a21a21 = |a21|2 = 0 so
a21 = 0. This implies that

A =

(
a11 0
0 a22

)
so that A is diagonal.

Now assume that the result is true for any normal lower triangular (n− 1)× (n− 1)
matrix and let A = (aij) be a normal lower triangular n× n matrix. Then

AA∗ =


a11 0 0 · · · 0
a21 a22 0 · · · 0
...

...
. . . . . .

...
an1 an2 an3 · · · ann




a11 a21 a31 · · · an1
0 a22 a32 · · · an2
...

...
. . . . . .

...
0 0 0 · · · ann


From this, observe that the (1, 1)-entry in AA∗ is |a11|2. Now observe that

A∗A =


a11 a21 a31 · · · an1
0 a22 a32 · · · an2
...

...
. . . . . .

...
0 0 0 · · · ann




a11 0 0 · · · 0
a21 a22 0 · · · 0
...

...
. . . . . .

...
an1 an2 an3 · · · ann


The (1, 1)-entry of A∗A is |a11|2 + |a21|2 + · · ·+ |an1|2. Since AA∗ = A∗A, it follows that

|a11|2 = |a11|2 + |a21|2 + |a31|2 + · · ·+ |an1|2

0 = |a21|2 + |a31|2 + · · ·+ |an1|2

Since |ak1|2 is a positive real number for each k, it follows that ak1 = 0 for k > 1. Thus,

C =

[
a11 0
0 B

]
where B is an (n− 1)× (n− 1) is a lower triangular matrix. Since A is normal, it is imme-
diate that B is normal. The inductive hypothesis implies that B is a diagonal matrix. Hence,
A is also a diagonal matrix. The result now follows by induction.

6. Let R = Z[x] and let I = (2, x). Prove that I is not a free R-module but it is torsion free.

Solution: Since Z is an integral domain, Z[x] is an integral domain. Moreover, I is an ideal
of R. If r(x) ∈ R and p(x) ∈ I are such that r(x) · p(x) = 0, it must be that r(x) = 0 since
R is an integral domain. But then Tor(I) = {0}, i.e. I is torsion free.

Now if I is an ideal in an integral domain R and I is a free R-module, it must be that
I is principal. To see this, suppose B were a basis for I as an R-module and |B| > 1. Let

102



x, y ∈ B be distinct. Then x · y + (−y) · x = 0 = 0 · x + 0 · y are two different expressions
for 0 as a linear combination of basis elements of B, a contradiction. Then it must be that
B = 1 and I is principal.

Therefore, to show I is not free as an R-module, it suffices to show that I is not a
principal ideal in R. Suppose to the contrary I = (p(x)) for some p(x) ∈ R. Then
2 ∈ (p(x)) so that 2 = r(x)p(x). But then p(x) must be a constant polynomial. Now
Z[x] is a UFD, implying that then p(x) ∈ {±1,±2}. If p(x) = ±1, then I = Z[x], which
cannot be since3 ∈ Z[x] and 3 /∈ I. If p(x) = ±2, we can without loss of generality assume
p(x) = 2 (since (2) = (−2)). We know x ∈ (p(x)) = (2) so that x = 2r(x) for some
r(x) ∈ Z[x]. But then r(x) must have degree 1. Write r(x) = ax + b for some a, b ∈ R. But
then we must have 2a = 1, a contradiction as a ∈ Z. Therefore, I 6= (p(x)) so that I cannot
be principal. Hence, I is not a free R-module.

OR

By the proof above, we only need show that I is not principal. Suppose to the contrary
that (2, x) = I = (p(x)). Certainly if f (x) ∈ (2, x) = (p(x)), then f = 2g(x) + xh(x) for
some g(x), h(x) ∈ R. But then evaluating at 0 yields f (0) = 2g(0). Then f (0) must be
even. Furthermore, we know 2 ∈ (2, x) = (p(x)) so that 2 = p(x)g(x) for some g(x) ∈ R.
But then it must be that deg p = 0 so that p(x) is constant, i.e. p(x) = p(0) = 2n for
some n ∈ N. [Note that p(x) = ±1 is not possible since (p(x)) = (2, x) 6= R[x].] Now
x ∈ (p(x)) so that x = p(x)h(x) = 2nh(x) for some h(x) ∈ R. But evaluating at x = 1
gives 1 = 2nh(1). But this implies that 1 is even, a contradiction.5

7. Let F be a finite field. Prove that the product of the non-zero elements of F is −1.

Solution: Suppose that char F 6= 2, i.e. 1 6= −1. If a ∈ F× and a2 = 1, then a is a root of the
polynomial p(x) = x2 − 1 = (x + 1)(x− 1), so a ∈ {±1}. Therefore, if a /∈ {±1}, a−1 6= a.
Therefore, the product of the nonzero elements of F is

(−1)(1)a1a−1
1 a2a−1

2 · · · ana−1
n = −1,

as required.
If char F = 2, then 1 = −1 and x2 − 1 = (x− 1)(x + 1) = (x− 1)2, which has a unique

root of 1. Thus, if a ∈ F× and a 6= 1, then a−1 6= a. Therefore, the product of the nonzero
elements of F is

1a1a−1
1 a2a−1

2 · · · ana−1
n = 1 = −1,

as required.

5Note: it will generally be the case that for a domain D, (a, x) will not be a principal ideal in D[x] for any
nonunit a ∈ D.
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8. Let ξ =
√

2 +
√

2. Find the minimal polynomial of ξ over Q and show that ξ =
√

2−
√

2
is another root of this minimal polynomial. Show that the degree of Q(ξ) over Q is 4. Prove
that sending ξ to ξ =

√
2−
√

2 is an automorphism of Q(ξ) over Q. Describe the Galois
group of Q(ξ) over Q.

Solution: Observe that

ξ =

√
2 +
√

2

ξ2 = 2 +
√

2

(ξ2 − 2)2 = 2

ξ4 − 4ξ2 + 4 = 2

ξ4 − 4ξ2 + 2 = 0

Therefore, ξ is a root of the polynomial m(x) = x4− 4x2 + 2. Notice that m(x) is irreducible
as it is Eisenstein with p = 2. Therefore, m(x) is the minimal polynomial of ξ over Q. Since
m(x) has degree 4, [Q(ξ) : Q] = deg m(x) = 4.

The same computation as above shows that
√

2−
√

2 is a root of m(x). Since m(x) is
even, we know that ±

√
2 +
√

2 and ±
√

2−
√

2 are roots of m(x). Since m(x) has degree
4, these are the complete roots of m(x).

We claim that Q(ξ) is the splitting field of m(x) over Q. It is clear that if m(x) splits over
a field F ⊃ Q, then Q(ξ) ⊂ F. It is then sufficient to show that Q(ξ) contains all the roots of
m(x). Obviously, ±x = ±

√
2 +
√

2 ∈ Q(ξ). Observe that (
√

2 +
√

2)2 = 2 +
√

2 ∈ Q(ξ),
so ξ2 − 2 =

√
2 ∈ Q(ξ). Now√

2 +
√

2
√

2−
√

2 =

√
(2 +

√
2)(2−

√
2) =

√
2,

which implies that
√

2−
√

2 =

√
2√

2 +
√

2
∈ Q(ξ). Therefore, −

√
2−
√

2 ∈ Q(ξ). There-

fore, Q(ξ) is the splitting field of m(x) over Q.
Since Q(ξ) is the splitting field of a separable polynomial over Q, Q(ξ)/Q is a Galois

extension and |Gal(Q(ξ)/Q)| = [Q(ξ) : Q] = 4. If σ ∈ Gal(Q(ξ)/Q), then σ is completely
determined by σ(ξ). Note that σ(ξ) must be a root of the minimal polynomial ξ, so there
are only four possibilities for σ(ξ). Since |Gal(Q(ξ)/Q)| = 4, each of these possible
automorphisms must actually be an automorphism. Therefore, sending ξ to

√
2−
√

2 is
an automorphism of Q(ξ) over |Q.

We claim Gal(Q(ξ)/Q) ∼= Z/4Z. Let σ be the automorphism that sends ξ to
√

2−
√

2.
Note that

2 + σ(
√

2) = σ(2 +
√

2) = σ(ξ2) = σ(ξ)2 = 2−
√

2,
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which implies that σ(
√

2) = −
√

2. But by a previous computation,

σ

(√
2−
√

2
)
=

σ(
√

2)
σ(ξ)

=
−
√

2√
2−
√

2
= −ξ.

Therefore, σ2(ξ) = σ(
√

2−
√

2) = −ξ, which shows that σ2 6= 1. By Lagrange’s Theorem,
|σ| = 4. This implies that Gal(Q(ξ)/Q) = 〈σ〉 ∼= Z/4Z.
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August 2010

1. Prove that there is no simple group of order 42.

Solution: Let G be a group of order 42. Observe 42 = 2 · 3 · 7. Let n7(G) denote the number
of Sylow 7-subgroups of G. By Sylow’s Theorem, n7(G) ≡ 1 mod 7 and n7(G) divides
6. But then it must be that n7(G) = 1. Therefore, the Sylow 7-subgroup is unique and
hence normal. But then G contains a proper, nonzero, normal subgroup. Therefore, G is
not simple.

2. Let G, H and K be groups with |G| = 35, |H| = 60, and |K| = 42. Assume there exist
group homomorphisms φ : G → H and ψ : G → K with ker φ 6= G and ker ψ 6= G. Prove
that ker φ ∩ ker ψ consists of one element.

Solution: By the First Isomorphism Theorem, G/ ker φ ∼= im φ. Lagrange’s Theorem
implies that |G|

| ker φ| divides |H| = 60. Further, Lagrange’s Theorem implies that | ker φ|
divides |G| = 35. The divisors of 35 are 1, 5, 7, and 35. Since ker φ 6= G, | ker φ| 6= 35. Also
notice that 35

5 = 7 does not divide 60, 35
1 = 35 does not divide 60, but 35

7 = 5 divides 60.
This implies that | ker φ| = 7.

Similarly, 35
| ker ψ| must divide |K| = 42. Since ker ψ 6= G, | ker ψ| 6= 35. Since 35

7 = 5 and
35
1 = 35 do not divide 42, this implies that | ker ψ| 6= 7, | ker ψ| 6= 1. The only possibility is
| ker ψ| = 5 (this works as 35

5 = 7 divides 42).
Recall that the intersection of two subgroups is again a subgroup. By Lagrange’s Theo-

rem, | ker ψ ∩ ker ψ| divides both | ker φ| = 7 and | ker ψ| = 5. Therefore, | ker φ ∩ ker ψ| =
1, as required.

3. Let T : V →W be a surjective linear transformation of vector spaces. Let W1 and W2 be
subspaces of W such that W = W1 + W2. Prove that V = T−1(W1) + T−1(W2).

Solution: Let v ∈ V. Then T(v) ∈ W so that T(v) = w1 + w2 for some w1 ∈ W1, w2 ∈ W2.
Since T is surjective, w1 = T(v1) for some v1 ∈ T−1(W1). Similarly, w2 = T(v2) for some
v2 ∈ T−1(W2). Observe that

T(v− (v1 + v2)) = w1 + w2 − w1 − w2 = 0,

so v − (v1 + v2) ∈ ker T. This implies that v − (v1 + v2) = u, where Tu = 0. Re-
arranging this equality gives v = (u + v1) + v2. Now T(u + v1) = T(v1) = w1, so
u + v1 ∈ T−1(W1). Since v2 ∈ T−1(W2), this implies that v ∈ T−1(W1) + T−1(W2). Thus,
V = T−1(W1) + T−1(W2), as required.
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4. Let G be a group of order 77 acting on a set X with 20 elements. Prove that the action
has at least 2 fixed points.

Solution: For any x ∈ X, let Ox be the orbit of x and let Gx denote the stabilizer of x in G.
By the Orbit-Stabilizer Theorem, |Ox| = [G : Gx], so in particular |Ox| divides |G| = 77.
Obviously, |Ox| 6= 77, so the only possibility is |Ox| ∈ {1, 7, 11}. Since the orbits of the
action of G on X partition, consider the equation 20 = 11a + 7b + c, where a, b, and c are
nonnegative integers. The claim is that c ≥ 2, so suppose for the sake of contradiction that
c < 2. If c = 0, then the equation reduces to 20 = 11a + 7b. Clearly, a ≤ 1. If a = 0, then
this reduces to 2− = 7b, which has no integer solutions. Therefore, c 6= 0.

If c = 1, then 20 = 11a + 7b + c reduces to 19 = 11a + 7b. The only possibilities are
a = 0 or a = 1. If a = 0, then this reduces to 19 = 7b, which has no integer solutions. If
a = 1, then 19 = 11 + 7b, so 8 = 7b. This has no integer solutions. Therefore, c 6= 1. This
implies c ≥ 2. In other words, there are at least two orbits which only contain one element
of X. Thus, the action has at least two fixed points.

5. Let V be a finite dimensional vector space over the complex numbers. Let 〈 , 〉 be a
Hermitian form on V. Let W be a subspace of V and assume that the restriction of 〈 , 〉
to W is nondegenerate. Prove that V is the direct sum V = W ⊕W⊥, where W⊥ is the
orthogonal complement of W computed with respect to 〈 , 〉.

Solution: If W = 0, then the conclusion is obvious. Suppose W 6= 0. Note that if
w ∈ W ∩W⊥, then 〈w, w′〉 = 0 for all w′ ∈ W. Since the restriction of the form to
W is nondegenerate, this implies that w = 0. Since the restriction of 〈 · , · 〉 to W is
nondegenerate, there exists an orthonormal basis {w1, w2, . . . , wm} of W. This can be
extended to a (not necessarily orthonormal) basis {w1, w2, . . . , wm, vm+1, . . . , vn} of V. The
matrix of this form with respect to this basis is(

A B
C D

)
,

where A is a m× n matrix, D is an (n−m)× (n−m) matrix, etc.. Note that the aij entry
of A is 〈wi, wj〉 and that the bij entry of A is 〈wi, vj〉. Consider the change of basis matrix,

P =

(
I Q
0 I

)
,

where Q is an arbitrary matrix. Then

P∗
(

A B
C D

)
P =

(
A AQ + B
∗ ∗

)
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Notice that the basis of this matrix is {w1, w2, . . . , wm, v′m+1, . . . , v′n} for some v′i ∈ V. Now
choose Q = −A−1B. Then AQ + B = 0, which implies that 〈wi, v′j〉 = 0 for all indices i, j.
Hence, v′j ∈W⊥ for all j ∈ {m + 1, . . . , n}.

Therefore, any v ∈ V can be written as v = (a1w1 + a2w2 + · · ·+ amwm) + (bm+1v′m+1 +

· · ·+ bnv′n) ∈ W + W⊥. Therefore, V = W + W⊥. Since W ∩W⊥ = 0, this implies that
V = W ⊕W⊥, as required.

6. An ideal I in a commutative ring R is called primary whenever for all a, b ∈ R, if ab ∈ I,
then either a ∈ I or bn ∈ I for some integer n ≥ 1. Let R be a UFD and r an irreducible
element of R. For any fixed integer m ≥ 1, prove that the ideal I = (rm) is primary. Be sure
to justify the use of UFD carefully.

Solution: Suppose ab ∈ I for some a, b ∈ R. This implies that ab = rmc for some c ∈ R.
Since R is a UFD, each of a, b, c can be factored into a product of irreducible elements (note
that rm is written as a product of irreducible elements):

a = aj1
1 · · · a

jp
p ,

b = bl1
1 · · · b

ls
r ,

c = cn1
1 · · · c

nt
s ,

where ai, bi, ci are irreducible elements of R for each index i and ji, li, ni ∈N for all indices
i. This implies that

aj1
1 · · · a

jp
p bl1

1 · · · b
ls
r = rmcn1

1 · · · c
nt
s

Now each side of the factorization of ab into irreducible elements. Since such a factorization
is unique, r is equal to some ai or bi (in fact, at least m copies of r show up on the left hand
side). This implies that either rm is a factor of a or rk is a factor of b for some k ≥ 1. If rm is
a factor of a, then a = rmx for some x ∈ R, which implies that a ∈ I. If rk is a factor of b for
some k ≥ 1, then b = rky for some y ∈ R. This implies that bm = (rm)kym ∈ I. Therefore, I
is primary.

7. Let R be a commutative ring and M a Noetherian R-module. Let f : M → M be a
surjective R-module homomorphism. Prove that f is an isomorphism. Hint: Consider the
kernels of the composition f n = f ◦ f ◦ · · · ◦ f for n = 1, 2, . . . .6

Solution: By assumption, f is surjective. It remains to show that f is injective. If x ∈ M,
n ∈N, and f n(x) = 0, then f n+1(x) = f ( f n(x)) = f (0) = 0. Therefore, ker f n ⊂ ker f n+1

for all n ∈N. This implies we have a chain of ideals

ker f ⊂ ker f 2 ⊂ · · · ⊂ ker f n ⊂ · · ·
6This is an example of Fitting’s Lemma.
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Since M is a noetherian R-module, the chain must stabilize, i.e. there is a m ∈ N such
that ker f m = ker f m+1 = ker f m+2 = · · · . Now suppose x ∈ ker f and x 6= 0. Since f
is surjective, f n is surjective for all n ∈ N. This implies there exists a y ∈ M such that
f m(y) = x. However, f m+1(y) = f (x) = 0. Thus, y ∈ ker f m+1, y /∈ ker f m, a contradiction
as ker f m = ker f m+1. Therefore, ker f = {0}, implying that f is injective. Therefore, f is
an isomorphism.

8. Let A be a matrix over C whose only eigenvalues over C are λ = 7, and λ = 3 and
suppose that

dim ker(A− 7I) = 2

dim ker(A− 7I)2 = 3

dim ker(A− 7I)3 = 3
dim ker(A− 3I) = 2

dim ker(A− 3I)2 = 2

(a) Find the Jordan form of the matrix A. (Just the Jordan matrix J, not the basis.)

(b) Find the minimal polynomial of A.

(c) Let F = C, V = Fn, where A is an n× n matrix and make V into an F[T]-module by
setting T · v = Av and extending linearly. Write V as a direct sum

V =
r⊕

i=1

F[T]
mi(T)

with m1 | m2 | . . . | mr.

Solution:

(a) Since dim ker(A− 7I) = 2, there are two Jordan blocks associated to the eigenvalue
7. Since dim ker(A− 7I)3 − dim ker(A− 7I)2 = 3− 3 = 0, there are no Jordan blocks
with size at least 3. Since dim ker(A− 7I)2−dim ker(A− 7I) = 3− 2 = 1, there is one
Jordan block of size at least 2 which must have size exactly 2. Thus for the eigenvalue
7, there is one Jordan block of size 1 and one Jordan block of size 2.

Since dim ker(A− 3I) = 2, there are two Jordan blocks associated to the eigenvalue 3.
Since dim ker(A− 3I)2 − dim ker(A− 3I) = 2− 2 = 0, there are no Jordan blocks of
size at least 2, so both Jordan blocks must have size 1. Therefore, the Jordan canonical
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form for A is, up to permutation of the Jordan blocks,
7 0 0 0 0
0 7 0 0 0
0 1 7 0 0
0 0 0 3 0
0 0 0 0 3


(b) Using the Jordan canonical form of A, the elementary divisors of A are x− 7, (x− 7)2,

x− 3, (x− 3). The minimal polynomial is the product of the largest power of x− 7
and x− 3, so the minimal polynomial is (x− 7)2(x− 3).

(c) The largest mr is the minimal polynomial, so mr(T) = (T− 7)2(T− 3). The polynomial
mr−1 is formed by taking the product of the next largest power of T − 7 and the next
largest power of T − 3, which is (T − 7)(T − 3). Therefore,

V = F[T]/((T − 7)2(T − 3))⊕ F[T]/((T − 7)(T − 3)).

9. Let K be the splitting field for x7 − 11x + 11 over Q.

(a) Prove that there exist at least 7 automorphisms in Aut(K/Q). (That is, |Aut(K/Q)| ≥
7.)

(b) Can there be exactly 10 automorphisms in Aut(K/Q)?

Solution:

(a) Let f (x) = x7 − 11x + 11. The polynomial f is irreducible over Q using Eisenstein’s
criterion with p = 11. Since Q has characteristic 0, f is separable. Thus, K is the
splitting field of a separable polynomial over Q, which implies that K/Q is Galois.
Thus, |Aut(K/Q)| = [K : Q].

Let α ∈ K be a root of f (x). Then Q ⊂ Q(α) ⊂ K and [Q(α) : Q] = deg f (x) = 7. This
implies that

|Aut(K/Q)| = [K : Q] = [K : Q(α)] [Q(α) : Q] = 7[K : Q(α)] ≥ 7.

(b) Notice that (a) implies that 7 divides |Aut(K/Q)|. Since 7 does not divide 10, it is
impossible to have |Aut(K/Q)| = 10, i.e. there can never be exactly 10 automorphisms
in Aut(K/Q).
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10. Find the Galois group of the splitting field of x3 − 41 over Q.

Solution: Let ζ = e2πi/3 and p(x) = x3 − 41. Then p(x) has three roots: 3
√

41, ζ 3
√

41, and
ζ2 3
√

41. The splitting field of p(x) over Q is the smallest field extension of Q containing these
three roots, which is E := Q(ζ, 3

√
41). Note that ζ is a root of the irreducible polynomial

(over Q) m(x) = x2 + x + 1, the third cyclotomic polynomial. Since Q( 3
√

41) ⊂ R, ζ, ζ2 /∈
Q( 3
√

41). This implies that m(x) is irreducible over Q( 3
√

41) (since it has no root in the
field). Hence,

[E : Q] = [E : Q(
3
√

41)] [Q(
3
√

41) : Q] = 3 · 2 = 6

Notice that E is the splitting field of a separable polynomial over Q, which implies that
E/Q is Galois. Thus, |Gal(E/Q)| = [E : Q] = 6.

Any σ ∈ Gal(E/Q) is completely determined by σ(ζ) and σ( 3
√

41). Note that σ per-
mutes the roots of the irreducible polynomial x2 + x + 1, so σ(ζ) = ζ or σ(ζ) = ζ2 are the
only two possibilities for σ(ζ). Similarly, σ( 3

√
41) is a root of p(x), so either σ( 3

√
41) = 3

√
41,

σ( 3
√

41) = ζ 3
√

41, or σ( 3
√

41) = ζ2 3
√

41. Thus, there are only six possible automorphisms:

σ1(ζ) = ζ σ1(
3
√

41) = 3
√

41

σ2(ζ) = ζ σ2(
3
√

41) = ζ
3
√

41

σ3(ζ) = ζ σ3(
3
√

41) = ζ2 3
√

41

σ4(ζ) = ζ2 σ4(
3
√

41) = 3
√

41

σ5(ζ) = ζ2 σ5(
3
√

41) = ζ
3
√

41

σ6(ζ) = ζ2 σ6(
3
√

41) = ζ2 3
√

41

Since |Gal(E/Q)| = 6, each σi is an automorphism. Observe that (σ2 ◦ σ4)(
3
√

41) =
σ( 3
√

41) = ζ 3
√

41 and (σ4 ◦ σ2)(
3
√

41) = σ4(ζ
3
√

41) = σ4(ζ)σ4(
3
√

41) = ζ2 3
√

41. This implies
that σ2 ◦ σ4 6= σ4 ◦ σ2, so Gal(E/Q) is a non-abelian group of order 6. Up to isomorphism,
there is only one nonabelian group of order 6, namely S3. Therefore, Gal(E/Q) ∼= S3.

OR

Show that [E : Q] = 6 and that E/Q is Galois as in the proof above. Observe that
Q( 3
√

41)/Q is not Galois since p(x) does not split over Q( 3
√

41). Therefore, if H is the
subgroup of Gal(E/Q) which fixes Q( 3

√
41), then the Fundamental Theorem of Galois

Theory implies that H is not normal in Gal(E/Q). Hence, Gal(E/Q) is a nonabelian group
of order 6, so Gal(E/Q) ∼= S3.
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January 2011

1. Let P be the real vector space of polynomials p(x) = a0 + a1x + · · ·+ anxn of degree

≤ n, and let D denote the derivative
d

dx
considered as a linear operator on P.

(a) Find the matrix of D with respect to a convenient basis, and prove that D is a nilpotent
operator.

(b) Determine all the D-invariant subspaces. Hint: Consider a polynomial of the highest
degree in a D-invariant subspace.

Solution:

(a) Let B = {1, x, . . . , xn}. It is clear that B is a basis for P. Now D(xi) = ixi−1 for i ≥ 1.
In B-coordinates, this is the column vector with a 1 in the (i− 1)th position and zeroes
in the other positions. Also, D(1) = 0, so the matrix of D with respect to B is

0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . . . .

...
0 0 0 · · · 1
0 0 0 · · · 0


There are three ways to see that D is a nilpotent operator. First, note that Dk+1(xk) =
0. This can be proven by induction on k. For k = 0, D(x0) = D(1) = 0. For
k = 1, D2(x) = D(1) = 0. Now suppose this is true for some k < n and note that
Dk+2(xk+1) = Dk+1((k + 1)xk) = (k + 1)Dk+1(xk) = (k + 1) · 0 = 0. This proves the
claim. Thus, Dn+1 is the zero operator and D is nilpotent.

Another way is to note that the characteristic polynomial of D is c(x) = xn+1. Therefore,
the minimal polynomial of D is of the form m(x) = xk for some k ≤ n + 1. This implies
that m(D) = Dk = 0, so D is a nilpotent operator.

Another way is by direct matrix multiplication and induction.

(b) The zero subspace is of course D-invariant. It is clear that a subspace of the form Pk =
{p(x) ∈ P : deg p ≤ k} ∪ {0} is a D-invariant subspace (since for every nonconstant
p(x) ∈ PK, deg(Dp(x)) < deg(p(x)); if p is constant, Dp = 0.) The claim is that every
nonzero D-invariant subspace is of this form.

Let P′ be a D-invariant subspace and let p(x) denote a polynomial of maximal degree in
P′. Since P′ is closed under scalar multiplication, it can be assumed that p(x) is monic.
Let k denote the degree of P. The claim is that every polynomial of degree at most k is
contained in P′. Consider the polynomial Dk p. In this polynomial, the only nonzero
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term is k!. Since P′ is closed under scalar multiplication, every constant polynomial
is contained in P′. Note that Dk−1(p(x)) = ax + b ∈ P′. Then Dk−j−1(p(x)) =
axj+1 + b(x), where a 6= 0 and deg b ≤ j. By the induction hypothesis, b(x) ∈ P′.
Therefore,

1
a
(Dk−j−1(p(x)− b(x))) = xj+1 ∈ P′

Thus, {1, x, . . . , xj+1} ⊂ P′, so every polynomial of degree at most j + 1 is in P′. By
induction on j, every polynomial of degree at most k is contained in P′, so P′ = Pk.

2. Let G be a group with a subgroup H (H need not be normal). The set G/H of left cosets
of H in G is a left G-set by means of g ◦ xH = gxH, g, x ∈ G.

(a) Prove that for each a ∈ G, the G-sets G/H and G/aHa−1 are isomorphic. Recall that a
map φ : X → Y of left G-sets is a homomorphisms if φ(gx) = gφ(x) for all g ∈ G, x ∈ X;
an isomorphism is a bijective homomorphism; and X, Y are isomorphic if there exists an
isomorphism X → Y. Hint: The right multiplication by a−1 is a bijective map G → G.

(b) Let K be a subgroup of G. Prove that if the G-sets G/H and G/K are isomorphic, then
K = aHa−1 for some a ∈ G. Hint: If φ : X → Y is an isomorphism of G-sets, compare
the stabilizers of x ∈ X and φ(x) ∈ Y.

(c) State the necessary and sufficient condition for the G-sets G/H and G/K to be isomor-
phic.

Solution:

(a) Let K = aHa−1 and define φ : G/H → G/K via gH 7→ ga−1K. First, we need
check that φ is well defined. If gH = g′H for some g, g′ ∈ H, then g−1g′ ∈ H
so that ag−1g′a−1 ∈ K. In other words, (ga−1)−1(g′a−1) ∈ K, which implies that
ga−1K = g′a−1K. Thus, φ is well defined.

For any g, g′ ∈ G, φ(g · g′H) = φ(gg′H) = gg′a−1K = g · g′a−1K = g · φ(g′H). Thus,
φ is a homomorphism of G-sets.

If φ(gH) = φ(g′H), then ga−1K = g′a−1K, so ag−1g′a−1 ∈ K. Since K = aHa−1,
ag−1g′a−1 = aha−1 for some h ∈ H. This implies that g−1g′ = h ∈ H. Therefore,
gH = g′H and φ is injective.

If gK ∈ G/K, then φ(gaH) = gaa−1K = gK so that φ is surjective. Thus, φ is an
isomorphism of G-sets and G/H is isomorphic to G/K = G/(aHa−1).
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(b) Since G/H and G/K are isomorphic G-sets, there exists a homomorphism φ : G/H →
G/K. Now φ(H) = gK for some g ∈ G. For any h ∈ H, gK = φ(H) = φ(hH) =
hφ(H) = hgK, which implies that g−1hg ∈ K. Thus, g−1Hg ⊂ K.

Since φ is an isomorphism, φ−1 : G/K → G/H exists. Since φ(g−1H) = g−1φ(H) =
g−1(gK) = K, φ−1(K) = g−1H. For any k ∈ K, g−1H = φ−1(K) = φ−1(kK) =
kφ−1(K) = kg−1H. Thus, gkg−1 ∈ H, so gkg−1 = h for some h ∈ H. This implies that
k = g−1hg ∈ g−1Hg. This shows that K ⊂ g−1Hg, so K = g−1Hg. Take a = g−1 to see
that K = aHa−1, as desired.

(c) The G-sets G/H and G/K are isomorphic if and only if K = aHa−1 for some a ∈ G.

3.

(a) Prove that no group of order 56 is simple.

(b) Prove that a group of order 77 is cyclic.

Solution:

(a) The divisors of 56 are 1, 2, 4, 7, 8, 14, 28, and 56 and 56 = 23 · 7. Let np denote the
number of Sylow p-subgroups of G. By Sylow’s Theorem, np(G) ≡ 1 mod p and
np(G) divides G. For n2(G), the only possibilities are n2(G) = 1 or n2(G) = 7. If
n2(G) = 1, then G contains a unique Sylow 2-subgroup, which is necessarily normal.
But then G is not simple. Otherwise, n2(G) = 7.

For n7(G), the only possibilities are n7(G) = 1 or n7(G) = 8. Again, if n7(G) = 1 then
G cannot be simple by the logic above. Otherwise, n7(G) = 8.

It remains to show that n2(G) = 7 and n7(G) = 8 cannot occur. By Lagrange’s
Theorem, the intersection of any Sylow 2-subgroup and any Sylow 7-subgroup must
be trivial. Then there are 8 · 6 = 48 elements of order 7 (since the Sylow 7-subgroup
has order 7 and must be cyclic generated by any nontrivial element). Then there are
56− 48 = 8 elements. Since all Sylow 2-subgroups have order 8 and are contained in
the complement of the set of elements of order 7, there must then only be one Sylow
2-subgroup, which is necessarily normal. Therefore, G cannot be simple.

(b) Note that the divisors of 77 are 1, 7, 11, and 77 and 77 = 7 · 11. By Sylow’s Theorem,
n7(G) ≡ 1 mod 7 and divides 77. Then it must be that n7(G) = 1. Similarly, n11(G) =
1. But the Sylow 7-subgroup and Sylow 11-subgroup account for only 7 + 11− 1 = 17
elements of G. By Lagrange’s Theorem, the remaining elements of G must have order
77. But then any of these elements are necessarily generators for G so that G is cyclic.
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4. Let A be the matrix of a real symmetric bilinear form 〈 , 〉 with respect to some basis.
Prove or disprove: The eigenvalues of A are independent of the basis.

Solution: Let V = R2 and let 〈 , 〉 denote the dot product. Matrix that represent the dot
product are of the form PTP, where P is an invertible 2× 2 matrix. Take P = In. Then
A = PTP = In, which has unique eigenvalue 1. Now take

P =

(
2 0
0 2

)
Then A = PTP = P2 = 4I2. Thus, the unique eigenvalue of A is 4. Then the eigenvalues of
the matrix of a bilinear form are not uniquely determined by the basis.

As another counterexample, let k be a field with characteristic not 2 with at least four
elements. Let 〈 , 〉 be a real symmetric bilinear form on the vector space V := k given by
〈x, y〉 = xy. Consider the basis {b}. Then we can represent 〈 , 〉 by A = (b2). But we can
choose b, b′ ∈ K so that b2 6= b′2.

5. Let R be a commutative ring and I an ideal of R.

(a) Let I[X] ⊆ R[X] be the subset of the polynomial ring consisting of polynomials with
coefficients in I. Prove that I[X] is an ideal of R[X].

(b) The quotients R[X]/I[X] and R[X]/(I, X) are isomorphic to (R/I)[X] and R/I, not
necessarily in that order. Decide which is which and prove your answers.

Solution:

(a) It is clear that I[X] is nonempty. If p(x), q(x) ∈ I[X]. Without loss of generality, assume
that the degree of p(X) is at least the degree of q(X). Writing p(X) = ∑ akXk and
q(X) = ∑ bjX j, where ak, bj ∈ I) and all but finitely many of the ak, bj are 0, it follows
that

p(X) + q(X) = ∑
k

akXk + ∑
j

bjX j = ∑
i
(ai + bi)Xi.

Since I is an ideal, ai + bi ∈ I for all k ≤ m. But then p(X) + q(X) ∈ I[X].

Suppose p(X) ∈ I[X], r(X) ∈ R[X]. Then p(X) = ∑ akXk and r(X) = ∑ cjX j, where
ak ∈ I, cj ∈ R. Suppose that p has degree n and r has degree n. Then

p(X)r(X) =
n+m

∑
i=0

(
i

∑
j=0

ajci−j

)
Xi.
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Now fro every pair of indices i, j, since aj ∈ I, ajci−j ∈ I, which implies that ∑ ajci−j ∈ I.
Hence, p(X)r(X) ∈ I[X]. Hence, I[X] is an ideal of R[X].

(b) The claim is that R[X]/I[X] ∼= (R/I)[X]. Define φ : R[X] → (R/I)[X] via reducing
coefficients mod I, i.e.

a0 + a1X + · · ·+ anXn 7→ a0 + a1X + · · ·+ anXn.

It is clear that φ is a surjective ring homomorphism with kernel I[x]. By the First
Isomorphism Theorem, the claim is proved.

Define ψ : R[x] → R/I via ψ(p(x)) = φ(p(x))(0). Then ψ is a surjective homomor-
phism (since it is the composition of two surjective homomorphisms). It is clear that
ker ψ = (I, X). Then by the First Isomorphism Theorem,

R[X]/(I, X) ∼= R/I.

6. Let A be a square matrix over the complex numbers. Assume that the minimal polyno-
mial of A is x2(x− 5) an the characteristic polynomial of A is x5(x− 5)2.

(a) Give all the possible rational canonical forms for A.

(b) Give all the possible Jordan canonical forms for A.

Solution:

(a) Note that the minimal polynomial is the largest invariant factor and that the product
of the invariant factors is the characteristic polynomial. Therefore, the possibilities for
the invariant factors are

x2(x− 5), x2(x− 5), x

x2(x− 5), x(x− 5), x, x.

Expanding each polynomial gives

x3 − 5x2, x3 − 5x2, x

x3 − 5x2, x2 − 5x, x, x.

The blocks look like

x3 − 5x2 :

0 0 0
1 0 0
0 1 5


x :
(
0
)

x2 − 5x :
(

0 0
1 5

)
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Therefore, the two possible rational canonical forms, up to block permutations, are

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 5 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 5 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 5 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 5 0
0 0 0 0 0 0 0


(b) There are two possible sets of elementary divisors, corresponding to the two possibili-

ties for the invariant factors:

x, x2, x2, x− 5, x− 5

x, x, x, x2, x− 5, x− 5.

Therefore, the two possible Jordan canonical forms are

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 5




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 5


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7. An abelian group is generated by four elements {a, b, c, d}, subject to the relations
a + 3b + 3c + 5d = 0, 2b + 2c + 2d = 0, and 3c = 0. Express this group as a direct sum of
cyclic groups.

Solution: The elements a, b, c, and d satisfy a system of equations with a coefficient matrix
1 3 3 5
1 1 1 0
0 2 2 2
0 0 3 0


Performing the following row and column operations:

−R1 + R2 −→ R2

−C2 + C3 −→ C3

−3C1 + C2 −→ C2

−5C1 + C4 −→ C4

−C2 + C4 −→ C4

R3 + R2 −→ R2

−R2 −→ R2

R2 ←→ R3

R3 ←→ R4

obtains the following diagonal matrix
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3


Hence, the given abelian group is isomorphic to

Z/Z×Z/2Z×Z/3Z×Z/3Z ∼= Z/2Z×Z/3Z×Z/3Z ∼= Z/3Z×Z/6Z.

8. Let p be a prime integer and set f (x) = xp − 2 ∈ Q[x]. Determine the splitting field of f
and the elements of its Galois group over Q. (You do not need to classify the structure of
the group up to isomorphism, just its elements.)
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Solution: Note that f is irreducible by using Eisenstein’s criterion with p = 2. Let ζ be a
primitive pth root of unity. Then the p distinct roots of f (x) in C are

p
√

2, ζ
p
√

2, ζ2 p
√

2, . . . , ζ p−1 p
√

2.

Therefore, any field that contains all the roots of f (x) must contain all powers of ζ and
p
√

2. This implies that the splitting field of f over Q is Q( p
√

2, ζ). Since Q has characteristic
0 and f is irreducible over Q, f is separable in Q( p

√
2, ζ). This implies that the extension

Q( p
√

2, ζ)/Q is normal and separable so Q( p
√

2, ζ)/Q is a Galois extension.
There are now two cases: if p = 2, then ζ = −1 ∈ Q, so the splitting field of f over Q

is Q(
√

2). Since m(x) = x2 − 2 is the minimal polynomial of
√

2 over Q, [Q(
√

2) : Q] = 2.
Let σ ∈ Gal(Q(

√
2)/Q) be arbitrary. Since σ fixes Q, σ is uniquely determined by σ(

√
2).

Note that σ permutes the roots of m(x) = x2 − 2, so the only two possible automorphisms
of Q(

√
2) and σ1(

√
2) =

√
2 and σ2(

√
2) = −

√
2. Since Q(

√
2)/Q is a Galois extension,

|Gal(
√

2)/Q| = [Q(
√

2) : Q] = 2,

so σ1 and σ2 are the two elements of Gal(Q(
√

2)/Q).
The other case is when p is an odd prime. In this case, ζ is a root of the irreducible

polynomial m(x) = xp−1 + xp−2 + · · ·+ x + 1. Note that

[Q(
p
√

2, ζ) : Q] = [Q(
p
√

2, ζ) : Q(
p
√

2)] [Q(
p
√

2) : Q] = p[Q(
p
√

2, ζ) : Q(
p
√

2)].

Since m(x) contains no real roots, m(x) is irreducible over Q( p
√

2). Hence, [Q( p
√

2, ζ) : Q( p
√

2)] =
p− 1 and

|Gal(Q(
p
√

2, ζ)/Q)| = [Q[(sqrt[p]2, ζ) : Q] = p(p− 1)

Any σ ∈ Gal( p
√

2, ζ)/Q is completely determined by σ( p
√

2) and σ(ζ). Since σ( p
√

2) is a root
of f (x), there are p possibilities: σ( p

√
2) = ζk p

√
2 for k = 1, . . . , p. Similarly, there are p− 1

possibilities for σ(ζ): σ(ζ) = ζ j for j = 1, . . . , p− 1. This implies that there are p(p− 1)
possible elements of Gal(Q( p

√
2, ζ)/Q), so each of these possible elements is actually an

element of Gal(Q( p
√

2, ζ)/Q).
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1. Let G be a group and let H, K be two normal subgroups of G with H ∩ K = 1. Prove that
HK ∼= H × K.

Solution: Let h ∈ H, k ∈ K. Since K is normal in G, there exist k′ ∈ K such that hk = k′h.
Since H is normal in G, there exists h′ ∈ H such that hk = k′h = h′k′. Now h−1h′ = k′k−1 ∈
H ∩ K, so h−1h′ = k′k−1 = 1. Thus, h = h′, k = k′, and hk = kh.

Define φ : H × K → HK via φ((h, k)) = hk. It is obvious that φ is surjective. It suffices
to prove that φ is an injective homomorphism. Let (h, k), (h′, k′) ∈ H × K. Using the
observation above,

φ
(
(h, k)(h′, k′)

)
= φ(hh′, kk′) = hh′kk′ = hkh′k′ = φ

(
(h, k)

)
φ
(
(h′, k′)

)
.

Thus, φ is a homomorphism. If (h, k) ∈ ker φ, then φ((h, k)) = hk = 1. Then h = k−1 ∈
H ∩ K so that h = k = 1. Thus, the kernel of φ is trivial which implies that φ is injective.
Therefore, φ is an isomorphism and HK ∼= H × K.

2. Let G be group of order p2q where p, q are prime. Prove that G is not simple.

Solution: Suppose p = q. Then G is a finite p-group since |G| = p3. But by the Class
Equation, G must then have a nontrivial center. The center of a group is a normal subgroup
so that G cannot be simple.

Now the number of Sylow p-subgroups, np(G), divides q so that np(G) = 1 or np(G) =
q. If np(G) = 1, then the Sylow p-subgroup is unique and hence necessarily normal (so
that G is not simple). Assume then that np(G) = q. But np(G) ≡ 1 mod q so that q > p.
The number of Sylow q-subgroups, nq(G), divides p2. Now if nq(G) = 1, then G is not
simple using the comments above. Assume then that nq(G) > 1. Now nq(G) 6= p for then
p ≡ 1 mod q, implying p > q.

Then if G is simple, np(G) = q and nq(G) = p2. Then the total number of non-
identity elements in the Sylow q-subgroup is p2(q− 1). Since the intersection of any two
distinct Sylow p-subgroups can have size at most p, the number of elements in the Sylow
p-subgroups is at least 2p2 − p. Then G contains at least

p2(q− 1) + 2p2 − p = p2 + p(p− 1) > p2q,

a contradiction. Therefore, at least one of np, nq is 1 so that G cannot be simple.

3. Let G be a group of order 15 acting on a set of order 22. Assume there are no fixed points.
Determine how many orbits there are.

Solution: Let X denote the set of order 22 and x ∈ X. Let Gx denote the stabilizer of x in G
and Ox be the orbit of x. By the Orbit-Stabilizer Theorem, |Ox| = [G : Gx]. In particular,
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|Ox| divides |G| = 15 for all x ∈ X. Since there are no fixed points, |Ox| > 1, so the only
possibilities are |Ox| = 3, 5, 15.

If there is an orbit with 15 elements, then the remaining orbits must have a combined
7 elements. However, this is clearly impossible. Therefore, the only possibilities are
|Ox| = 3, 5. It remains to solve the equation 3a + 5b = 22. Clearly, b ≤ 4. But for 0 ≤ b ≤ 4,
this it must be that 3a is in {2, 7, 12, 17, 22}, a contradiction as each element in this set is not
divisible by 3. Then it must be that a = 4 and b = 2, meaning there are 6 orbits: 2 orbits
with 5 elements and 4 orbits with 3 elements each.

4. Let T : V → V be a linear operator and let {v1, . . . , vn} be eigenvectors with distinct
eigenvalues. Prove that if a1v1 + · · ·+ anvn is an eigenvector, then exactly one of the coeffi-
cients is non-zero.

Solution: For each index i, let λi be the eigenvalue of vi. The first thing is to prove that
the set {v1, . . . , vn} is independent. We proceed by induction on n. For n = 2, suppose
b1v1 + b2v2 = 0 is a linear dependence relation on the vi. Then

T(b1v1 + b2v2) = 0
b1T(v1) + b2T(v2) = 0

b1λ1v1 + b2λ2v2 = 0

Also, λ1(b1v1 + b2v2) = b1λ1v1 + b2λ1v2 = 0. This implies that

(b1λ1v1 + b2λ2v2)− (b1λ1v1 + b2λ1v2) = 0
(λ2 − λ1)b2v2 = 0

Since v2 6= 0 and λ1 6= λ2, it follows that b2 = 0. But then b1v1 = 0 so that b1 = 0. Thus,
the claim is proved for n = 2.

Suppose the claim is true for n eigenvectors and consider the set {v1, . . . , vn+1}. Let
b1v1 + · · ·+ bn+1vn+1 = 0 be a linear dependence relation. Then

T(b1v1 + · · ·+ bn+1vn+1) = 0
b1λ1v1 + · · ·+ bn+1λn+1vn+1 = 0.

Also, b1λ1v1 + · · ·+ bn+1λ1vn+1 = 0. Thus,

(b1λ1v1 + · · ·+ bn+1λn+1vn+1)− (b1λ1v1 + · · ·+ bn+1λ1vn+1) = 0
b2(λ2 − λ1)v2 + b3(λ3 − λ1)v3 + · · ·+ bn+1(λn+1 − λ1)vn+1 = 0.

The induction hypothesis implies that all coefficients are 0. Since the λi’s are distinct,
b2 = b3 = · · · = bn+1 = 0. Then b1v1 = 0 so that b1 = 0. This proves the claim.
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Now suppose that a1v1 + · · ·+ anvn is an eigenvector of T with eigenvalue λ. Then

λa1v1 + · · ·+ λanvn = T(a1v1 + · · ·+ anvn)

= a1T(v1) + · · ·+ anT(vn)

= λ1a1v1 + · · ·+ λ1anvn

This implies that
(λ− λ1)a1v1 + · · ·+ (λ− λn)anvn = 0.

Since the set {v1, . . . , vn} is linearly independent, all of the coefficients are zero. Since
a1v1 + · · · + anvn is an eigenvector of T, it is nonzero and at least one ai is nonzero. If
ai 6= 0, then λ = λi. If i 6= j, ai, aj are both nonzero. But then λi = λ = λj, a contradiction.
Therefore, only one coefficient is nonzero.

5. Let W be a subspace of a Euclidean space V. (A Euclidean space is a finite dimensional
real inner product space.) Prove that W = W⊥⊥.

Solution: If w ∈ W and v ∈ W⊥, then 〈w, v〉 = 0 so that w ⊥ v and w ∈ W⊥⊥. Hence,
W ⊆W⊥⊥. Note that V = W ⊕W⊥ = W⊥ ⊕W⊥⊥, so

dim V = dim W + dim W⊥ = dim W⊥ + dim W⊥⊥.

Therefore, dim W = dim W⊥⊥. Since W ⊂W⊥⊥, this forces W = W⊥⊥.

6. Let F be a finite field.

(a) Prove that the polynomial ring F[x] contains infinitely many irreducible elements.

(b) Deduce from (a) that F[x] contains an irreducible element of degree greater than 1.

(c) Deduce from (b) that F is not algebraically closed, hence any algebraically closed field
is infinite.

Solution:

(a) Suppose F[x] has finitely many irreducible elements. Let f1, . . . , fn denote the ir-
reducible elements of F[x]. Define p(x) = f1(x) · · · fn(x) + 1. Then p(x) 6= fk(x)
for any k. Thus, p(x) is reducible. Since F[x] is a UFD, p(x) can be factored into
a product of irreducible elements. If fk(x) | p(x) in F[x], then fk(x) also divides
p(x)− f1(x) · · · fn(x) = 1 in F[x]. But then fk is a unit in F[x], contrary to the assump-
tion that fk was irreducible. Thus, p(x) is a reducible polynomial which cannot be
factored into a product of irreducibles in a UFD, a contradiction. Therefore, there are
infinitely many irreducible elements in F[x].
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(b) Suppose |F| = q. Note that if p(x) ∈ F[x] has degree 1 or is constant, then p(x) = ax+ b
for some a, b ∈ F. Thus, there are only q2 elements of F[x] and only finitely many
elements that are constant or have degree 1, there must be an irreducible element of
degree at least 2.

(c) If F were algebraically closed, then every irreducible polynomial in F[x] would have
degree 1. From (b), there is an irreducible polynomial in F[x] of degree at least 2. Thus,
F is not algebraically closed and every algebraically closed field is infinite.

7. Let Q ⊂ F be a field extension. Assume it is a Galois extension with Galois group
isomorphic to the symmetric group S3. Prove that F is the splitting field over Q for an
irreducible cubic polynomial f (x) ∈ Q[x].

Solution: Let G = Gal(F/Q) = S3 ∼= D6 = 〈σ, τ : σ3 = τ2 = 1, στ = τσ2〉. By the
Fundamental Theorem for Galois Theory, there exists a bijective correspondence between
the subgroups of G and the subfields of F containing Q. Note that 〈τ〉 is a subgroup of G.
This subgroup is not normal since στσ−1 = στσ2 = σ2τ /∈ 〈τ〉.

Therefore, if L is the fixed field of 〈τ〉, then L/Q is not a Galois extension. Notice that
[L : Q] = [G : 〈τ〉] = 3. For any α ∈ L \Q,

3 = [L : Q] = [L : Q(α)] [Q(α) : Q].

Since [Q(α) : Q] > 1 and 3 is prime, [Q(α) : Q] = 3 and [L : Q(α)] = 1, so L = Q(α). If
mα(x) is the minimal polynomial of α over Q, then mα(x) ∈ Q[x] is an irreducible cubic
polynomial. Note that this polynomial is separable since Q has characteristic 0. Clearly, the
splitting field of mα(x) over Q contains Q(α) (since mα(α) = 0). If Q(α) was the splitting
field of mα(x) over Q, then Q(α)/Q would be a normal, separable extension, i.e. Q(α)/Q

would be a Galois extension, which is a contradiction.
Therefore, the splitting field of mα(x) over Q is a field E such that Q(α) ( E ⊂ F. Note

that [F : Q(α)] = 2 by the Fundamental Theorem of Galois Theory. Therefore,

2 = [F : Q(α)] = [F : E] [E : Q(α)].

Since E 6= Q(α), [E : Q(α)] > 1. Thus, [E : Q(α)] = 2, [F : E] = 1, and E = F. This proves
that F is the splitting field of mα(x), an irreducible cubic polynomial in Q[x].

8. Let A be an 18× 18 matrix over C with characteristic polynomial equal to (x− 1)6(x−
2)6(x− 3)6 and minimal polynomial equal to (x− 1)4(x− 2)4(x− 3)3. Assume (A− I)
has nullity 2, (A− 2I) has nullity 3, and (A− 3I)2 has nullity 4. Find the Jordan canonical
form of A.
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Solution: Since (A− I) has nullity 2, there are two Jordan blocks associated to the eigen-
value 1. One of these must have size 4 since (x − 1)4 is an elementary divisor of A.
Therefore, the other must have size 2. Since (A− 2I) has nullity 3, there are 3 Jordan blocks
associated to the eigenvalue 2. One of these blocks has size 4 so the other two must have
size 1.

Since the nullity of (A− 3I)2 is 4, the nullity of (A− 3I) can be at most 4. If the nullity
of (A− 3I) is 1, there is only one Jordan block associated to the eigenvalue 3, which is
impossible since there is a Jordan block of size 2 (determined from the minimal polynomial).
If the nullity of (A− 3I) were 3, then there would be one block of size at least 2. This block
must have size 3 (by the minimal polynomial). But then the remaining two blocks must
have size 1, impossible as 6 6= 3 + 1 + 1. If the nullity of (A− 3I) were 4, then there would
be no blocks of size at least 2, a contradiction.

Therefore, the nullity of (A− 3I) is 2, which implies there are two Jordan blocks with
λ = 3. Each of these blocks has size 3. Therefore, the Jordan canonical form of A is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3


9. Let R be a Noetherian integral domain with the property that any ideal that can be
generated by 2 elements can actually be generated by 1 element7. Prove that R is a Principal
Ideal Domain.

Solution: The ring R is an integral domain by assumption to it suffices to show that every
ideal of R is principal. Since R is noetherian, every ideal of R is finitely generated. Let I

7Such a ring is called a Bézout Domain.
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be an ideal of R and let n be the cardinality of the smallest generating set for I. Suppose
n > 1. Let {x1, . . . , xn} be such a generating set. Then the ideal (x1, x2) can be generated
by a single element, i.e. (x1, x2) = (x) for some x ∈ I. Let a ∈ I be arbitrary. Then there
exist r1, . . . , rn such that

a = rx + r3x3 + · · ·+ rnxn,

so a ∈ (x, x3, . . . , xn). This proves that I ⊂ (x, x3, . . . , xn) and it is clear that (x, x3, . . . , xn) ⊂
I, so I = (x, x3, . . . , xn) can be generated by n− 1 elements, contrary to the choice of n.
Therefore, n = 1 and the ideal I is principal. Thus, R is a PID.

10.

(a) Let R be a commutative ring with identity. Assume that Z is a subring of R. You
have seen that this makes R into a Z-module. Assume that R is a finitely generated
Z-module. Prove that R is not a field.

(b) Find a field F such that the additive group (F,+) is a finitely generated Z-module.

Solution:

(a) Since Z is a noetherian ring and R is a finitely generated Z-module, R is a noetherian
Z-module. Suppose for the sake of contradiction that R is a field. Then R contains
the field of fractions of Z, i.e. Q ⊂ R. Since R is a noetherian Z-module, this implies
that Q is a finitely generated Z-module. It suffices to prove that Q is not a finitely
generated Z-module.

If Q were a finitely generated Z-module, then Q =
(

m1
n1

, · · · , mk
nk

)
, where mi ∈ Z,

ni ∈N, and gcd(mi, ni) = 1 for each i ∈ {1, . . . , k}. Consider the rational number

1
1 + n1 · · · nk

.

By assumption, there exist ai ∈ Z such that

1
n1 · · · nk

= a1
m1

n1
+ · · ·+ ak

mk

nk
.

Clearing denominators via multiplication by n1 · · · nk, we obtain

n1 · · · nk

1 + n1 · · · nk
= a1m1n2 · · · nk + · · ·+ akmkn1 · · · nk−1.

This is a contradiction as the right side is an integer while the left side is clearly a
non-integer. But then Q cannot be a finitely generated Z-module, contradicting the
fact that R is noetherian. Therefore, R is not a field.
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(b) Take F = Z/3Z. Then (F,+) is a finite Z-module, which is necessarily finitely
generated.
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January 2012

1. Show that a group of order 105 is not simple.

Solution: Let np denote the number of Sylow p-subgroups of G. By Sylow’s Theorems,
n2 ≡ 1 mod 3 and divides 35. Then n3 is 1 or 7. Similarly, n5 ≡ 1 mod 5 and divides 21
so that n5 is either 1 or 21. If either n3, n5 were 1, then the corresponding Sylow p-subgroup
would be unique, hence normal. But then G would not be simple. Assume then that
n3, n5 > 1. By Lagrange’s Theorem, any Sylow p-subgroup and Sylow q-subgroup, p 6= q,
must intersect trivially. Then these two Sylow subgroups constitute 21(4) + 7(2) + 1 = 99
elements of G. Since a Sylow 7-subgroup exists, these 7 elements must form a Sylow
7-subgroup, which is unique. But then G is not simple.

2. Let G be a group with subgroups H and K.

(a) Let x, y ∈ H with x(H ∩ K) = y(H ∩ K). Prove that xK = yK.

(b) Show that [H : H ∩ K] ≤ [G : K], where [G : K] denotes the index of K in G.

(c) If [G : K] and [G : H] are both finite, show that [G : H ∩ K] is finite.

Solution:

(a) Observe that x(H ∩ K) ⊂ xK since H ∩ K ⊂ K. Similarly, y(H ∩ K) ⊂ yK. Since
x(H ∩ K) = y(H ∩ K), this implies that xK ∩ yK is not empty. Since cosets partition the
group G, this implies xK = yK.

(b) Let G/K denote the set of left cosets of K in G and H/(H ∩ K) denote the set of left
cosets of H ∩ K in H. Define a function φ : H/(H ∩ K)→ G/K via H ∩ K 7→ xK.

Part (a) shows that φ is well defined. We claim that φ is injective. If x, y ∈ H with
xK = yK, then x−1y ∈ K, so x−1y ∈ H ∩ K. This implies that x(H ∩ K) = y(H ∩ K).
But then φ is injective. But then

[H : H ∩ K] = |H/(H ∩ K)| ≤ |G/K| = [G : K],

as desired.

(c) Observe that
[G : H ∩ K] = [G : H] [H : H ∩ K] ≤ [G : H] [G : K].

Therefore, [G : H ∩ K] is finite since both [G : H] and [G : K] are finite.

3.
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(a) Let G be a finite abelian group and assume that m divides |G|. Show that G has a
subgroup of order m.

(b) Give an example to show that the result in (a) is false if G is not assumed to be abelian.

Solution:

(a) We proceed by induction on |G|. If |G| = 1 or |G| = 2, then the result is trivial. Now
suppose that |G| = n and the statement holds for k < n. Let d be a divisor of n. We
can write d = kp for some prime p and k ∈ N. By Cauchy’s Theorem, there exists a
subgroup H ≤ G of order p. Since G is abelian, we can form the quotient G/H. Now
|G/H| < |G| so that by the induction hypothesis, G/H contains a subgroup of every
order dividing |G/H|. In particular, k | |G/H| so that there is a subgroup of G/H of
order k. By the Correspondence Theorem, this subgroup corresponds to a subgroup
K such that H ≤ K ≤ G, K/H ≤ G/H, and |K/H| = k. Since H is finite, this implies
|K| = k|H| = kp = d. But then there is a subgroup of order d.

OR

The result is obvious if |G| = 1, so suppose |G| > 1. Note the conclusion holds if G
is cyclic. Suppose that |G| = pm for some positive integer m and prime p. It is clear
that G contains a subgroup of order pm and 1. Any other divisor of |G| is of the form
pl , where 1 ≤ l ≤ m. Fix l ∈ {1, 2, . . . , m}. By the Fundamental Theorem of Finitely
Generated Abelian Groups,

G ∼= Z/pα1Z×Z/pα2Z× · · · ×Z/pαk Z,

where α1 ≤ α2 ≤ · · · ≤ αk and α1 + · · ·+ αk = m. Let N = max{i : α1 + · · ·+ αi ≤ l}.
Then

Z/pαN Z× · · · ×Z/pα1Z

is a subgroup of G of order pα1+···+αN . If α1 + · · ·+ αN = l, then the proof is complete.
Otherwise by the choice of N,

α1 + · · ·+ αN + αN+1 > l =⇒ αN+1 > l − α1 − · · · − αN ,

which implies that pl−α1−···−αN divides pαN+1 . Therefore, Z/pαN+1Z contains a sub-
group H of order pl−α1−···−αN . Thus,

H ×Z/pαN Z× · · · ×Z/pα1Z

is a subgroup of G of order pl−α1−···−αN pα1+···+αN = pl . This proves the result in the
case where |G| = pm.
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Now if |G| = pk1
1 · · · p

kl
l , where the pi are distinct primes and ki ≥ 0, then by the

Fundamental Theorem of Finitely Generated Abelian Groups,

G ∼= Gp1 × Gp2 × · · · × Gpl ,

where |Gpi | = pki
i for each i. If m | n, then m = pj1

1 · · · p
jl
l , where ji ≥ 0 for each i. By

the work above, each Gpi contains a subgroup Hpi of order pji
i . Then

H = Hp1 × · · · × Hpl

is a subgroup of G of order pj1
1 · · · p

jl
l = m, as required.

(b) Take G = A5. Note that |G| = 60 and that 30 | 60. If G contained a subgroup H of
order 30, then [G : H] = 60

30 = 2, which would imply that H is normal in G. But G is a
simple group so that this is impossible. Then G does not contain a subgroup of order
30.

4. Let A ∈ Mn(C) be a matrix over the complex numbers C with A∗ = −A, where A∗

denotes the complex conjugate transpose of A. Let 〈x, y〉 = x∗y be the usual inner product
on Coln(C).

(a) Show that the eigenvalues of A are purely imaginary.

(b) If λ and µ are distinct eigenvalues of A with eigenvectors v and w in Coln(C), respec-
tively, show that 〈v, w〉 = 0.

Solution:

(a) Let λ ∈ |C be an eigenvalue of A with eigenvector v ∈ Cn. Notice that A∗v = −Av =
−λv, which implies that −λ is an eigenvalue of A∗ with eigenvector v. We compute
the quantity 〈v, Av〉 in two different ways:

〈v, Av〉 = 〈v, λv〉 = λ〈v, v〉
〈v, Av〉 = 〈A∗v, v〉 = 〈−λv, v〉 = −λ〈v, v〉.

Since v is nonzero, 〈v, v〉 is nonzero. Therefore, λ = −λ, i.e. λ + λ = 0. But then
Re λ = λ+λ

2 = 0 so that λ is purely imaginary.

(b) By (a), −λ is an eigenvalue of A∗ with eigenvector v. Observe that since λ is purely
imaginary, −λ = −(−λ) = λ. We compute 〈v, Aw〉 in two different ways:

〈v, Aw〉 = 〈v, µ〉 = µ〈v, w〉
〈v, Aw〉 = 〈A∗v, w〉 = 〈−λv, w〉 = −λ〈v, w〉 = λ〈v, w〉.

Therefore, µ〈v, w〉 = λ〈v, w〉. Since λ 6= µ, 〈v, w〉 = 0.
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5. Let A ∈ Mn(C) be a matrix over the complex numbers C.

(a) If A is similar to a diagonal matrix and f (x) ∈ C[x] is a polynomial, show that f (A) is
similar to a diagonal matrix.

(b) If A2 is similar to a diagonal matrix, does it follow that A is similar to a diagonal matrix?

Solution:

(a) Let D ∈ Mn(C) be a diagonal matrix which is similar to A. Then there exist P ∈ GLn(C)
such that PAP−1 = D. Observe that Dk = PAkP−1 is a diagonal matrix for all k ∈ N.
Write f (x) = anxn + · · ·+ a1x + a0. Then

P f (A)P−1 = P(an An + · · ·+ a0 I)P−1

= anPAnP−1 + · · ·+ a0 I
= anDn + · · ·+ a0 I

is a sum of diagonal matrices so that P f (A)P−1 is a diagonal matrix. But then f (A) is
similar to a diagonal matrix.

(b) A need not be similar to a diagonal matrix. Take

A =

(
0 0
1 0

)
Then A2 = 0 so that A2 is a diagonal matrix. But the characteristic polynomial of A is
cA(x) = x2. Since A 6= 0, the minimal polynomial of A is m(x) = x2. Since m(x) has a
repeated root, A is not diagonalizable.

6. Let i ∈ C be the square root of −1.

(a) Prove that Z[i] := {a + bi : a, b ∈ Z} is isomorphic to Z[x]/(x2 + 1).

(b) Let p ∈ Z be a prime integer. Prove that p is a prime element in Z[i]. (a “Gaussian
prime”) if and only if x2 + 1 is an irreducible element of Fp[x]. (Here Fp is the field
with p elements. You may use without proof the fact that Fp[x] is a PID.)

Solution:
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(a) Define a function f : Z[x]→ Z[i] via p(x) 7→ p(i), i.e. f is evaluation at i. It is clear that
f is a homomorphism. For a+ bi ∈ Z[i], consider p(x) = a+ bx. Then f (p(x)) = a+ bi
so that f is surjective. Finally as i2 + 1 = 0, it is clear that (x2 + 1) ⊂ ker f . If
p(x) ∈ ker f , write p(x) = r1(x) · · · rn(x) for irreducible polynomials rk(x) ∈ Z[x]
(this exists since Z[x] is a UFD). The only irreducible polynomials in Z[x] with i as a
root are a(x2 + 1), where a ∈ Z (since the minimal polynomial for i is x2 + 1). Hence,
x2 + 1 divides p(x) and p(x) ∈ (x2 + 1). But then ker f = (x2 + 1). By the First
Isomorphism Theorem, Z[x]/(x2 + 1) ∼= Z[i].

(b) This follows by abstract nonsense:

p prime in Z[i]⇐⇒ Z[i]/(p) is an integral domain

⇐⇒ Z[x]/(x2 + 1)
f ((p))

is an integral domain

⇐⇒ Z[x]/(x2 + 1)
(p)

is an integral domain

⇐⇒ Z[x]/(x2 + 1, p) is an integral domain

⇐⇒ Z[x]/(p)
(x2 + 1)

is an integral domain

⇐⇒ (Z/p)[x]
(x2 + 1)

is an integral domain

⇐⇒ Fp[x]/(x2 + 1) is an integral domain

⇐⇒ (x2 + 1) is a prime ideal of Fp[x]

⇐⇒ (x2 + 1) is maximal ideal in Fp[x]

⇐⇒ x2 + 1 is irreducible in Fp[x]

where we have used that Fp[x] is a PID (so an ideal in Fp[x] is prime if and only if it is
maximal).

7. Let ω ∈ C be a primitive 8th root of unity and set F = Q(ω).

(a) Prove that there are exactly three subfields E ⊂ F with [E : Q] = 2.

(b) For each E above, find (with justification) an element α ∈ E such that E = Q(α).

Solution:

131



(a) Since ω is a primitive 8th root of unity, F contains all the 8th roots of unity, which implies
that F/Q is the splitting field of the separable polynomial p(x) = x8 − 1. This implies
that F/Q is a Galois extension. Note that p(x) = (x4 + 1)(x2 + 1)(x + 1)(x− 1). Since
ω /∈ {±1,±i}, it follows that the minimal polynomial of ω is m(x) = x4 + 1. Thus,
[F : Q] = 4 = |Gal(F/Q)|.
Without loss of generality, assume ω = e2πi/8 = eπi/4. If σ ∈ Gal(F/Q), then σ is
uniquely determined by σ(eπi/4). Note that σ permutes the roots of m(x), so the
possibilities are

σ1(ω) = ω

σ2(ω) = ω3

σ3(ω) = ω5

σ4(ω) = ω7.

Note that σ1 is the identity and that every other element has order 2. For example,
σ2

2 (ω) = σ(ω3) = σ(ω)3 = ω9 = ω, which implies that σ2
2 = σ1. Thus, Gal(F/Q) ∼=

V4
∼= Z/2Z×Z/2Z. Since F/Q is a Galois extension, the Fundamental Theorem of

Galois Theory implies that there is a bijection between the subgroups H ⊂ Gal(F/Q)
and the fields E such that Q ⊂ E ⊂ F. Since Gal(F/Q) contains three subgroups of
index 2, there are exactly three subfields E ⊂ F such that [E : Q] = 2, as required.

(b) As in part (a), we can assume

ω = eπi/4 = cos
(π

4

)
+ i sin

(π

4

)
=

1√
2
+ i

1√
2

.

Therefore, F = Q(ω) = Q
(

1√
2
+ i 1√

2

)
= Q

(√
2

2
+ i
√

2
2

)
= Q(

√
2 + i
√

2). We claim

that F = Q(
√

2, i). It is obvious that F ⊂ Q(
√

2, i). Observe that

(
√

2 + i
√

2)

(√
2− i
√

2
4

)
= 1

which shows that
√

2−i
√

2
4 ∈ F. Hence,

√
2− i
√

2 ∈ F. This implies that

1
2

[
(
√

2 + i
√

2) + (
√

2− i
√

2)
]
=
√

2 ∈ F.

Therefore,
1

2
√

2

[
(
√

2 + i
√

2)− (
√

2− i
√

2)
]
= i ∈ F.

Thus, F = Q(
√

2, i), as claimed. Therefore, the three subfields E1, E2, E3 ⊂ F satisfying
[Ei : Q] = 2 for i ∈ {1, 2, 3} are E1 = Q(

√
2), E2 = Q(i), and E3 = Q(i

√
2).
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8. Let R be a commutative ring and M an R-module. An R-submodule N of M is called
maximal if N 6= M and there are no proper R-submodules of M properly containing N.

(a) Suppose M is finitely generated. Prove that there exists at least one maximal R-
submodule of M.

(b) Prove that if N is a maximal R-submodule of M, then M/N ∼= R/m, where m is a
maximal ideal of R.

Solution:

(a) LetM denote the collection of all proper R-submodules of M. The setM is partially
ordered under the inclusion relation. Let C be a chain inM. It needs to be shown that
C has an upper bound inM. Let

L =
⋃

C∈C
C.

The first claim is that L is a submodule of M. It is obvious that L is nonempty. If
x, y ∈ L, then there exists C ∈ C such that x ∈ C and there exists C′ ∈ C such that
y ∈ C′. In this case, either C ⊂ C′ or C′ ⊂ C. Without loss of generality, assume that
C ⊂ C′. Then x, y ∈ C′, which implies that x + y ∈ C′ ⊂ L. Therefore, L is closed
under addition. Now let x ∈ L, r ∈ R. Then there exist C ∈ C such that x ∈ C. Since C
is a submodule of M, rx ∈ C ⊂ L. This shows that L is a submodule of M, as claimed.

We need now show that L is a proper submodule of M. Since M is finitely generated,
there exists a finite generating set {x1, . . . , xk}. If L = M, then there exist submodules
Cn ∈ C such that xn ∈ Cn. Let C be the maximal element of the set {Cn : n ∈ {1, . . . , k}}.
Then {x1, . . . , xk} ⊂ C, so C = M. This contradicts the assumption that C was a proper
submodule of M. Therefore, L is a proper submodule of M. Then an arbitrary chain C
has an upper bound inM. By Zorn’s Lemma,M has a maximal element, which must
be a maximal R-submodule of M.

(b) By the Correspondence Theorem, the R-submodule of M/N are in one-to-one corre-
spondence to the R-submodules of M containing N. Since the only R-submodules of
M containing N are N and M, the only R-submodules of M/N are 0 and M/N. In
other words, M/N is a simple R-module.

Let x ∈ M/N be nonzero. Then the R-submodule Rx is nonzero. This implies that
M/N = Rx. Then the function f : R → M/N given by r 7→ rx is surjective. By the
First Isomorphism Theorem, R/ ker f ∼= M/N. Since R/ ker f is a simple R-module,
the Correspondence Theorem implies that ker f is a maximal R-submodule of R. Since
the R-submodules of R are exactly the ideals of R, ker f is a maximal ideal of R, as
required.
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9. Reduce the matrix

A =

 3 1 −4
2 −3 1
−4 6 −2


to diagonal form over Z and express the cokernel of A (that is, Col3(Z)/image(A)) as a
direct sum of cyclic groups.

Solution: Perform the following row and column operations:

3R1 + R2 −→ R2

−6R1 + R3 −→ R3

R2 + R3 −→ R3

C1 + C3 −→ C3

−3C2 + C1 −→ C1

C2 + C3 −→ C3

R1 ←→ R2

This obtains the matrix 1 0 0
0 11 0
0 0 0


Therefore, im A ∼= Z× 11Z× 0 ∼= Z× 11Z. Also, coker A ∼= Col3(Z)/ im A ∼= Z/11Z×
Z/Z×Z/0Z ∼= Z×Z/11Z.

10. Let F be a finite field. Prove that the multiplicative group F× of non-zero elements of F
is a cyclic group. (Hint: a polynomial of degree n over a field has at most n roots.)

Solution: It is clear that F× is a finite abelian group. Let Cr denote the cyclic group with r
elements. By the Fundamental Theorem of Finitely Generated Abelian Groups,

F× ∼= Cr1 × · · · × Crk

for some k ≥ 1 and r1 | r2 | · · · | rk. We claim that k = 1. Suppose to the contrary that k ≥ 2.
Consider the polynomial p(x) = xr1 − 1. Any element of F× is of the form (a, 1, 1, . . . , 1)
and is clearly a root of p(x). This accounts for r1 distinct roots of p(x). Since r1 | r2 and
Cr2 is abelian, Cr2 contains a subgroup H or order r1. Now every element of the form
(1, a, 1, . . . , 1) with a ∈ H is a root of p(x). This implies that there are at least 2r1 roots of
p(x), but p(x) has degree r1, a contradiction. Therefore, k = 1 and F×Cr1 . Thus, F× is a
cyclic group.
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OR

Let q = |F| so that |F×| = q− 1. Let m be the maximal order of the elements of F×. By
Lagrange’s Theorem, m | (q− 1). This implies m ≤ q− 1. We claim m = q− 1 so that we
only need show q− 1 ≤ m. In any finite abelian group, the order of every element divides
the maximal order of all the elements. Then every element x ∈ F× satisfies xm = 1. Then
every element of F× is a root of xm − 1. The number of possible roots of xm − 1 is m so that
q− 1 ≤ m. But then m = q− 1. Therefore, some element of F× has order q− 1. Hence, F×

is cyclic.

OR

We first prove that if G is a finite group with n elements such that for every divisor d of
n, the number of elements dividing d is at most d, then G is cyclic.

Suppose d | n and let Gd be the set of elements of G with order d. If Gd 6= ∅, there
is a y ∈ Gd. We have 〈y〉 ⊆ {x ∈ G : xd = 1}. But 〈y〉 has cardinality d. But then
〈y〉 = {x ∈ G : xd = 1}. Then Gd is the set of generators of 〈y〉 of order d. Therefore,
#Gd = φ(d).

We have shown Gd is either empty or possesses cardinality φ(d) for each d | n. Then

n = #G = ∑
d|n

#Gd ≤∑
d|n

φ(d) = n

Therefore, #Gd = φ(d) for each d | n. In particular, Gn 6= ∅. But then G is cyclic.
Now in our case we have G = F×, a finite group. If |F×| = n and d | n then xd = 1 if

and only if xd − 1 = 0 as in the ring. This polynomial can have at most d roots. But then
the claim above applies so that F× is then a cyclic group.

OR

Suppose that |F×| = n and d | n. Let ψ(d) denote the number of elements of order
d in F×. Suppose there exists an element x ∈ F× of order d. Consider 〈x〉. Then every
element of 〈x〉 satisfies yd = 1. But the number of solutions of xd = 1 is at most d (since x
is a solution if and only if xd − 1 = 0). Then 〈x〉 = 〈x ∈ F× : xd = 1}. But then ψ(d) = 0 or
φ(d). But

∑
d|n

ψ(d) = n = ∑
d|n

φ(d)

so that ψ(d) = φ(d) for all d | n. In particular, ψ(n) = φ(d), meaning there exists an
element of order n in F×.

OR
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Let G := F×. By the Fundamental Theorem of Finitely Generated Abelian Groups, we
have

G ∼= Z/pn1
1 Z× · · · ×Z/pnr

r Z

where the pi are primes, not necessarily distinct, and nr ≥ 1. Each Z/pni
i Z is a cyclic group

of order pni
i . Let m = lcm{pn1

1 , . . . , pnr
r }. We know m ≤ pn1

1 · · · p
nr
r . If ai ∈ Z/pni

i Z, then

ap
ni
i

i = 1, hence am
i = 1. But then for all α ∈ G, αm = 1, i.e. every element of G is a root

of xm = 1. But G contains pn1
1 · · · p

nr
r elements while the polynomial xm − 1 has at most

m roots in F. Then m = pn1
1 · · · p

nr
r . As the pi are distinct, the group G is isomorphic to

Z/mZ.

OR

Let G := F× and n = max{|y| : y ∈ G}. Let |G| = N. Choose a ∈ G so that |a| = n.
If we can show that n = N, then |a| = |G| which implies G = 〈a〉 and G is then cyclic.
Now a ∈ G so that |a| = n | N and n ≤ N. We need show n ≥ N. In any abelian
group with elements of finite order r, s, the group contains an element of order lcm(r, s).
Then G contains an element of order lcm(|a|, |g|) so lcm(n, |g|) ≤ n. But then |g| | n and
then gn = 1 for every g ∈ G. Then x − g is a factor of the polynomial xn − 1 for every
g ∈ G. Therefore, ∏g∈G(x − g) divides xn − 1. However, ∏g∈G(x − g) has degree N so
that N ≤ n.
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August 2012

1.

(a) Let G be a group and let g ∈ G be an element of order n > 0. For any integer r, prove
that the order of gr is n

d , where d = gcd(n, r).

(b) Find and describe up to isomorphism the group of automorphisms of a cyclic group of
order 8.

Solution:

(a) Since d divides r, r
d ∈ Z. Therefore,

(gr)n/d = g(rn)/d = (gn)r/d = 1r/d = 1.

If (gr)k = grk = 1 for some k ∈N, then n divides rk. Therefore, n
d divides r

d k. Since n
d

and r
d are relatively prime, n

d divides k, this impies k ≥ n
d . Thus, |gr| = n

d , as required.

(b) Note that any cyclic group of order 8 is isomorphic to Z/8Z. Consider φ ∈ Aut(Z/8Z).
The homomorphism φ is completely determined by φ(1 + 8Z). Now φ is an isomor-
phism if and only if φ(1 + 8Z) has order 8. Since k + 8Z = k(1 + 8Z), part (a) implies
that this is only the case if (k, 8) = 1. Therefore, there are four automorphisms of
Z/8Z:

φ1 : 1 + 8Z 7→ 1 + 8Z

φ2 : 1 + 8Z 7→ 3 + 8Z

φ3 : 1 + 8Z 7→ 5 + 8Z

φ4 : 1 + 8Z 7→ 7 + 8Z

Note that the element φ1 is the identity and that the order of every other element is 2.
Therefore, Aut(Z/8Z) ∼= V4

∼= Z/2Z×Z/2Z, the Klein 4-group.

2.

(a) Let T be a linear operator on a two-dimensional vector space V over a fixed field F.
Assuming T is not multiplication by a scalar, prove that there is a vector v ∈ V for
which (v, T(v)) is a basis for V and describe the first column of the matrix of T with
respect to that basis.
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(b) Let A =

[
a b
c d

]
be a 2× 2 matrix over a field F. Prove that there exists an invertible

2× 2 matrix E for which B = EAE−1 =

[
0 ∗
1 ∗

]
, unless b = c = 0 and a = d.

(a) Since V has dimension 2, it is sufficient to show that there exists a vector v ∈ V such
that (v, T(v)) is linearly independent. Suppose to the contrary that this is not the case.
Then for all v ∈ V, Tv = λvv, where λv ∈ F depends on v. Let B = {e1, e2} be a basis
for V. Then

T(e1 + e2) = T(e1) + T(e2) = λe1 e1 + λe2 e2 = λe1+e2 + λe1+e2 e2.

Since any vector in V can be written uniquely as a linear combination of e1 and e2, this
implies that λe1 = λe1+e2 = λe2 . Let λ = λe1 . Then for any v ∈ V, v = a1e1 + a2e2a for
some a1, a2 ∈ F. Now

T(v) = T(a1e1 + a2e2a) = a1T(e1) + a2T(e2) = a1λe1 + a2λe2 = λ(a1e1 + a2e2a).

This implies that T is multiplication by a scalar, a contradiction. Therefore, there exists
v ∈ V such that Tv 6= λv for all λ ∈ F, which implies that (v, Tv) is linearly dependent.
Thus, there exists v ∈ V such that (v, Tv) is a basis for V. Let B′ denote the basis. The
first column of T with respect to B′ is

[T(v)]B′ = [0 · v + 1 · T(v)]B′ =
(

0
1

)
.

(b) Suppose that A is not of the form (
a 0
0 a

)
for any a ∈ F. We claim that the linear transformation represented by A is not
multiplication by a scalar. Suppose to the contrary that Av = λv for some λ ∈ F and all
v ∈ F2. Then λ is an eigenvalue of A with multiplicity 2. Therefore, the characteristic
polynomial of A is c(x) = (x− λ)2 and the minimal poynomial of A is m(x) = x− λ.
Now A is similar to the matrix λI2. If λ 6= 0, then λI2 ∈ Z(GL2(F)), so A = λI2. If
λ = 0, then A is similar to the zero matrix, which implies that A is the zero matrix. In
either case, we have a contradiction. This proves the claim.

By part (a), there exists a basis of F2 of the form (v, Av). Writing A as a matrix with
respect to this basis implies that A is similar to a matrix of the form

B =

(
0 ∗
1 ∗

)
,

so there exists an invertible matrix E such that B = EAE−1.
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3.

(a) A set X consisting of n elements is a left G-set, for some group G. Show that there
exists a homomorphism G → Sn, where Sn is the symmetric group.

(b) If n = 4 and G is a cyclic group of order 9, how many distinct structures of a left G-set
are possible on X? How many nonisomorphic G-sets are among them? Describe the
orbits for each of the G-sets.

Solution:

(a) For every g ∈ G, define a function σg : X → X via σg(x) := g · x. We claim that σg
is a permutation of X (a bijection X → X). If σg(x) = σg(y), then g · x = g · y. After
multiplication by g−1 on the left on both sides, we have x = y. But then σg is injective.
Now for x ∈ X, σg(g−1 · x) = g · (g−1 · x) = (gg−1) · x = x. Therefore, σg is surjective.
Therefore, σg : X → X is a bijection so that σg is a permutation of X.

Let SX denote the symmetric group on X, and define φ : G → SX via g 7→ σg. For any
g, h ∈ G, x ∈ X,

σgh(x) = (gh) · x = g · (h · x) = g · σh(x) = σg(σh(x)) = (σg ◦ σh)(x).

Thus, σgh = σgσh, so that φ is a homomorphism. Since SX ∼= Sn, there exists a homo-
morphism φ : G → Sn.

(b) The number of distinct possible left G-sets on X is equal to the number of homomor-
phisms φ : G → S4. Let g be a generator of G. Then φ is completely determined by
φ(g). Notice that φ(g)9 = φ(g9) = φ(1) = 1, so |φ(g)| divides both 9 and 24. Hence,
either |φ(g)| = 1 or |φ(g)| = 3. If |φ(g)| = 1, then φ(g) = 1 and the action is trivial, i.e.
every element of X is a fixed point.

If |φ(g)| = 3, then φ(g) is a 3-cycle. Since there are (4
3) · 2 = 8 distinct 3-cycles in S4,

there are a total of 9 distinct choices for φ(g), so there are 9 distinct structures of a left
G-set on X.

Now write X = {a, b, c, d} and Y = {a′, b′, c′, d′} and suppose φ : G → SX and
φ : G → SY are homomorphisms such that φ(g) = (a b c) and φ(g) = (a′ b′ c′). Then
it is easy to see that the function

a 7→ a′ b 7→ b′ c 7→ c′ d 7→ d′

is an isomorphism of G-sets. Taking X = Y, it follows that there are only two non-
isomorphic G-sets on X: the trivial one and sending a generator to a 3-cycle.
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4.

(a) Prove that a group of order 85 is cyclic.

(b) Prove that a group of order 55 is generated by two elements x, y satisfying x11 = 1, y5 =
1, and yxy−1 = xr, for some r, 1 ≤ r < 11. Show that r = 2 is not possible. You need
not render a decision about the possibility of r = 1 or 3 ≤ r ≤ 10. Is it a simple group?

Solution:

(a) Let np(G) denote the number of Sylow p-subgroups of G. By Sylow’s Theorem,
n17(G) ≡ 1 mod 17 and divides 5. Then n17 = 1. By similar logic, we have n5(G) = 1.
But then the Sylow 5-subgroup and the Sylow 17-subgroup are unique, hence normal.
Furthermore by Lagrange’s Theorem, the intersection of these groups must be trivial.
Call these subgroups H and K, respectively. Notice that HK is a subgroup of G of
order |HK| = |H| |K|

|H∩K| =
17·5

1 = 85. Let x ∈ H and y ∈ K be non-identity elements. We
have G ∼= H × K, which is cyclic generated by (x, y). Alternatively, 〈xy〉 = G since
its order is lcm(|x|, |y|) = 85. Alternatively, the unique Sylow 5-subgroup and Sylow
17-subgroup make up 17 + 5− 1 = 21 elements of G. The remaining elements of G
must be of order 85, any of which will generated G. Therefore, G is cyclic.

OR

We claim that G must be abelian and the result will follow: if G is abelian, by Cauchy’s
Theorem (or considering |HK| = |H| |K|

|H∩K| ), G must have elements of order 5 and 17, say
x and y, respectively. But then xy is an element of G of order lcm(5, 17) = 85. But then
G is cyclic. We now need show that G is abelian.

If G is nonabelian, we know Z(G) < G and must have order 1, 5, or 17 by Lagrange’s
Theorem. However, |Z(G)| 6= 5 or 17 since then G/Z(G) would be cyclic, implying
that G is abelian. By the Class Equation

|G| = |Z(G)|+ |CG(x1)|+ · · ·+ |CG(xr)|,

where x1, . . . , xr are distinct representatives for the conjugacy classes of G. Let |CG(xi)| =
ni. We have 85 = 1 + n1 + · · ·+ nr.

Now let g ∈ G be a nonidentity element. If |g| = 85, then G is cyclic. If |g| = 5, then
CG(g) has order at least 5 and dividing |G|. Since Z(G) = {1}, we have |CG(g)| =
85/5 = 17. Mutatis mutandis, if |g| = 17, then |CG(g)| = 5. Then one of ni is 5 and
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another 17. In particular, ni ≥ 5 so that r ≤ 16, i.e. G has at most 17 conjugacy classes.
By a result of Burnside’s in Representation Theory, if |G| is odd, then |G| ≡ r mod 16,
where r is the number of conjugacy classes. In our case, (r + 1) ≡ 85 mod 16 and
r + 1 ≤ 17. But then r = 4. Hence 84 = 1 + n1 + · · ·+ n4 with ni ∈ {5, 17}. This is
impossible since the left side is at most 69. But then it must be that G is abelian, and by
the work above, cyclic.

(b) Let G be a group of order 55 = 5 · 11. Notice that n11(G) ≡ 1 mod 11 and divides 55.
This implies n11(G) = 1. Therefore, G has a unique, hence normal, Sylow 11-subgroup.
But then G is not simple. Let P5 denote a Sylow 5-subgroup of G and P11 denote the
unique Sylow 11-subgroup of G. Both P5 and P11 are cyclic, say P5 = 〈y〉 and P11 = 〈x〉.
Then |P5 ∩ P11| = 1 by Lagrange’s Theorem, so

|P5P11| =
|P5| |P11|
|P5 ∩ P11|

= 55.

Therefore, P5P11 = G, which implies that xy generates G. Since P11 is normal in G,
yxy−1 ∈ P11 which implies yxy−1 = xr for some r, 1 ≤ r ≤ 11. Note that r = 11 is not
possible since |xr| = |yxy−1| = |x| = 11 6= 1. Suppose r = 2, then x2 = yxy−1. Since
y5 = 1,

x = y5xy−5 = y4(yxy−1)y−4

= y4x2y−4

= y3yx2y−1y−3

= y3(yxy−1)2y−3

= y3x4y−3

= y2yx4y−1y−2

= y2(yxy−1)4y−2

= y2x8y−2

= y(yx8y−1)y−1

= y(yxy−1)y−1

= y(yxy−1)8y−1

= yx16y−1 = (yxy−1)16 = x32 = x10.

Thus, x9 = 1, a contradiction to the fact that |x| = 11. Then r = 2 is not possible,
leaving 3 ≤ r < 11.
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5. Prove that an n× n complex matrix A is Hermitian if and only if X∗AX is real for all
complex vectors X; here ∗ denotes the conjugate transpose.

Solution: Assume that A is Hermitian, i.e. A∗ = A. For any X ∈ Cn,

(X∗AX)∗ = X∗A∗X∗∗ = X∗AX.

Viewing X∗AX as a complex number in the obvious way, this implies X∗AX = X∗AX.
Hence, X∗AX is real.

Now assume that X∗AX is real for all X ∈ Cn. Let {e1, . . . , en} denote the standard
basis for Cn. Let A = (aij). By assumption, e∗i Aei is real for each index i. Since aii = e∗i Aei,
aii is real for 1 ≤ i ≤ n, i.e. aii = aii.

Now take X = ei + ej for indices i, j. By hypothesis, X∗AX is real. Notice that

X∗AX = (ei + ej)
∗A(ei + ej) = e∗i Aei + e∗j Aej + e∗i Aej + e∗j Aei = aii + ajj + aij + aji.

Furthermore by assumption, e∗i Aei and e∗j Aej are real. This implies that aij + aji is real.
Thus, Im(aij) = −Im(aji).

Take X = iei + ej for indices i, j. By assumption, X∗AX is real. Now

X∗AX = (iei + ej)
∗A(iei + ej)

= −ie∗i Aiei − ie∗i Aej + e∗j Aiei + e∗j Aej

= e∗i Aei + e∗j Aej + i(e∗j Aei − e∗i Aej)

By assumption, e∗i Aei and e∗j Aej are real, so i(e∗j Aei − e∗i Aej) is real. This implies i(aji − aij)

is real. But then Re(aji − aij) = 0 which implies Re(aji) = Re(aij). Since Re(aij) = Re(aji)
and Im(aij) = −Im(aji), aij = aji for any 1 ≤ i, j ≤ n. But then A = A∗, i.e. A is Hermi-
tian.

6. Determine whether each of the following ideals is a maximal ideal in C[x, y]. Each is
worth 5 points.

(a) 〈(x− 1)2 + y2 − 1, (x + 1)2 + y2 − 1, x2 + (y− 1)2 − 1, x2 + (y + 1)2 − 1〉

(b) 〈x2 + y2 − 9, x2 + (y− 4)2 − 25, x2 + (y + 4)2 − 25〉

Solution:

(a) Graphing the circles (x− 1)2 + y2 = 1, (x + 1)2 + y2 = 1, x2 + (y− 1)2 = 1, x2 + (y +
1)2 = 1 gives Figure 1, seen below.

142



Figure 1: Graphical representations of the ideal 〈(x− 1)2 + y2 − 1, (x + 1)2 + y2 − 1, x2 +
(y− 1)2 − 1, x2 + (y + 1)2 − 1〉.

Since these circles intersect at the origin, the ideal is the ideal (x, y), which is maximal
since C[x, y]/(x, y) ∼= C is a field. Alternatively, note that (x, y) is contains the given
ideal. Observe

(x2 + (y− 1)2 − 1)− (x2 + (y + 1)2 − 1) = −4y

((x− 1)2 + y2 − 1)− ((x + 1)2 + y2 − 1) = −4x

But then (x, y) is contained in the given ideal. Therefore, (x, y) = 〈(x − 1)2 + y2 −
1, (x + 1)2 + y2 − 1, x2 + (y − 1)2 − 1, x2 + (y + 1)2 − 1〉 and (x, y) is maximal as
C[x, y]/(x, y) ∼= C is a field.

(b) Graphing the circles x2 + y2 = 9, x2 + (y− 4)2 = 25, and x2 + (y + 4)2 = 25 gives
Figure 2, seen below.
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Figure 2: Graphical representations of the ideal 〈x2 + y2 − 9, x2 + (y− 4)2 − 25, x2 + (y +
4)2 − 25〉.

The circles intersect at the points (3, 0) and (−3, 0). This implies that the given ideal is
(3 + x, y) ∩ (3− x, y) which is not maximal since it is properly contained in the ideal
(3 + x, y).

7. Let R be a commutative ring with identity and let I be a nonzero ideal of R. This makes
I into an R-module. Prove that I is a free R-module if and only if I is a principal ideal
generated by an element that is not a zero divisor.

Solution: Suppose that I is a free R-module. There exists a basis B for I. Recall that if
B is a basis for I, every element in I can be written uniquely as a linear combination of
elements of B. We claim |B| = 1. If |B| > 1, then we can choose distinct x, y ∈ B. Then
0 = 0 · x + 0 · y = y · x + (−x) · y, a contradiction to the fact that B is a basis. Therefore,
|B| = 1, i.e. B = {x} for some x ∈ I. It is clear that I = (x). If rx = 0 for some r ∈ R, then
rx = 0 = 0x, a contradiction to the fact that B is a basis. Hence, x is not a zero divisor.

Suppose that I = (x) is a nonzero ideal, where x is not a zero divisor. We claim that
{x} is a basis for I as an R-module. It is clear that every element of I is of the form rx for
some r ∈ R. It remains to show that this expression is unique. If rx = sx for some r, s ∈ R,
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then

rx− sx = 0
(r− s)x = 0

Since x is nonzero and not a zero divisor, r − s = 0. Thus, r = s, proving uniqueness.
Therefore, I is a free R-module.

8. A 9× 9 matrix M with complex entries has characteristic polynomial equal to (x −
1)4(x− 2)5.

(a) List all the possible minimal polynomials for M.

(b) Of all the possibilities in (a) which one(s) lead to the largest number of possible Jordan
Canonical forms for M?

Solution:

(a) The minimal polynomial need have roots x = 1 and x = 2, i.e. divisors x− 1 and x− 2
and divide the characteristic polynomial. Then there are 20 possibilities: {(x− 1)i(x−
2)j : 1 ≤ i ≤ 4, 1 ≤ j ≤ 5}.

(b) Let m(x) denote the minimal polynomial of M. The number of possible Jordan canoni-
cal forms is the same as the number of possible elementary divisors. For (x− 1), let k
denote the power of (x− 1) in m(x). Note that k is the largest power of (x− 1) that
can be an elementary divisor. If k = 1, there is only one possibility for the elementary
divisors associated to the eigenvalue 1: (x− 1) four times. If k = 2, there are two possi-
bilities: (x− 1), (x− 1), (x− 1)2 or (x− 1)2 twice. If k = 3, then the only possibility for
the elementary divisors is (x− 1), (x− 1)3. If k = 4, then the only possibility for the
elementary divisors is (x− 1)4. Therefore, the most possible Jordan canonical forms
will occur when k = 2.

Let j denote the power of (x − 2) in m(x). If j = 1, 4, or 5, then there is only one
possibility for the elementary divisors (similar reasoning to above). If j = 2, then there
are two possibilities: (x − 2)2, (x − 2)2, (x − 2) or (x − 2), (x − 2), (x − 2). If j = 3,
then there are two possibilities: (x− 2)3, (x− 2)2 or (x− 2)3, (x− 2), (x− 2).

Thus, the largest number of possible Jordan canonical forms occurs when k = 2 and
j = 2 or j = 3. Thus, the two minimal polynomials that leads to the largest number
of Jordan canonical forms is m(x) = (x − 1)2(x − 2)2 and m(x) = (x − 1)2(x − 2)3,
which each lead to 4 possible Jordan canonical forms.
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9. Find a primitive element for the following field extensions. Be sure to prove it is a
primitive element. Q ⊂ Q(

√
2, i). As usual i2 = −1.

Solution: We claim Q(
√

2, i) = Q(
√

2 + i). Since
√

2, i ∈ Q(
√

2, i),
√

2 + i ∈ Q(
√

2, i).
Since Q ⊂ Q(

√
2, i), it follows that Q(

√
2 + i) ⊂ Q(

√
2, i). Observe that

(
√

2 + i)

(√
2− i
3

)
=

2 + 1
3

= 1.

Therefore,
√

2−i
3 ∈ Q(

√
2 + i). It follows that

√
2− i ∈ Q(

√
2 + i). Thus,

1
2

(
(
√

2 + i) + (
√

2− i)
)
=
√

2 ∈ Q(
√

2 + i)

1
2

(
(
√

2 + i)− (
√

2− i)
)
= i ∈ Q(

√
2 + i)

Since Q(
√

2 + i) contains Q,
√

2, and i, Q(
√

2, i) ⊂ Q(
√

2 + i). Since the reverse contain-
ment holds, Q(

√
2, i) = Q(

√
2 + i), i.e.

√
2 + i is a primitive element for the given field

extension.

10. Let F ( E be a finite extension of fields of characteristic 0.

(a) Prove that there exists a field K ⊃ E such that F ⊂ K is a finite Galois extension.

(b) Prove that there are at most finitely many distinct fields L with F ⊂ L ⊂ E.

Solution:

(a) Since F ⊂ E is a finite extension of fields, E = F(α1, . . . , αn) for some n ∈N and some
collection αi ∈ E algebraic over F. For i = 1, . . . , n, let mαi(x) denote the minimal
polynomial of αi over F. Let

m(x) =
n

∏
i=1

mαi(x),

and let n = deg m(x). Let K be the splitting field of m(x) over F. Note that E ⊂ K since
F ⊂ K and αi ∈ K for i = 1, . . . , n. The extension F ⊂ K is finite since [K : F] ≤ n! < ∞.
Since F and K are fields of characteristic 0, the extension F ⊂ K is separable, and this
extension is also normal since K is the splitting field of a polynomial m(x) ∈ F[x].
Hence, F ⊂ K is a normal, separable extension, which implies that F ⊂ K is a Galois
extension, as required.
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(b) Let K be as in (a) and let G = Gal(K/L). Then

|G| = [K : L] < ∞

so that G is a finite group. This implies that G has finitely many subgroups. By the
Fundamental Theorem of Galois Theory, there is a bijection between subgroups of G
and fields L such that F ⊂ L ⊂ K. Hence, there are only finitely many such fields. In
particular, there are only finitely many distinct fields F ⊂ L ⊂ E.
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January 2013

1. Let G be a finite group and p ∈ Z a prime integer.

(a) Write down the characteristic equation for G and explain the notation.

(b) If |G| = pk for k ≥ 1, show that |Z(G)| 6= 1, where Z(G) denotes the center of G.

(c) If |G| = p2, show that G is abelian.

Solution:

(a) The Class equation for G is

|G| = |Z(G)|+
r

∑
i=1

[G : CG(ai)]

where the Z(G) is the center of G, CG(x) is the centralizer of x in G, and the summation
is over a1, . . . , ar representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G : CG(ai)] > 1 since ai /∈ Z(G).

(b) The Class equation for G can be rewritten as

|Z(G)| = |G| −
r

∑
i=1

[G : CG(ai)].

Each term on the right hand side is a divisor of |G| = pk. Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so
that |Z(G)| 6= 1.

(c) By part (b), |Z(G)| 6= 1. Since |Z(G)| divides p2, either |Z(G)| = p or |Z(G) = p2.
Therefore, either |G/Z(G)| = p or |G/Z(G)| = 1. In the former case, G/Z(G) is then
cyclic by Lagrange’s Theorem so that G is abelian, and in the latter case Z(G) = G so
that G is abelian.

The fact that G/Z(G) is cyclic implies G is abelian deserved a proof: if G/Z(G) is
cyclic, there is a generator αZ(G) for some α ∈ G. Let a, b ∈ G. Then a = αnz, b = αmz′

for some n, m ∈N, z, z′ ∈ Z(G). Thus,

ab = αnzαmz′ = αnαmzz′ = αmαnz′z = αmz′αnz = ba,

which implies that G is abelian.
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2. Show that there is no simple group of order 30.

Solution: Let np denote the Sylow p-subgroup. By Sylow’s Theorem, n5 ≡ 1 mod 5 and
divides 30, so that it must be 1 or 6. Similarly, n3 ≡ 1 mod 3 and divides 30 so that
np is 1 or 10. If either n5 or n3 is 1, then the Sylow 5-subgroup or Sylow 3-subgroup,
respectively, is unique, hence normal.By Lagrange’s Theorem, the intersection of any Sylow
5-subgroup and Sylow 3-subgroup is trivial. But if n5, n3 > 1, then G contains at least
4 · 6 + 2 · 10 + 1 = 45 elements, a contradiction. Then one of n5, n3 is 1 so that G contains a
normal subgroup and cannot be simple.

3. Assume V is a finite dimensional vector space over the complex numbers C with a
(positive definite) Hermitian form 〈 , 〉 and let B = {v1, v2, . . . , vn} be an orthonormal
basis for V. Assume T : V → V is a linear transformation. What condition must the matrix
of T with respect to B satisfy in order for 〈T(u), T(v)〉 = 〈u, v〉 for all u, v ∈ V.

Solution: Let A denote the matrix of T with respect to B. Then for any indices i, j,

〈A(vi), A(vj)〉 = 〈vi, vj〉 =
{

1, i = j,
0, otherwise

On the other hand, if ai denotes the ith column of A, then

〈A(vi), A(vj)〉 = 〈ai, aj〉.

Combining these two observations, it follows that the columns of A must form an orthonor-
mal basis for V. Therefore, A is an orthogonal matrix.

4. Let V be a finite dimensional vector space over a field F and let T : V → V be a linear
operator.

(a) If f ∈ F[x] is a polynomial with f (T) = 0, show that every eigenvalue of T is a root of
f .

(b) If g ∈ F[x] splits over F and g(T) is not an isomorphism, show that at least one root of
g is an eigenvalue of T.

Solution:

(a) Suppose f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0. Let v be an eigenvector of T with
eigenvalue λ. Then

0 = f (T)v = anTn(v) + an−1Tn−1(v) + · · ·+ a1T(v) + a0.
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The claim is that Tkv = λkv for all k ∈N and we proceed by induction. The result is
clear for k = 1. Suppose it holds for k ∈ N. Then Tk+1(v) = (T ◦ Tk)(v) = T(λkv) =
λkT(v) = λk+1v. But then the claim follows by induction. Then we have

0 = f (T)v = anλnv + an−1λn−1v + · · ·+ a1λv + a0v

= (anλn + an−1λn−1 + · · ·+ a1λ + a0)v.

Since v 6= 0, f (λ) = anλn + an−1λn−1 + · · ·+ a1λ + a0 = 0.

(b) Without loss of generality, assume that g(x) is monic with degree n. Let α1, . . . , αn
denote the roots (not necessarily distinct) of g(x). Then

g(x) = (x− α1) · · · (x− αn)

Now g(T) is not an isomorphism so that ker g(T) 6= 0. Let w ∈ ker g(T) be nonzero.
Then

0 = [(T − α1 I) ◦ (T − α2 I) ◦ · · · ◦ (T − αn I)](w).

If (T− αn I)(w) = 0, then Tw = αnw and w is an eigenvector of T with eigenvalue αn.
Since αn is a root of g(x), this would complete the proof.

Now suppose (T − αi)(w) 6= 0 for α1, . . . , αn. Define m = min{k ∈ {1, . . . , n} : [(T −
αk I) ◦ (T − αk+1 I) ◦ · · · ◦ (T − αn I)](w) 6= 0} and v = [(T − αm I) ◦ (T − αm+1 I) ◦
· · · ◦ (T − αn I)](w). Then (T − αm−1)(v) = 0 with v 6= 0 by the choice of m. Thus,
Tv = αm−1v and v is then an eigenvalue of T with eigenvalue αm−1. Thus, at least one
root of g(x) is an eigenvalue of T.

5. Let V = C4 and let T : V → V be given by T(v1, v2, v3, v4) = (v3, v1, v2, v3). Find all the
eigenvalues for T and for each eigenvalue, find a basis for its characteristic space.

Solution: Let ei denote the ith standard basis vector and write T as a matrix relative to the
bases B = {e1, . . . , e4}:

A = [T(e1)B T(e2)B · · · T(e4)B ]

= [(e2)B (e3)B (e4)B (e1)B ]

=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


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Now,

cA(x) = det(xI − A)

= det


x 0 0 −1
−1 x 0 0
0 −1 x 0
0 0 −1 x


= det

−1 x 0
0 −1 x
0 0 −1

+ x det

 x 0 0
−1 x 0
0 −1 x


= −1 + x4

This implies that the eigenvalues are the roots of cA(x) = x4 − 1, which are 1,−1, i, and −i.
Since the multiplicity of each root of cA(x) is 1, each characteristic space has dimension 1.

For the eigenvalue 1, a basis is (1, 1, 1, 1) since T(1, 1, 1, 1) = (1, 1, 1, 1). For the eigen-
value −1, a basis is (−1, 1,−1, 1) since T(−1, 1,−1, 1) = (1,−1, 1,−1) = −1(−1, 1,−1, 1).
For the eigenvalue i, a basis is (1,−i,−1, i) since T(1,−i,−1, i) = (i, 1,−i,−1) = i ·
(1,−i,−1, i). For the eigenvalue−i, a basis is (1,−i, 1,−i) since T(1,−i, 1,−i) = (−i, 1,−i, 1) =
−i · (1,−i, 1,−i).

6. Consider the ring Z[x]. For each pair of given ideals I and J, determine whether (i)
I ( J, (ii) J ( I, (iii) I = J, or (iv) none of (i), (ii), or (iii)

(a) I = 〈3, x〉, J = 〈3x〉

(b) I = 〈3, x〉, J = 〈3− x, 3 + x〉

(c) I = 〈3, x〉, J = 〈6, 9, 2x, 3x〉

Solution:

(a) Since 3x = 3 · x, 3x ∈ 〈3, x〉. This implies that J ⊂ I. Now x + 3 ∈ I. If x + 3 ∈ J,
then x + 3 = 3xp(x) for some p(x) ∈ Z[x]. Comparing degrees, it must be that p(x) is
constant, i.e. x + 3 = 3xp for some p ∈ Z. By comparing leading coefficients, it follows
that 3p = 1, a contradiction since p ∈ Z. Therefore, x + 3 ∈ I \ J, which implies that
I 6⊂ J.

(b) Clearly, 3± x ∈ I so that J ⊂ I. Now 3 ∈ I and we claim 3 /∈ J. If 3 ∈ J, then

3 = p(x)(3− x) + q(x)(3 + x) = 3
(

p(x) + q(x)
)
+ x
(
q(x)− p(x)

)
for some p(x), q(x) ∈ Z[x]. The right hand side of the above equation must be
constant. But then q(x)− p(x) = 0 so that p(x) = q(x). But then 3 = 3(p(x) + q(x)) =
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3(p(x) + p(x)) = 6p(x). By degree comparison, it must be that p(x) is constant, i.e.
p(x) = p ∈ Z. But then 3 = 6p, a contradiction since p /∈ Z. Therefore, 3 /∈ J implying
that I 6⊂ J.

(c) Notice that 6 = 2 · 3 ∈ I, 9 = 3 · 3 ∈ I, 2x = 2 · x ∈ I, and 3x = 3 · x ∈ I. Therefore,
J ⊂ I. Since 3 = 9− 6 ∈ J and x = 3x− 2x ∈ J, I ⊂ J. Thus, I = J.

7. Let G be a finitely generated abelian group. Use additive notation so gm is written as mg.
Prove that G is infinite if and only if there exists g ∈ G such that mg 6= 0 for all nonzero
m ∈ Z.

Solution: Suppose that there exists g ∈ G such that mg 6= 0 for all 0 6= m ∈ Z. If G were
finite, then for n = |G|, ng = 0, a contradiction. Therefore, G is infinite.

Now suppose that G was infinite. By the Fundamental Theorem of Finitely Generated
Abelian Groups,

G ∼= Zl ⊕Z/pa1
1 ⊕ · · · ⊕Z/pan

n ,

for some l ≥ 0, ai ≥ 1, and the pi (not necessarily distinct) primes. Since G is infinite, it must
be that l ≥ 1. Let g = (1, 0, . . . , 0) ∈ G via the isomorphism above. Then mg = (m, 0, . . . , 0)
for m ∈ Z. If m 6= 0, then mg 6= 0, as required.

8. A 15 × 15 matrix M with complex entries has characteristic polynomial equal to
(x− 1)7(x− 2)8. Find all possible minimal polynomials for M such that the characteristic
and minimal polynomials together completely determine the Jordan canonical form of M
up to ordering the blocks. Give the Jordan canonical form for each of these.

Solution: The Jordan canonical form is completely determined by the elementary divisors.
If (x− 1)7 is the largest power of (x− 1) that is an elementary divisor, then no other power
of (x− 1) can be an elementary divisor. If (x− 1)6 is the largest power of (x− 1) that is an
elementary divisor, then the only other elementary divisor must be (x− 1). If (x− 1)5 is
the largest power of (x− 1) that is an elementary divisor, then there are two possibilities:
there could be two (x− 1) elementary divisors or one (x− 1)2 elementary divisor. The
remaining possibilities are summarized below:

(x− 1)4: Could have (x− 1)3, (x− 1)(x− 1)2 — not unique
(x− 1)3: Could have (x− 1)3(x− 1), (x− 1)2(x− 1) — not unique
(x − 1)2: Could have (x − 1)(x − 1)(x − 1)(x − 1)(x − 1), (x − 1)2(x − 1)2(x − 1) —

not unique
(x− 1): Only possibility is (x− 1)(x− 1)(x− 1)(x− 1)(x− 1)(x− 1)
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Using a similar reasoning, the powers of (x− 2) that uniquely determine the (x− 2)-
elementary divisors are (x− 2)8, (x− 2)7, and (x− 2). This means there are nine minimal
polynomials that uniquely determine the Jordan canonical form of M:

1. m(x) = (x− 1)7(x− 2)8

2. m(x) = (x− 1)7(x− 2)7

3. m(x) = (x− 1)7(x− 2)

4. m(x) = (x− 1)(x− 2)8

5. m(x) = (x− 1)(x− 2)7

6. m(x) = (x− 1)(x− 2)

7. m(x) = (x− 1)6(x− 2)8

8. m(x) = (x− 1)6(x− 2)7

9. m(x) = (x− 1)6(x− 2)1

We now compute the Jordan canonical form in each case.

1. c(x) = (x − 1)7(x − 2)8 = m(x). The two elementary divisors of M are (x − 1)7 and
(x− 2)8 so there are two Jordan blocks. The Jordan canonical form of M, up to reordering
of blocks, is 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


2. m(x) = (x − 1)7(x − 2)7. The elementary divisors of M are (x − 1)7, (x − 2)7, and

(x− 2), so there are two Jordan blocks. The Jordan canonical form of M, up to reordering
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of blocks, is 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


3. m(x) = (x − 1)7(x − 2). The elementary divisors of M are (x − 1)7, (x − 2) with

multiplicity eight. So there are nine Jordan blocks. The Jordan canonical form of M, up
to reordering of blocks, is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


4. m(x) = (x − 1)(x − 2)8. The elementary divisors of M are (x − 1) with multiplicity

seven and (x− 2)8, so there are eight Jordan blocks. The Jordan canonical form of M,
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up to reordering of blocks, is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


5. m(x) = (x − 1)(x − 2)7. The elementary divisors of M are (x − 1) with multiplicity

seven, (x− 2)7, and (x− 2), so there are nine Jordan blocks. The Jordan canonical form
of M, up to reordering of blocks, is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


6. m(x) = (x− 1)(x− 2). The elementary divisors of M are (x− 1) with multiplicity seven

and (x− 2) with multiplicity eight, so the Jordan canonical form of M, up to reordering
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of blocks, is 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


7. m(x) = (x − 1)6(x − 2)8. The elementary divisors of M are (x − 1), (x − 1)6, and

(x− 2)8, so the Jordan canonical form, up to reordering of blocks, is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


8. m(x) = (x− 1)6(x− 2)7. The elementary divisors of M are (x− 1), (x− 1)6, (x− 2),
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and (x− 2)7, so the Jordan canonical form, up to reordering of blocks, is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


9. m(x) = (x− 1)6(x− 2). The elementary divisors of M are (x− 1), (x− 1)6, and (x− 2)

with multiplicity eight, so the Jordan canonical form, up to reordering of blocks, is

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2



9. Prove that a field extension is finite if and only if it is both finitely generated and alge-
braic. Show by example that neither finitely generated no algebraic alone implies finite.
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Solution: Suppose that E/F is a finite extension of fields. Then E has finite dimension
as an F-vector space. Let B = {b1, . . . , bn} be a basis for E as an F-vector space. Then
E = F(b1, . . . , bn) so that E is finitely generated. Let α ∈ E. Since E has dimension n as
an F-vector space, the set {1, α, . . . , αn−1, αn} is linearly dependent over F, i.e. there are
a0, . . . , an ∈ F, not all zero, such that anαn + an−1αn−1 + · · ·+ a0 = 0. But then α is a root
of the nonzero polynomial p(x) = anxn + an−1xn−1 + · · ·+ a0 so that α is algebraic over F.
But then all α ∈ E are algebraic over F so that E/F is algebraic.

Now suppose that E/F is a field extension which is both finitely generated and algebraic.
Since E is finitely generated over F, E = F(α1, . . . , αn) for some α1, . . . , αn ∈ E. Furthermore,
each αi is algebraic over F since the extension E is algebraic over F. For each i, let ai = deg αi.
Then [F : E] ≤ a1a2 · · · an < ∞, os E/F is a finite extension.

Now the extension Q/Q is algebraic, by definition. To see the extension is infinite,
suppose Q/Q were finite and let n = [Q : Q]. Define m = n + 1 and let α ∈ Q by a root
of f (x) = xm − 2. By Eisenstein with p = 2, f (x) is irreducible in Q[x] since f ∈ Z[x]
and Q is the quotient field of Z. Then f is the minimal polynomial of α in Q[t]. Then
m = deg f = [Q(α) : Q] ≤ [Q : Q] = n = m − 1, a contradiction. Therefore, algebraic
extensions need not be finite.

Now consider the field extension Q(π)/Q. This extension is generated by {1, e}. If this
extension were finite, then e would be algebraic over Q, a contradiction to the fact that e is
transcendental. Therefore, finitely generated extensions need not be finite.

10. Let F ( E be an extension of fields of characteristic 0. Let L and K be two intermediate
fields so that F ⊂ K ⊂ E and F ⊂ L ⊂ E. Assume that K ∩ L = F and that K and L are both
finite Galois extensions of F. Define KL to be the smallest subfield of E containing K ∪ L.

(a) Prove that the definition of KL makes sense; that is, prove that there does indeed exists
a unique smallest subfield of E containing K ∪ L.

(b) Prove that KL is a finite Galois extension of F.

Solution:

(a) Define
KL =

⋂
K∪L⊆F′
F′ field

F′.

It is clear that K ∪ L ⊂ KL and that if K ∪ L ⊂ F′, then KL ⊂ F′. It remains to show that
KL is a field. The intersection of commutative rings is a commutative ring (when the
intersection makes sense), so it suffices to show that every nonzero element of KL is a
unit. Let x ∈ KL be nonzero. Then x ∈ F′ for all F′ ⊃ K ∪ L. But then x−1 ∈ F′ for all
F′ ⊃ K ∪ L. Therefore, x−1 ∈ KL. But then KL is a field.
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(b) Since K is a finite extension, K = F(α1, . . . , αn) for some α1, . . . , αn ∈ K, where each αi
has finite degree over F. Similarly, L = F(β1, . . . , βm) for some β1, . . . , βm ∈ L, where
each β j has finite degree over F. Then F(α1, . . . , αn, β1, . . . , βm) is a field containing
K ∪ L, so KL ⊂ F(α1, . . . , αn, β1, . . . , βm). However, any field containing K ∪ L must
contain each αi and each β j, so

KL = F(α1, . . . , αn, β1, . . . , βm).

Therefore, KL is a finite extension of F.

Since K is a Galois extension, K is the splitting field of some separable polynomial
f (x) ∈ F[x]. Now KL is the splitting field of the polynomial f (x)g(x). Now f (x)g(x)
need not be separable. By removing repeated roots, there exist polynomials f̃ , g̃ so
that f̃ g̃ has no repeated roots and KL contains all the roots of f̃ g̃. But then KL is the
splitting field of a separable polynomial. Therefore, KL is Galois.

159



August 2013

1. Set ω = (123 · · · n) ∈ Sn, the symmetric group on n letters. Compute:

(a) The size of the conjugacy class containing ω.

(b) The order of the centralizer of ω.

(c) The order of the normalizer of 〈ω〉, assuming that n = p is prime.

Solution:

(a) Two elements of Sn are conjugate if and only if they have the same cycle type. Therefore,
the size of the conjugacy class of ω is the number of n-cycles in Sn. This is (n− 1)!.

(b) Suppose σ ∈ CSn(ω). Then σω(k) = ωσ(k) for all k ∈ {1, . . . , n}. Note that ω(k) =
k + 1 mod n, so this implies σ(k + 1) = σ(k) + 1 mod n. Then σ is completely
determined by σ(1). Since there are n choices for σ(1), the order of the centralizer of ω
is n.

OR

Let Sn act on itself by conjugation. The stabilizer of ω is the centralizer of ω and the
orbit of ω is the conjugacy class containing ω. By the Orbit-Stabilizer Theorem and
part (a)

(n− 1)! = [Sn : CSn(ω)] =
n!

|CSn(ω)|

Therefore, |CSn(ω)| = n!
(n−1)! = n.

(c) Notice that 〈ω〉 is a cyclic group of order p. Let Inn(〈ω〉) denote the inner automor-
phism group of 〈ω〉. Then

NSn(〈ω〉)/CSn(〈ω〉) ∼= Inn(〈ω〉) ∼= Inn(Z/pZ),

where NSn(H) denotes the normalizer of H in Sn. Note that (Z/pZ)× ∼= Aut(Z/pZ)
via the map a 7→ φa, where φa(b + pZ) := ab + pZ. Since Z/pZ is abelian, any two
elements are conjugate if and only if they are equal. Therefore, if ab + pZ = b + pZ,
then ab− b ∈ pZ. This implies that b(a− 1) ∈ pZ, so either b ∈ pZ or a− 1 ∈ pZ

(this is Euclid’s lemma: if p | ab then p | a or p | b). Since this must hold for any b, it
can be assumed that b /∈ pZ. Thus, a− 1 ∈ pZ and a ≡ 1 mod p. Therefore, a = 1
and the only inner automorphism of Z/pZ is the identity. Hence, | Inn(Z/pZ)| = 1
and |NSn(〈ω〉)| = |CSn(〈ω〉)| = n.
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2. Let G be a group of order 231 = 3 · 7 · 11.

(a) Prove that G has a unique Sylow-11 subgroup.

(b) Prove that the Sylow-11 subgroup is contained in the center of G.

Solution:

(a) Let np denote the number of Sylow p-subgroups of G. By Sylow’s Theorem, n11 ≡ 1
mod 11 and divides 231. But the only divisor of 231 congruent to 1 mod 11 is 1.
Therefore, np = 1 and the Sylow 11-subgroup of G is unique, hence normal. Note that
G cannot be a simple group.

(b) Let S denote the Sylow 11-subgroup of G. Since |S| = 11, S is cyclic. By the remarks
in (a), S is normal in G. In particular, S is fixed under conjugation by elements of G.
Let φx : S→ S be given by a 7→ xax−1. Note that φx is an automorphism of the cyclic
group S for all x ∈ G> For any x, y ∈ G and a ∈ S,

(φx ◦ φy)(a) = φx(yay−1) = xyay−1x−1 = (xy)a(xy)−1 = φxy(a).

In particular, the function f : G → Aut(S) given by g 7→ φg is a group homomorphism
(noting also 1G 7→ φ1G = 1S). But this holds if and only if x ∈ CG(S). Since S is cyclic of
order 11, we have S ∼= Z/11Z so that Aut(S) ∼= (Z/11Z)×, a group with 10 elements.
By the First Isomorphism Theorem, 231

|CG(S)| divides both 231 and 10. Since 231 and 10

are relatively prime, 231
|CG(S)| = 1 so |CG(S)| = 231. But then G = CG(S). Therefore, the

elements of S commute with every element of G. Therefore, S ⊆ Z(G).

3. Let Q denote the quaternion group of order 8.

(a) Prove that Q is isomorphic to a subgroup of S8.

(b) Prove that Q is not isomorphic to a subgroup of Sn for n ≤ 7.

(c) Prove that C2 × C4 is isomorphic to a subgroup of S6.

Solution:
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(a) Let Q act on itself by left multiplication — defining g · x = gx for all g, x ∈ Q. For each
g ∈ Q, there is a permutation σg : Q→ Q via x 7→ gx. It remains to show that the map
φ : Q → SQ given by g 7→ σg is an injective group homomorphism. Observe that for
any g, h ∈ Q, φ(gh) = σgh = σg ◦ σh since

σgh(x) = (gh)(x) = g(hx) = gσh(x) = σg(σh(x)).

This shows that φ is a group homomorphism. To show that φ is injective, note that
g ∈ ker φ if and only if gx = x for all x ∈ G. In particular, g(1) = 1 so that g = 1. This
implies that φ is injective, as required. Since |Q| = 8, we must have SQ ⊂ S8.

(b) Let n ≤ 7 and φ : Q→ Sn be a homomorphism. The claim is that φ is not injective. The
existence of a homomorphism φ is equivalent to the existence of a group action of Q
on the set S of n elements. For any orbit Ox of the group action,

7 ≥ |Ox| = [Q : Qx] =
8
|Qx|

,

where Qx is the stabilizer of x in Q (note that the inequality above makes use of the
Orbit-Stabilizer Theorem). This implies that |Qx| > 1. We claim that −1 ∈ Qx for all
x ∈ S.

It is clear that there is at least one non-identity element in Qx. Note that

i2 = j2 = k2 = (−i)2 = (−j)2 = (−k)2 = −1.

If −1 ∈ Qx, then there is nothing left to prove. If i ∈ Qx, then i2 = −1 ∈ Qx since Qx is
a group. Mutatis mutandis, if any of j, k,−i,−j,−k are in Qx, then −1 ∈ Qx since Qx is
closed under multiplication. Therefore, −1 · x = x for all x ∈ S; therefore, −1 ∈ ker φ
which implies that ker φ 6= {1}. Therefore, φ cannot be injective. But then there are
no homomorphisms φ : Q → Sn for n ≤ 7 is injective, which implies that Q is not
isomorphic to a subgroup of Sn for n ≤ 7.

(c) Let a be a generator of C2 and let b be a generator of C4. Let φ((a, 1)) = (1 2) and
φ((1, b)) = (3 4 5 6). Since C2 × C4 is generated by (a, 1) and (1, b), these choices
completely define φ:

φ((1, b2)) = (3 4 5 6)(3 4 5 6) = (3 5)(4 6)

φ((1, b3))7 = (3 4 5 6)(3 5)(4 6) = (3 6 5 4)
φ((a, b)) = (1 2)(3 4 5 6)

φ((a, b2)) = (1 2)(3 5)(4 6)

φ((a, b3)) = (1 2)(3 6 5 4)
φ((1, 1)) = 1

It is clear that φ : C2 × C4 → S6 is an injective group homomorphism.
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4. Prove that the following conditions on an n× n real matrix A are equivalent:

(i) ‖AX‖ = ‖X‖ for all X ∈ Rn, where ‖ · ‖ is the usual Euclidean norm

(ii) AX · AY = X ·Y for all X, Y ∈ Rn

(iii) AT A = I

Solution:
(i)⇒(ii): If ‖AX‖ = ‖X‖ then clearly ‖AX‖2 = ‖X‖2. Let X, Y ∈ Rn. We compute
〈A(X + Y), A(X + Y)〉 in two different ways:

〈A(X + Y), A(X + Y)〉 = 〈X + Y, X + Y〉 = 〈X, X〉+ 2〈X, Y〉+ 〈Y, Y〉
〈A(X + Y), A(X + Y)〉 = 〈AX + AY, AX + AY〉 = 〈AX, AX〉+ 2〈AX, AY〉+ 〈AY, AY〉

= 〈X, X〉+ 2〈AX, AY〉+ 〈Y, Y〉

Therefore for any X, Y ∈ Rn,

〈X, X〉+ 2〈X, Y〉+ 〈Y, Y〉 = 〈X, X〉+ 2〈AX, AY〉+ 〈Y, Y〉,

which implies that 〈AX, AY〉 = 〈X, Y〉.

(ii)⇒(iii): Write AT A = (aij). Then 〈Aei, Aej〉 = eT
i AT Aej = aij. On the other hand,

〈Aei, Aej〉 = 〈ei, ej〉, so

aij = 〈ei, ej〉 =
{

1, i = j
0, i 6= j

Therefore, AT A = I.

(iii)⇒(i): Suppose AT A = I. Then for any X ∈ Rn,

‖AX‖2 = 〈AX, AX〉 = (AX)T(AX) = XT AT AX = XTX = 〈X, X〉 = ‖X‖2.

Thus, ‖AX‖ = ‖X‖.

5. Let V be a Hermitian space (a finite-dimensional complex vector space carrying a posi-
tive definite Hermitian form). Let T : V → V be a linear operator with adjoint T∗. Prove
that ker T = (im T∗)⊥.

Solution: Let x ∈ ker T so that Tx = 0 which implies that 〈y, Tx〉 = 0 for all y ∈ V. But
then 〈T∗y, x〉 = 0 for all y ∈ V. Thus, x ∈ (ImT∗)⊥. But then ker T ⊂ (ImT∗)⊥.
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If y ∈ (ImT∗)⊥, then 〈T∗x, y〉 = 0 for all x ∈ V. Take x = Ty, then 〈T∗Ty, y〉 = 0, which
implies that 〈Ty, Ty〉 = 0. Since the Hermitian form is positive-definite, this implies that
Ty = 0. Thus, y ∈ ker T and ker T = (ImT∗)⊥.

6. Let R be a nonzero commutative ring with identity and let F be a finitely generated
R-module.

(a) Give the definition of when F is a free R-module

(b) Suppose that every nonzero ideal I of R is a finitely generated free R-module. Prove
that R is a PID.

Solution:

(a) F is a free R-module if there exists a subset B ⊂ F such that every element of F can be
written uniquely in the form r1x2 + · · ·+ rnxn for some ri ∈ R and xi ∈ B.

(b) There are two things to show: R is an integral domain and every ideal of R is principal.
Let I be a nonzero ideal of R. By hypothesis, I has a basis B. We claim |B| = 1. Suppose
|B| > 1 and let x, y ∈ B be distinct (taking note that x, y are certainly nonzero). Then
0 = 0x + 0y = (−y)x + (x)y are two unique ways of writing 0, which is certainly in
every ideal generated by any basis B, contradicting the fact that B generates a free
R-module. But then |B| = 1. Then every ideal is principal.

Suppose that 0 6= a is a zero divisor in R, i.e. there is a nonzero b ∈ R such that ba = 0.
We claim a cannot be contained in a basis for an ideal I of R. Since 0 ∈ I for any ideal I
and I is free, if a were a basis element then 0 = 0a = ba can be written in two different
ways, contradicting the fact that I is free. Now let I = 〈a〉. Since a 6= 0, I is nonzero. By
assumption, I has basis B which by the work above we can write B = {x} for some x.
We know that a 6= x. Now 〈x〉 = I so that 〈x〉 = 〈a〉. But then x = ra for some r ∈ R.
But xb = (ra)b = r(ab) = 0, implying that x ∈ B is a zero divisor, a contradiction. But
then no element of R can be a zero divisor. Therefore, R is an integral domain.

7. Denote by C[x] the ring of polynomials in the variable x with coefficients in the field of
complex numbers C.

(a) Describe the maximal ideals of C[x].

(b) Describe the simple C[x]-modules up to isomorphism. First, give the definition of a
simple module.

(c) Let S be an arbitrary simple C[x]-module. What is the dimension as a vector space
over C?
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(d) Let S be an arbitrary simple R[x]-module. What is the dimension of S as a vector space
over R?

(a) Since C[x] is a PID, every ideal is principal. If p(x), q(x) ∈ C[x] and 〈p(x)〉 ⊂ 〈q(x)〉,
then q(x) divides p(x) (since p(x) ∈ 〈q(x)〉). Note that 〈p(x)〉 = C[x] if and only if
p(x) is a unit if and only if p(x) is a nonzero constant polynomial. Therefore, the
maximal ideals are precisely the ideals of the form 〈p(x)〉, where p(x) is an irreducible
polynomial. Since C is algebraically closed, every polynomial in C[x] splits completely.
Therefore, the only maximal ideals of C[x] are 〈p(x)〉, where p(x) has degree 1.

(b) An R-module M is simple if it contains no proper, nontrivial submodules. Note that
if M is a simple C[x]-module, then for any nonzero m ∈ M, the module C[x]m is a
nontrivial submodule of M, so it must equal M. Furthermore, the function φ : C[x]→
C[x]m given by p(x) 7→ p(x)m is a surjective C[x]-module homomorphism. By the
First Isomorphism Theorem, C[x]/ ker φ ∼= C[x]m. Since C[x]m is a simple module,
it contains no proper, nontrivial submodules. By the Correspondence Theorem, the
only submodules of C[x] containing ker φ are ker φ and C[x]. In other words, ker φ is a
maximal submodule of C[x]. But then ker φ is a maximal ideal in C[x].

By part (a), ker φ = 〈p(x)〉, where the degree of p(x) is 1. But M ∼= C[x]/〈p(x)〉, where
the degree of p(x) is 1. Let α be the unique root of p(x). We claim that C[x]/〈p(x)〉
is isomorphic to C, where scalar multiplication is defined by f (x) · a = f (α)a for all
f (x) ∈ C[x]. There is a homomorphism φ : C[x] → C given by f (x) 7→ f (α). This is
a surjective homomorphism with kernel 〈p(x)〉. By the First Isomorphism Theorem,
C[x]/〈p(x)〉 ∼= C.

(c) By part (b), S is isomorphic to C as a module over C[x]. The restriction of scalar
multiplication to C is just the usual multiplication of complex numbers. Therefore, the
dimension of S as a C vector space is 1.

(d) Let S be a simple R[x]-module. Then the same argument as above shows that S ∼=
R[x]/〈p(x)〉, where p(x) is an irreducible polynomial in R[x]. If p(x) has degree
1, then again the same arguments used above implies that S is a one-dimensional
R-vector space. If p(x) has degree 2, then as a set

R[x]/〈p(x)〉 = {a + bx + 〈p(x)〉 : a, b ∈ R}.

It is easy to see that this has dimension two as a vector space over R (for example, a
possible basis is {1 + 〈p(x)〉, x + 〈p(x)〉}). Any polynomial of degree at least 3 over
R is reducible (every polynomial in R[x] can be written as the product linear and
quadratic polynomials). Therefore, S either has dimension one or two as a vector space
over R.
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8. A square matrix M with complex entries has characteristic polynomial

c(x) = (x2 + 3)(x2 − 4x + 5)(x + 1)4

Denote by m(x) the minimal polynomial of M.

(a) Is it possible that m(x) = (x2 + 3)(x− 2− i)(x + 1)2?

(b) Suppose m(x) = (x2 + 3)(x2− 4x + 5)(x + 1)2. List all possible Jordan canonical forms
for M.

Solution:

(a) Observe x2 − 4x + 5 = (x− (2 + i))(x− (2− i)). Recall every divisor of c(x) is also
a divisor of m(x). For this choice of m(x), (x− (2− i)) is a divisor of c(x) but not a
divisor of m(x). Therefore, the given m(x) is impossible.

(b) For the given m(x), there are two possibilities for the invariant factors

(x + 1), (x + 1), (x + 3i)(x− 3i)(x− (2 + i))(x− (2− i))(x + 1)2

(x + 1)2, (x + 3i)(x− 3i)(x− (2 + i))(x− (2− i))(x + 1)2

In the first case, the elementary divisors are x + 1, x + 1, (x + 1)2, x + 3i, x + 3i, x− 3i,
x− (2 + i), and (x− (2− i)). Then the Jordan canonical form is

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −3i 0 0 0
0 0 0 0 0 3i 0 0
0 0 0 0 0 0 2 + i 0
0 0 0 0 0 0 0 2− i


In the second case, the elementary divisors are (x + 1)2, (x + 1)2, x + 3i, x− 3i, x−
(2 + i), and x− (2− i). Then the Jordan canonical form is

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −3i 0 0 0
0 0 0 0 0 3i 0 0
0 0 0 0 0 0 2 + i 0
0 0 0 0 0 0 0 2− i


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9. Let F ⊂ E be a field extension.

(a) Give the definition of when the extension is finite.

(b) Give the definition of when the extension is algebraic.

(c) Give an example of an algebraic extension that is not finite and prove that it is not finite.

Solution:

(a) A field extension E/F is finite if E, viewed as an F-vector space, is finite dimensional,
i.e. [E : F] is finite.

(b) An element a ∈ E is algebraic over F if a is the root of a polynomial in F[x]. The
extension E/F is algebraic over F is every element of E is algebraic over F.

(c) Let F = Q, E = Q, the algebraic closure of Q, where we view E as a subfield of
C. The field E is algebraic over F by definition. It remains to show that E is not a
finite extension. Note that the polynomial p(x) = xn − 2 is irreducible over Q by the
Eisenstein criterion with p = 2. The polynomial p(x) is thus the minimal polynomial
of n
√

2 over Q. Since n
√

2 ∈ Q for all n, it follows that

[Q : Q] = [Q : Q(
n
√

2)] [Q(
n
√

2) : Q] = [Q : Q(
n
√

2)]n ≥ n

for all n ∈N. But then [Q : Q] = ∞.

10. Consider the field extension Q ⊂ Q(
√

3, 3
√

2).

(a) Compute the degree of the extension.

(b) Compute the group of automorphisms of the extension.

(c) Is this a Galois extension?

Solution:

(a) We claim Q(
√

3, 4
√

2)/Q is a degree 6 extension since [Q( 3
√

2) : Q] = 3 and [Q(
√

3) : Q] =
2.8 By the Eisenstein criterion with p = 2, p(x) = x3 − 2 is irreducible over Q. Ob-
viously, p( 3

√
2) = 0. Therefore, p(x) is the minimal polynomial of 3

√
2 over Q. This

implies that [Q( 3
√

2) : Q] = 3. Mutatis mutandis, [Q(
√

3) : Q] = 3.

8This holds more generally, if K1/F is an extension of degree n and K2/F is an extension of degree m, with
(n, m) = 1, then K1K2/F is an extension of degree nm, where K1K2 is the compositum of K1, K2.
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We claim that q(x) = x2− 3 is irreducible over Q( 3
√

2). If not, then q(x) splits in Q( 3
√

2),
which implies that

√
3 ∈ Q( 3

√
2). This implies that Q(

√
3) ⊂ Q( 3

√
2). Therefore,

3 = [Q(
3
√

2) : Q] = [Q(
3
√

2) : Q(
√

3)] [Q(
√

3) : Q] = 2[Q(
3
√

2) : Q(
√

3)]

which is impossible since the right side is even. Then q(x) is the minimal polynomial
for
√

3 over Q( 3
√

2). Therefore, [Q(
√

3, 3
√

2) : Q( 3
√

2)] = 2. But then

[Q(
√

3, 3
√

2) : Q] = [Q(
√

3, 3
√

2) : Q(
√

3)] [Q(
√

3) : Q] = 2 · 3 = 6.

(b) Note that Q(
√

3, 3
√

2) ⊂ R. Viewed a function on R, p(x) is increasing (p′(x) = 3x2 ≥
0). Therefore, p(x) has a unique real root, namely 3

√
2. [Alternatively, by Descartes Rule

of Signs, p(x) can have at most one real root — one positive root and no negative root —
and since p( 3

√
2) = 0, 3

√
2 is the unique real root of p(x).] For any σ ∈ Aut(Q(

√
3, 3
√

2)),
the function σ is completely determined by σ(1), σ(

√
3), and σ( 3

√
2). Since σ is a

nonzero homomorphism, σ(1) = 1. Note that σ(
√

3)2 = σ(3) = 3 so there are two
choices for σ(

√
3). Finally, observe that σ( 3

√
2)3 = σ(2) = 2 so that σ( 3

√
2) = 3

√
2.

This implies there are only two automorphisms: the identity map and σ given by
σ(1) = 1, σ(

√
3) = −

√
3, and σ( 3

√
2) = 3

√
2 and extending by linearity. Therefore,

Aut(Q(
√

3, 3
√

2)) = {1, σ} ∼= Z/2Z.

(c) This is not a Galois extension since |Aut(Q(
√

3, 3
√

2)/Q)| = 2 6= 6 = [Q(
√

3, 3
√

2) : Q].
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January 2014

1. Let A be a finite multiplicative abelian group. Let a, b ∈ A and suppose m is the order of
a and n is the order of b. Prove the following:

(a) If 1 is the greatest common divisor of m and n, then mn is the order of ab.

(b) There exists an element c ∈ A whose order is the least common multiple of m and n.

(c) Suppose a is an element of maximal order in A. Then the order of every element of A
is a divisor of m.

Solution:

(a) If a = 1, then |ab| = |1b| = |b| = 1 · n, so the claim holds when a = 1. By symmetry,
this also holds when b = 1. Suppose a, b 6= 1. This implies that m, n > 1. Since A is an
abelian group, it follows that (xy)k = xkyk for any x, y ∈ A and k ∈ Z. But then

(ab)mn = amnbmn = (am)n(bn)m = 1n1m = 1.

Now suppose |ab| = k < mn. Then k divides mn, say mn = kl. Note that (ab)k =
akbk = 1 so that ak = b−k. But then |ak| = |b−k| = |bk|. Now (ak)l = akl = amn = 1 =
akm = (ak)m so that |ak| divides both l and m. Similarly, |bk| = |b−k| = |ak| divides
both l and n so that |ak| = |bk| divides both m and n. This implies |ak| = |bk| = 1
so ak = bk = 1. Since |a| = m, m divides k. But |b| = n implies n divides k. Hence,
mn = lcm(m, n) divides k, a contradiction. Therefore, |ab| = mn.

(b) Note that the least common multiple of m and n is mn
(m,n) , where (m, n) is the gcd of m

and n. We claim the order of b(m,n) is n
(m,n) . Observe

(
b(m,n)

) n
(m,n)

= b
n(m,n)
(m,n) = bn = 1.

If k < n
(m,n) , then (m, n)k < n which implies (b(m,n))k 6= 1, which proves the claim. Now

observe n
(m,n) and m are relatively prime. By part (a), ab(m,n) has order m n

(m,n) =
mn

(m,n) ,
which is the least common multiple of m and n.

(c) Suppose b ∈ A has order n and does not divide m. Then lcm(m, n) > m and by part
(b), there exist c ∈ A such that the order of c is lcm(m, n), contradicting the maximality
of m. Therefore, the order of every element of A is a divisor of m.
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2. Prove that a finite subgroup of the multiplicative group formed by the nonzero elements
of a field is cyclic.

Solution: Solution: It is clear that F× is a finite abelian group. Let Cr denote the cyclic
group with r elements. By the Fundamental Theorem of Finitely Generated Abelian
Groups,

F× ∼= Cr1 × · · · × Crk

for some k ≥ 1 and r1 | r2 | · · · | rk. We claim that k = 1. Suppose to the contrary that k ≥ 2.
Consider the polynomial p(x) = xr1 − 1. Any element of F× is of the form (a, 1, 1, . . . , 1)
and is clearly a root of p(x). This accounts for r1 distinct roots of p(x). Since r1 | r2 and
Cr2 is abelian, Cr2 contains a subgroup H or order r1. Now every element of the form
(1, a, 1, . . . , 1) with a ∈ H is a root of p(x). This implies that there are at least 2r1 roots of
p(x), but p(x) has degree r1, a contradiction. Therefore, k = 1 and F×Cr1 . Thus, F× is a
cyclic group.

OR

Let q = |F| so that |F×| = q− 1. Let m be the maximal order of the elements of F×. By
Lagrange’s Theorem, m | (q− 1). This implies m ≤ q− 1. We claim m = q− 1 so that we
only need show q− 1 ≤ m. In any finite abelian group, the order of every element divides
the maximal order of all the elements. Then every element x ∈ F× satisfies xm = 1. Then
every element of F× is a root of xm − 1. The number of possible roots of xm − 1 is m so that
q− 1 ≤ m. But then m = q− 1. Therefore, some element of F× has order q− 1. Hence, F×

is cyclic.

OR

We first prove that if G is a finite group with n elements such that for every divisor d of
n, the number of elements dividing d is at most d, then G is cyclic.

Suppose d | n and let Gd be the set of elements of G with order d. If Gd 6= ∅, there
is a y ∈ Gd. We have 〈y〉 ⊆ {x ∈ G : xd = 1}. But 〈y〉 has cardinality d. But then
〈y〉 = {x ∈ G : xd = 1}. Then Gd is the set of generators of 〈y〉 of order d. Therefore,
#Gd = φ(d).

We have shown Gd is either empty or possesses cardinality φ(d) for each d | n. Then

n = #G = ∑
d|n

#Gd ≤∑
d|n

φ(d) = n

Therefore, #Gd = φ(d) for each d | n. In particular, Gn 6= ∅. But then G is cyclic.
Now in our case we have G = F×, a finite group. If |F×| = n and d | n then xd = 1 if

and only if xd − 1 = 0 as in the ring. This polynomial can have at most d roots. But then
the claim above applies so that F× is then a cyclic group.
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OR

Suppose that |F×| = n and d | n. Let ψ(d) denote the number of elements of order
d in F×. Suppose there exists an element x ∈ F× of order d. Consider 〈x〉. Then every
element of 〈x〉 satisfies yd = 1. But the number of solutions of xd = 1 is at most d (since x
is a solution if and only if xd − 1 = 0). Then 〈x〉 = 〈x ∈ F× : xd = 1}. But then ψ(d) = 0 or
φ(d). But

∑
d|n

ψ(d) = n = ∑
d|n

φ(d)

so that ψ(d) = φ(d) for all d | n. In particular, ψ(n) = φ(d), meaning there exists an
element of order n in F×.

OR

Let G := F×. By the Fundamental Theorem of Finitely Generated Abelian Groups, we
have

G ∼= Z/pn1
1 Z× · · · ×Z/pnr

r Z

where the pi are primes, not necessarily distinct, and nr ≥ 1. Each Z/pni
i Z is a cyclic group

of order pni
i . Let m = lcm{pn1

1 , . . . , pnr
r }. We know m ≤ pn1

1 · · · p
nr
r . If ai ∈ Z/pni

i Z, then

ap
ni
i

i = 1, hence am
i = 1. But then for all α ∈ G, αm = 1, i.e. every element of G is a root

of xm = 1. But G contains pn1
1 · · · p

nr
r elements while the polynomial xm − 1 has at most

m roots in F. Then m = pn1
1 · · · p

nr
r . As the pi are distinct, the group G is isomorphic to

Z/mZ.

OR

Let G := F× and n = max{|y| : y ∈ G}. Let |G| = N. Choose a ∈ G so that |a| = n.
If we can show that n = N, then |a| = |G| which implies G = 〈a〉 and G is then cyclic.
Now a ∈ G so that |a| = n | N and n ≤ N. We need show n ≥ N. In any abelian
group with elements of finite order r, s, the group contains an element of order lcm(r, s).
Then G contains an element of order lcm(|a|, |g|) so lcm(n, |g|) ≤ n. But then |g| | n and
then gn = 1 for every g ∈ G. Then x − g is a factor of the polynomial xn − 1 for every
g ∈ G. Therefore, ∏g∈G(x − g) divides xn − 1. However, ∏g∈G(x − g) has degree N so
that N ≤ n.

3. For a positive integer n, denote by Zn, the ring of residue classes module n and by Z×n
the multiplicative group of units of Zn.

(a) Prove that the group of automorphisms of a cyclic group of order n is isomorphic to
Z×n .
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(b) Determine (up to isomorphism as in the Fundamental Theorem of Finitely Generated
Abelian Groups) the groups of automorphisms of the following groups

(i) A cyclic group of order 6.

(ii) A cyclic group of order 12.

(iii) A cyclic group of order 29.

Solution:

(a) Note that any cyclic group of order n is isomorphic to Z/nZ, viewed as an abelian
group. Therefore, it suffices to consider automorphisms of Z/nZ. Any homomorphism
φ : Z/nZ → Z/nZ is completely determined by φ(1 + nZ) since φ(k + nZ) =
kφ(1 + nZ). Therefore for any k ∈ {0, 1, . . . , n − 1}, define a homomorphism φk :
Z/nZ→ Z/nZ by a + nZ 7→ a(k + nZ) = ka + nZ.

We need show that φk is well defined: if a + nZ = b + nZ, then a− b ∈ nZ which
implies k(a− b) = ka− kb ∈ nZ and thus ka + nZ = kb + nZ. Therefore, φk is well
defined for k ∈ {0, . . . , n − 1}. It is clear that φk is a group homomorphism. Since
Z/nZ is finite, φk is an automorphism if and only if φk is injective (recall a map
between finite sets is injective if and only if it is surjective). We claim φk is injective
if and only if k + nZ is a unit in Z/nZ. If φk is injective, it is surjective (hence an
automorphism). Then there exists a + nZ ∈ Z/nZ such that φ(a + nZ) = 1 + nZ.
Now φ(a + nZ) = ka + nZ = (k + nZ)(a + nZ) so that (k + nZ)(a + nZ) = 1 + nZ.
Therefore, k + nZ is a unit in Z/nZ. Now if k + nZ is a unit, to show φk is an
automorphism, it suffices to show that φk is injective. Suppose φk(a + nZ) = 0 then
(k + nZ)(a + nZ) = ka + nZ = 0 + nZ. Therefore, a + nZ = nZ since a unit is never
a zero divisor. But then ker φk = {0 + nZ} so that φk is injective.

Let Aut(Z/nZ) denote the group of automorphisms of Z/nZ and define ψ : (Z/nZ)× →
Aut(Z/nZ) by k + nZ 7→ φk. By the work above, ψ is a well defined surjective func-
tion. We need show that ψ is an injective homomorphism. To show it is a map, let
a + nZ, b + nZ ∈ (Z/nZ)×. Then

ψ((a + nZ)(b + nZ)) = ψ(ab + nZ) = φab = φa ◦ φb = ψ(a + nZ) ◦ ψ(b + nZ),

since φab(k + nZ) = abk + nZ = a(bk) + nZ = (φa ◦ φb)(k + nZ) for all k + nZ ∈
Z/nZ. Now if ψ(a + nZ) = 1 + nZ, then ak + nZ = k + nZ for all k + nZ ∈ Z/nZ.
In particular, this is true for k = 1, which implies that a + nZ = 1 + nZ. Therefore,
ker ψ = {1 + nZ}. Therefore, ψ is injective and is then an isomorphism of groups.

(b) (i) By part (a), the group of automorphisms of a cyclic group of order 6 is isomorphic
to (Z/6Z)× = {1 + 6Z, 5 + 6Z}. This is a group of order 2, so it is isomorphic to
Z/2Z.
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(ii) By part (a), the group of automorphisms of a cyclic group of order 12 is isomorphic
to (Z/12Z)× = {1+ 12Z, 5+ 12Z, 7+ 12Z, 11+ 12Z}. This is the Klein 4-group,
i.e. Z/2Z×Z/2Z.

(iii) By part (a), the group of automorphisms of a cyclic group of order 29 is isomorphic
to (Z/29Z)×. Because 29 is prime, the unit group of Z/29Z is all nonzero
elements of Z/29Z, which is a group of order 28. Therefore, (Z/29Z)× ∼=
Z/28Z.

4. Let p be the smallest prime divisor of the order of a finite group G. If H is a subgroup of
G of index p, prove that H is a normal subgroup.

Solution: Define an action of G on the set of left cosets of H in G by g · aH = gaH for all
g, a ∈ G. Since [G : H] = p, there are p left cosets of H in G so that the above action of G
induces a group homomorphism φ : G → Sp. We claim H is the kernel of φ. Note that
φ(g) = σg, where σg(aH) = gaH. If σg = 1, then σg(1H) = gH = H, which implies g ∈ H.
Therefore, ker φ ⊂ H.

Then using the First Isomorphism Theorem, p = [G : H] = |G|
|H| ≤

|G|
| ker φ| = | im φ|. In

particular, |G|
| ker φ| divides |Sp| = p!. Factoring |G|

| ker φ| into prime numbers, it follows that
|G|
| ker φ| = p1 · · · pl , where pi ≤ p. However, each pi divides |G| and each pi ≤ p. This

implies i = 1 and p1 = p. Therefore, |G|
| ker φ| = p, as claimed.

Now since G is finite and [G : H] = [G : ker φ], it follows that |H| = | ker φ|. Because
ker φ ⊂ H and H is finite, it must be that H = ker φ. Thus, H is the kernel of a group
homomorphism, implying that H is a normal subgroup of G.

5. Denote by Rn the n-dimensional Euclidean space with the usual dot product. Prove that
if the columns of an n× n real matrix A form an orthonormal basis for Rn, then the rows
do too.

Solution: Notice that the columns of A are linearly independent since they are orthogonal.
Thus, A is invertible. Let xi denote the ith column of A. Since {xi : i = 1, . . . , n} is an
orthogonal basis for Rn,

〈xi, xj〉 = xT
i xj =

{
1, i = j
0, i 6= j

Therefore, this is equivalent to the assertion that AT A = I. Multiplying both sides of this
equality on the right side by A−1, it follows that A−1 = AT. Therefore, AAT = I. Denoting
the columns of AT by yi, the (i, j) entry of I is the dot product, 〈yi, yj〉 = yT

i yj. Therefore,

173



the columns of AT are orthogonal, implying that the rows of A are orthogonal. Since
there are n orthogonal rows of A and the dimension of Rn is n, the rows of A form an
orthonormal basis for Rn.

6. Find an ideal I ⊂ R[x, y] such that

R[x, y]
I
∼=

C[z]
(z2)

Write down the isomorphism explicitly and prove it is an isomorphism.

Solution: Let I = (x2, y2 + 1).9 Note throughout the proof for simplicity, we will ignore
‘bars’, e.g. we say 1 ∈ R[x, y]/I instead of 1. In the quotient, R[x, y]/I, y2 + 1 = 0 so that
y2 = −1 (neglecting this is in the quotient). This also implies the largest power of y with a
nonzero coefficient in the quotient R[x, y]/I is 1. Define

φ : R[x, y]/I → C[z]/(z2)

by φ(p(x, y) + I) = p(z, i) + (z2). We claim that φ is a ring isomorphism. We need check
that φ is a ring homomorphism: for p, q ∈ R[x],

φ
(
(p(x, y) + I) + (q(x, y) + I)

)
= φ

(
(p(x, y) + q(x, y)) + I

)
= (p(z, i) + q(z, i)) + (z2)

= (p(z, i) + (z2)) + (q(z, i) + (z2))

= φ(p(x, y) + I) + φ(q(x, y) + I)

and
φ
(
(p(x, y) + I)(q(x, y) + I)

)
= φ(p(x, y)q(x, y) + I).

Now write p(x, y) = a0 + a1x + a2y + a3xy and q(x, y) = b0 + b1x + b2y + b3xy, where
ai, bi ∈ R (noting in the quotient any higher powers of x, y disappear so we need only
consider terms of at most degree 2). Then

p(x, y)q(x, y) = a0b0 + (a0b1 + a1b0)x+(a0b2 + a2b0)y + a1b1x2 + a2b2y2

+(a0b3 + a1b2 + a2b1 + a3b0)xy + (a1b3 + a3b1)x2y+(a2b3 + a3b2)xy2 + a3b3x2y2

Therefore, noting y2 = −1 and the only power of x which survives in the quotient is x,

p(x, y)q(x, y) + I = (a0b0 − a2b2)+(a0b1 + a1b0 − a2b3 + a3b2)x
+(a0b2 + a2b0)y+(a0b3 + a1b2 + a2b1 + a3b0)xy + I.

9The idea is that R[y]/(y2 + 1) ∼= C so R[x, y]/(y2 + 1) ∼= C[x] and then we simply map tread x as z.
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But then

φ(p(x, y)q(x, y) + I) = (a0b0 + a2b2) + i(a0b2 + a2b0)+

z
[
(a0b1 + a1b0 − a2b3 − a3b2) + i(a0b3 + a1b2 + a2b1 + a3b0)

]
+ (z2).

Now observe that

φ(p(x, y) + I)φ(q(x, y) + I) = (a0 + a1z + a2i + a3iz)(b0 + b1z + b2i + b3iz)
= (a0b0 − 2ab2) + i(a0b2 + a2b0)+

z
[
a0b1 + b0a1 − a2b3 − a3b2 + i(a2b1 + b3a0 + a3b0 + a1b2)

]
+ (z2).

It remains to show that φ is bijective. Suppose p(x, y) + I ∈ ker φ (written as above).
Then p(z, i) + (z2) = (z2), i.e. z2 divides p(z, i). But then either x2 divides p(x, y), i.e.
p(z, i) 6= 0, or y2 + 1 divides p(x, y), i.e. p(z, i) = 0. In either case, p(x, y) ∈ (x2, y2 + 1),
which implies that ker φ = {0+ (x2, y2 + 1)}. To show that φ is surjective, let p(z) + (z2) ∈
C[z]/(z2). Write p(z) = w0 + w1z for some w0, w1 ∈ C. Write w0 = a0 + ib0, w1 = a1 + ib1
for a0, b0, a1, b1 ∈ R. Define q(x, y) = a0 + b0y + a1x + b1xy. Then

φ(q(x, y) + I) = q(z, i) + (z2) = a0 + b0i + a1z + b1iz + (z2) = w0 + w1z + (z2).

Therefore, φ is surjective. But then φ is an isomorphism of rings.

7. Recall that an abelian group is a Z-module in a natural way.

(a) Let Q be the group of rational numbers under addition. Prove that Q is not a free
Z-module.

(b) Let Q∗ be the group of nonzero rational numbers under multiplication. Prove that Q∗

is not a free Z-module.

(c) Let Q+ be the group of nonzero positive rational numbers under multiplication. Prove
that Q+ is a free Z-module of infinite rank.

Solution:

(a) Suppose that Q were a free Z-module. Let B be a basis for Q over Z. If |B| > 1, let
x, y ∈ B be distinct. Then x = p1/q1 and y = p2/q2 for some p1, p2, q1, q2 ∈ Z with
q1, q2 > 0. This implies that

(q1 p2)
p1

q1
+ (−q2 p1)

p2

q2
= p1 p2 − p1 p2 = 0 = 0x + 0y.

But then 0 can be written as a linear combination in two distinct ways, contradicting
the fact that B is a basis.

175



If |B| = 1, then B = {p/q} for some p ∈ Z, q ∈N. Since B is a basis for Q, there exists
m ∈ Z such that m · p

q = 1
2q , then mp = 1

2 . But this contradicts the fact that p, m ∈ Z.
Therefore, B is not a basis for Q, proving that Q does not have a basis as a Z-module.
Thus, Q cannot be a free Z-module.

(b) Suppose that Q× were a free Z-module and B were a basis for Q×. Notice that
−1 ∈ Q×, implying that −1 = ak1

1 · · · a
kn
n , where ai ∈ B and ki ∈ Z for all i. Without

loss of generality, assume ki 6= 0. Therefore,

1 = (−1)2 = a2k1
1 · · · a

2kn
n = a0

1.

This implies that the representation of 1 as a linear combination of basis elements is
not unique, contradicting the fact that B is a basis. But then Q× is not a free Z-module.

(c) Let B denote the set of all positive prime integers. We claim that B is a basis for Q+

as a Z-module. Since there are infinitely many primes, B is infinite and proving B
is a basis proves the result. For any rational x > 0, there exist p, q ∈ N such that
x = p/q and (p, q) = 1. Write p = pk1

1 · · · p
kn
n and q = ql1

1 · · · q
lm
m , where the pi and qi

are distinct primes and ki, li ≥ 1 (these factorizations are unique). Since (p, q) = 1, the
factorizations share no common primes. Therefore,

x = pk1
1 · · · p

kn
n q−l1

1 · · · q−lm
m

is a linear combination of basis elements. Since this expression is unique up to reorder-
ing, B is a basis for Q+.

8. Let A be a n× n matrix over the complex numbers and let AT be its transpose.

(a) Prove that A and AT have the same Jordan canonical form.

(b) Explain why (a) implies that A and AT are similar to each other.

Solution:

(a) Let J denote the Jordan canonical form of A. Since the Jordan canonical form of
A is unique, up to reordering of blocks, it suffices to prove that AT is similar to J.
Now since A is similar to J, there exists a matrix P such that PAP−1 = J. Taking
transposes, (P−1)T ATPT = JT. Observe that (P−1)T = (PT)−1 since PP−1 = I implies
(P−1)TPT = IT = I.
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This implies that AT is similar to JT. It remains to show that JT is similar to J. Con-
jugating J by a block diagonal matrix, where the size and order of the blocks are the
same as the size and order of the Jordan blocks of J, with each block of the form

0 0 · · · 1
...

...
. . .

...
0 1 · · · 0
1 0 · · · 0


we see that J and JT are conjugate.

(b) Any matrix is similar to its Jordan canonical form. If J is the Jordan canonical form
of A (choosing an ordering of blocks), then part (a) implies that A and AT are both
similar to J. Since similarity of matrices is an equivalence relation, this implies that A
and AT are similar.

9. Let F ⊂ K be an extension of fields. Assume that we have an infinitely long strictly
increasing sequence of fields F ( F1 ( F2 ( F3 ( · · · with all Fi ⊂ K.

(a) Prove that F ⊂ K is not a finite field extension.

(b) Show by example that F ⊂ K could be an algebraic field extension.

Solution:

(a) We need show [K : F] = ∞. We claim [Fn : F] ≥ 2n for every n ∈ N. For n = 1 and
since F1 6= F, [F1 : F] ≥ 2. Suppose the claim holds for n. Then

[Fn+1 : F] = [Fn+1 : Fn] [Fn : F] ≥ 2 · 2n = 2n+1.

The claim then follows by induction. Now for any n ∈N,

[K : F] = [K : Fn][Fn : F] ≥ [K : Fn]2n ≥ 2n,

which implies that [K : F] = ∞.

(b) Consider F = Q, K = Q (viewed as a subfield of C). Since K is the algebraic closure
of F, K is algebraic over F. Let F1 = Q(

√
2) and Fn = Fn−1(

n
√

2). With this choice of
Fi, F and K satisfy F ( F1 ( F2 ( · · · with Fi ⊂ K, but K is algebraic over F (as noted
above).
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10. Let F ⊂ K and F ⊂ L be two field extensions. Let g : K → L be an isomorphism of
fields such that g( f ) = f for all f ∈ F. Prove that g induces an isomorphism of Galois
groups g̃ : Gal(K/F)→ Gal(L/F).

Solution: For σ ∈ Gal(K/F), define g̃(σ) = gσg−1. We need check that g̃(σ) ∈ Gal(L/F).
It is clear that gσg−1 : L→ L is an isomorphism as it is the composition of isomorphisms.
Furthermore since g( f ) = g−1( f ) = σ( f ) for all f ∈ F, (gσg−1)( f ) = f for all f ∈ F.
Therefore, gσg−1 ∈ Gal(L/F).

Let σ1, σ2 ∈ Gal(K/F). Then

g̃(σ1)g̃(σ2) = gσ1g−1gσ2g−1 = gσ1σ2g−1 = g̃(σ1σ2).

This shows that g̃ is a group homomorphism. Let 1K and 1L denote the identity functions on
K and L, respectively. If σ ∈ ker g̃, then gσg−1 = 1L, which implies that gσ = g. Multiply
both sides on the left by g−1, we obtain σ = 1K. Thus, ker g̃ = {1K}, which implies that g̃
is injective.

Now we need only show g̃ is surjective. Let σ ∈ Gal(L/F). Define σ′ = g−1σg. It is
clear that σ′ ∈ Gal(K/F). Furthermore,

g̃(σ′) = gσ′g−1 = g(g−1σg)g−1 = (gg−1)σ(gg−1) = σ.

Therefore, g̃ is surjective. But then g̃ is an isomorphism of Galois groups.
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August 2014

1. Let K be a field. A square matrix A over K is called unit upper triangular if it has 1s on the
diagonal and 0s below the diagonal; that is, A = [aij], where

aij =

{
1, i = j
0, i > j

The unipotent group Un(K) is the set of all n× n unit upper triangular matrices over K with
the usual matrix multiplication.

(a) Prove that Un(K) is a subgroup of GLn(K).

(b) If K = Fp is a field of order q = pn, where p is a prime number, show that Un(Fp) is a
Sylow p-subgroup of GLn(Fq).

Solution:

(a) It is clear that Un(K) is a subset of GLn(K) as det A = 1 for A ∈ Un(K) as the determi-
nant of a triangular matrix is the product of its diagonal elements. Let A = [aij] and
B = [bij], where A, B ∈ Un(K). Then ABij = ∑n

k=1 aikbkj. But aij, bij = 0 for i > j. Then
it is clear from the matrix product that AB ∈ Un(K). So Un(K) is closed under products.
It is also clear that ABij = 1 from the definition of a matrix product. Therefore, Un(K)
is closed under matrix products. It is tedious to show that if AB = I and A is upper
triangular, then B is upper triangular. But it is nevertheless true. This shows that Un(K)
is closed under inverses. Therefore, Un(K) ≤ GLn(K).

(b)

2. Let G be a finite group with center Z. Let p be a prime number. Prove the following
statements:

(a) If |G| = pe for some e ≥ 1, then Z is nontrivial.

(b) If G is nonabelian and |G| = pem for some e ≥ 1 and some m with p > m, then G is
not a simple group. (You will want to use the previous part.)

Solution:

(a) Let |G| = pn for some n ≥ 0. If n = 0, the result is trivial. If p = 1, then G ∼= Z/pZ,
which is abelian. So suppose p > 1. The Class equation for G is

|G| = |Z(G)|+
r

∑
i=1

[G : CG(ai)]
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where the Z(G) is the center of G, CG(x) is the centralizer of x in G, and the summation
is over a1, . . . , ar representatives for the distinct conjugacy classes of G. Note that each
summand of the class equation is a divisor of |G| and [G : CG(ai)] > 1 since ai /∈ Z(G).
The Class equation for G can be rewritten as

|Z(G)| = |G| −
r

∑
i=1

[G : CG(ai)].

Each term on the right hand side is a divisor of |G| = pn. Furthermore, each term on
the right hand side is strictly larger than 1. Therefore, p divides every term on the right
hand side, which implies that p divides the left hand side. Thus, p divides |Z(G)| so
that |Z(G)| 6= 1.

(b) If m = 1, then G is a p-group so that by (a), G cannot be simple. Assume then that
1 < m < p. In particular, (p, m) = 1. Let np denote the number of Sylow p-subgroups
of G. By Sylow’s Theorem, np ≡ 1 mod p and np | m, i.e. np = 1 + kp for some k
and (1 + kp) | m. As p > m, 1 + kp > m if k > 1, a contradiction. Then k = 0 so that
np = 1. Therefore, the Sylow p-subgroup is unique, hence normal. But then G cannot
be simple.

3. Let T be a self-adjoint (that is Hermitian) linear operator on a finite-dimensional inner
product space V and assume that Tn = idV for some n ≥ 1. Prove that T2 = idV .

Solution: Since T is a Hermitian (or self-adjoint) linear operator on V, we can only inter-
pret V as being a hermitian inner product product space. Then by the Spectral Theorem,
there is an orthonormal basis of V consisting of eigenvectors of T. As V is finite dimen-
sional, there are finitely many such eigenvectors, call these v1, v2, · · · , vn with eigenvalues
λ1, λ2, · · · , λn, respectively. We know also by the Spectral Theorem, λi ∈ R. It suffices
to show that T2 fixes vi for i = 1, 2, · · · , n. By induction, we know Tn(vi) = λn

i vi. But by
assumption, Tn(vi) = vi. Therefore, λn

i vi = vi so that λn
i = 1 implying λi = ±1, depending

on n. However, then T2(vi) = λ2
i vi = vi.

4.

(a) Let V be a finite dimensional real vector space with nondegenerate bilinear form 〈 , 〉.
Let T : V → V be a linear operator. Prove that there exists an adjoint for T; that is, a
linear operator T∗ : T → V such that 〈v, T∗w〉 = 〈Tv, w〉 for all v, w ∈ V. You may
assume that V has an orthonormal basis B.

(b) Let V be the real vector space of all polynomial functions f (t) with inner product
〈 f , g〉 =

∫ 1
0 f (t)g(t) dt. Let D : V → V be the derivative D( f ) = f ′. Prove that there
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does not exist an adjoint D∗ for D. (Hint: consider D∗(1).)

Solution:

(a) Let B = {v1, v2, · · · , vn} be a orthonormal basis for V. Given a linear operator T on
V, there is a unique u ∈ V such that T(v) = 〈u, v〉 for all v ∈ V. To see this, let
u = ∑n

i=1(T(vi))
∗vi. Define Tu on V by Tu(v) = 〈u, v〉. Then

Tu(vi) = 〈u, vj〉 = 〈
n

∑
i=1

(T(vi))
∗vi, vj〉 =

n

∑
i=1

T(vi)〈vj, vi〉 = T(vi)

As T and Tu agree on the basis for V, T(v) = Tu(v) for all v ∈ V. To see uniqueness,
suppose u, u′ are two such vectors in V with the above property. Then Tu(v) = 〈u, v〉
and Tu′(v) = 〈u′, v〉 so that 〈u− u′, v〉 = 0. As v was arbitrary, choose v = u− u′. Then
〈u− u′, u− u′〉 = 0, as this form is positive definite, we know u− u′ = 0 so that u = u′.

Now given T, define Lu by Lu(v) = 〈u, Tv〉. This function is clearly linear so that by
the previous part, we know that there is a unique u′ ∈ V such that Lu(v) = 〈u′, v〉. But
then 〈u, Tv〉 = 〈u′, v〉. Define T∗ : V → V by T ∗ (u) = u′. The mapping is unique as
u′ is unique for any given u. So that if T∗

′
u = u′ = T∗u, then (T∗

′ − T)(u) = 0 so that
T∗
′
= T∗. That is, we define T∗ as 〈T∗u, v〉 = 〈u, Tv〉. Then T∗ has the desired property.

We need only show that T∗ is linear. But for u1, u2, v ∈ V and a, b ∈ C, we have

〈T∗(au1 + bu2), v〉 = 〈au1 + bu2, Tv〉
= a∗〈u1, Tv〉+ b∗〈u, Tv〉
= a∗〈T∗u1, v〉+ b∗〈T∗u2, v〉
= 〈aT∗u1 + bT∗u2, v〉

We can do this quickly by noting {vi} is an orthonormal basis for V so that the elements
of T are given by aij = 〈vu, Tej〉. Define T∗ to have elements bij = aji.

(b) Suppose there were an adjoint D∗ for D. Then on this real vector space, D∗ = D. Then
we also have 〈D f , g〉 = 〈 f , D∗g〉 = 〈 f , Dg〉. Take f (x) = x and g(x) = 1. Then

〈D f , g〉 = 〈x, 1〉 =
∫ 1

0
x dx =

1
2

〈 f , Dg〉 = 〈x, 0〉 =
∫ 1

0
0 dx = 0

a contradiction. Notice here the previous part “fails" as the space is not finite dimen-
sional.
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5. Let R 6= 0 be a commutative ring with identity.

(a) Let I be an nontrivial ideal of R. Prove that I is a free module if and only if it is a
principal ideal generated by a nonzerodivisor.

(b) Prove that if every finitely generated R-module is free, then R is a field.

Solution:

(a) Suppose that I C R be a free R-module. Let {xα}α be a basis for I, not necessarily
countable. Observe that if we choose a, b ∈ {xα}α, where a, b are distinct, we have
ab + (−ab) = 0 is a nontrivial relation, contradicting the fact that {xα}α is a basis.
Then it must be that I = (x) for some x ∈ R. We only need show that x is a non-
zerodivisor. Suppose that x were a zero divisor, then there is a 0 6= y ∈ x such that
xy = 0, contradicting the fact that {x} is a basis for I. Then I = (x) is a principal ideal
generated by a non-zerodivisor.

Now assume that I = (x) is a principal ideal generated by a non-zerodivisor. The
result is then immediate as I = Rx so that {x} serves as a basis for I so that I is free.
To confirm this, observe that if ax = 0 for 0 6= a ∈ R, then x is a zero divisor, contrary
to the assumption.

(b) If R has no nonzero ideals, then R = {0} or R is a field for otherwise if 0 6= x ∈ R had
no inverse, then Rx is a proper (as 1 /∈ Rx) nonzero ideal. Suppose that every proper
ideal I of R were free. Let I be a proper ideal of R. Then R/I is a finitely generated
R-module spanned by 1. If I were not the zero deal, then R/I is not isomorphic to Rn

for any n.

6. Let A be a 3× 3 matrix with entries in Q such that A8 = I. Prove that A4 = I.

Solution: Let pA(x) denote the characteristic polynomial for A. By the Cayley-Hamilton
Theorem, pA(A) = 0. Write qA(x) = x8 − 1. By assumption, qA(A) = 0. Since
Q[x] is a Euclidean domain (Q is a field), we can find a gcd of pA(x), qA(x): dA(x) :=
gcd(pA(x), qA(x)). Since dA(x) = r(x)pA(x) + s(x)qA(x) for some r(x), s(x) ∈ Q[x], we
know

dA(A) = r(A)pA(A) + s(A)qA(A) = r(A) · 0 + s(A) · 0 = 0.

But we know also that

qA(x) = x8− I = (x4− I)(x4 + I) = (x2− I)(x2 + I)(x4 + I) = (x− I)(x+ I)(x2 + I)(x4 + I).
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Now dA(x) is a factor of pA(x) and qA(x) of degree at most 3. Furthermore as Q[x]
is a UFD, we know that dA(x) is relatively prime to x4 + I. But then dA(x) must di-
vide (x − I)(x + I)(x2 + I) = (x2 − I)(x2 + I) = x4 − I. As dA(A) = 0, we must have
A4 − I = 0, i.e. A4 = I.

7. Let α = 3
√

2 and β = 4
√

2. Let E = Q(α, β). Prove that [E : Q] = 12.

Solution: Now that pα(x) := x3 − 2 is irreducible over Q (it is Eisenstein with p = 2) and
pα(α) = 0. Furthermore, pβ(x) := x4 − 2 is irreducible over Q (it is Eisenstein with p = 2)
and pβ(β) = 0. Therefore, pα(x), pβ(x) are the minimal polynomials for α, β, respectively.
So [Q(α) : Q] = 3 and [Q(β) : Q] = 4. Generally, if K1, K2 are finite extensions of a field F,
say of degree n, m, respectively, then [K1K2 : F] ≤ [K1 : F][K2 : F]. Suppose (n, m) = 1. Now
[K1K2 : F] is divisible by both [K1 : F] and [K2 : F] as K1, K2 ⊆ K1K2. However, (n, m) = 1
so that [K1K2 : F] is divisible by nm. Therefore, [K1K2 : F] = nm.

Let K1 := Q(α) and K2 := Q(β). Note that [K1 : Q] = 3 and [K2 : Q] = 4 and (3, 4) = 1.
By the work above, [K1K2 : Q] = 34̇ = 12. It only remains to show that K1K2 = E.
But this follows by abstract nonsense: K1K2 is the smallest field containing K1 = Q(α)
(the smallest field containing Q and α) and K1 = Q(β) (the smallest field containing
Q and β) while E = Q(α, β) is the smallest field containing Q, α, and β. Therefore,
Q(α, β) = E = K1K2.

8. Let F be a field and let f ∈ F[x] be an irreducible polynomial of degree n. Let E be a
splitting field of f . Prove that [E : F] ≤ n!10

Solution: If f (x) has degree 1, then f is irreducible. If f (α) = 0 then α ∈ F. But then
the splitting field of f is F and [F : F] = 1 ≤ 0! = 1. Assume the result holds for n = k.
Let f ∈ F[x] be an irreducible polynomial of degree k + 1. Let α be a root of f . Since f
is irreducible, f is the minimal polynomial for α. In particular, [F(α) : F] = k + 1. Now
F(α) contains a root of f , namely α, so that F(α) ⊆ E. Furthermore, f factors in F(α)[x]
as f = (x− α)g(x) for some polynomial g(x) of degree k. By considering F′ = F(α), the
inductive hypothesis says [E : F(α)] ≤ k!. But then

[E : F] = [E : F(α)][F(α) : F] ≤ k! · (k + 1) = (k + 1)!.

Therefore, the result holds by induction.

10This holds, in some sense, more generally: if f (x) ∈ F[x] is a polynomial of degree n, adjoining a root of
f (x) to F generates an extension F1 of F of degree at most n (equal to n if and only if f (x) were irreducible).
Over F1, the polynomial has at least one linear factor so that any other root of f (x) satisfies a polynomial of
at most degree n− 1 over the field F1. Adjoining such a root to F1 forms an extension F2 of at most degree
n− 1. This process can continue at most n times (since deg f = n) and each time produces an extension of at
most degree i at the ith stage. Note F ⊆ F1 ⊆ · · · ⊆ Fn. Since [Fn : F] = [Fn : Fn−1][Fn−1 : Fn−2] · · · [F1 : F] ≤
n · (n− 1) · · · · · 1 = n!.
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9.

(a) Let R be a commutative ring with identity. Assume that Z is a subring of R. You
have seen that this makes R into a Z-module. Assume that R is a finitely generated
Z-module. Prove that R is not a field.

(b) Find a field F such that the additive group (F,+) is a finitely generated Z-module.
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January 2015

1. Show that a group of order 24 cannot be simple. [Hint: If | Syl3(G)| = 4, then there is a
group homomorphism from G to S4.]

Solution: We know that 24 = 24 · 3. Let np denote the number of Sylow p-subgroups. It is
clear by Sylow’s Theorem and the fact that G has order 24 that n2 � 4 and n3 � 9. Then
n2 ∈ {1, 3} and n3 ∈ {1, 4}. If either n2, n3 are 1 then the Sylow p-subgroup is unique,
hence normal. Assume that neither are unit. Then as n2 = 3, the action of G by conjugation
on its Sylow 2-subgroups determines a map ϕ : G → S3. The image of G under ϕ in S3 acts
transitively on these subgroups. Therefore, im ϕ 6= 0. By the First Isomorphism Theorem,
im ϕ ∼= G/ ker ϕ. So we know that ker ϕ 6= G. If ker ϕ = {1}, then im ϕ ∼= G. But then
24 = |G| = | im ϕ| ≤ |S3| = 6, impossible. Then ker ϕ is a nonempty proper subgroup of
G. But ker ϕ C G. Therefore, G is not simple.

2. Let G be a group. For an element w ∈ G, let [w] denote its conjugacy class in G and let
CG(x) denote its centralizer in G.

(a) If G is a finite group and x ∈ G, show that | [x] | = [G : CG(x)].

(b) If N C G with [G : N] = 2 and y ∈ N, show that [y] is either a conjugacy class of N or
the union of 2 conjugacy classes in N.

Solution:

(a) We create a bijection between [x] and left cosets of CG(x). If y ∈ [x], then y = axa−1 for
some a ∈ G. Define a map ϕ from [x] to the set of left cosets of CG(x) be y = axa−1 7→
aCG(x). We need show that this map is well defined. Suppose y = axa−1 = bxb−1.
Then b−1ax = xb−1a so that b−1a commutes with x. But then b−1a ∈ CG(x). But then
b−1aCG(x) = CG(x) so that aCG(x) = bCG(x). Therefore, ϕ is well defined.

It is immediate that this map is onto so it only remains to show that it is injective.
Suppose ϕ(a) = ϕ(b). Then aCG(x) = bCG(x). But then ak = b for some k ∈ CG(x).
But then k = a−1b ∈ CG(x). Therefore, a−1b commutes with x so a−1bx = xa−1b. But
then this shows that axa−1 = bxb−1.

(b)

3. Let G be a finite group and P be a Sylow p-subgroup. Let H = NG(P) = {g ∈
G | g−1Pg ⊆ P} be the normalizer of P in G. Prove that for any g ∈ G, g−1Hg = H if and
only if g ∈ H.

Solution: We prove that NG(NG(P)) = NG(P): we have P ≤ NG(P) ≤ NG(NG(P)). Now
P is a Sylow p-subgroup of NG(P) and NG(NG(P)). If g ∈ NG(NG(P)), then gPg−1 ≤
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gPg−1 = NG(P). Since all Sylow p-subgroups are conjugate, there exists h ∈ NG(P) such
that gPg−1 = hPh−1. Since h ∈ NG(P), it must be that hPh−1 = P so that gPg−1 = P.
Therefore, g ∈ NG(P) showing that NG(NG(P)) = NG(P). The result then follows from
the fact that:

g−1Hg = H ⇐⇒ H = gHg−1 ⇐⇒ g ∈ NG(H) = NG(NG(P)) = NG(P) = H

4. Let V and W be vector spaces and let f : V → W and g : W → V be linear transforma-
tions with f ◦ g = 1W . Prove that V decomposes as the direct sum of subspaces

V = im g⊕ ker f

where im(g) is the image of g and ker( f ) is the kernel of f .

Solution: Let x ∈ V and consider the element x− g f (x). Observe that

f (x− g f (x)) = f (x)− ( f g f )(x) = f (x)− ( f g) f (x) = f (x)− f (x) = 0

so that x− g f (x) ∈ ker f . That is, there is a k ∈ ker f such that k = x− g f (x). But then
x = g f (x) + k. Then every element of V is the sum of some element in the image of g,
namely g f (x), and an element k ∈ ker f . We need now only show that the sum is direct.
Let t ∈ im g ∩ ker f . As t ∈ im g so that there is a w ∈W such that t = g(w). As t ∈ ker f ,
we know that f (t) = 0. But then 0 = f (t) = f g(w) = 1(w) = w. But then t = g(w) = 0.
Therefore, the sum is direct.

5.

(a) Prove that in a UFD (unique factorization domain), any ascending chain of principal
ideals must stabilize.

(b) Give an example of a UFD that is not noetherian.

Solution:

(a) Suppose
(a1) ( (a2) ( (a3) ( · · ·

is a chain of principal ideals in a UFD. As ai is in a UFD, it has a unique prime
factorization. We know that a1 ∈ (a2). It is then clear that a2 | a1. Similarly, we know
that ai ∈ (ai+1) so that ai+1 | ai. So the prime factors of ai+1 appear in the prime
factorization of ai. But then the prime factors of ai appear in a1 for all i.
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Suppose that a1 = pr1
1 pr2

2 · · · p
rn
n is the prime factorization for a1, where the pi are prime.

As the containment of each ideal is proper, ai+1 must have one less prime (counting
multiplicity) than ai. But as a1 has finitely many primes (counting multiplicity) –
namely, N = ∑n

i=1 ri – it must be that the chain stabilizes in at most N + 1 steps.

(b) The UFD ∏∞
i=1 Z/2Z is such an example. Easier to see is k[x1, x2, · · · ], where k is a

field. Let R = k[x1, x2, · · · ]. Note that k[x1, . . . , xn] is a UFD for all n ∈ N since k is
a field. Note given f ∈ R, f must involve finitely many variables, say the largest
subscript occurring in f is N. Then f ∈ k[x1, . . . , xN ], a UFD. Then f factors uniquely
in k[x1, . . . , xN ]. But the only possible nontrivial factorizations in R for f can only
involve these variables. Then f factors uniquely into irreducibles in R so that R is a
UFD. However, R cannot be noetherian as it contains a non finitely generated ideal
(x1, x2, · · · ) (since any finite generating set contains a xi with maximal subscript, say
xN , so that xN+1 is not generated by the chosen finite subset) or that

(x1) ≤ (x1, x2) ≤ (x1, x2, x3) ≤ · · ·

is an infinite ascending chain of ideals of R.

6. Prove from the definition that any nonzero prime ideal in a PID (principal ideal domain)
is maximal.

Solution: Let R be a PID. We need only consider a prime ideal generated by a single prime
as we are in a PID. Let P = (p) be a nonzero prime ideal. Suppose M = (m) is a maximal
ideal with M ⊃ P. We want to show that M = R or M = P. As M ⊃ P, p ∈ M = (m).
Therefore, p = rm for some r ∈ R. But as P is a prime ideal and p is prime, r ∈ (p) = P
or m ∈ (p) = P. If m ∈ P, then M = P and we are done. Suppose then that r ∈ P. So
r = ps for some s ∈ R. But then p = rm = psm = p(sm). This shows that sm = 1 (as R is
a domain). Now as R is a PID, it must be that m is a unit. So 1 = sm ∈ P. However, this
implies that P = R.

7. If G is a finite abelian group with the property that

|{x ∈ G | xn = 1}| ≤ n

for all n ≥ 1, show that G must be cyclic.

Solution: Let |G| = n and let Sd be the set of elements of G of order d. Suppose there were
more than φ(d) elements of d. If g ∈ Sd, the cyclic group 〈g〉 has φ(d) elements of order
d. But then by assumption, there exists h ∈ G \ 〈g〉 of order d. But then there are at least
|〈g〉|+ 1 = d + 1 solutions to gn = 1, a contradiction.
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Then we have #Sd ≤ φ(d). Observe that G = td|nSd. However,

n = |G| = ∑
d|n

#Sd ≤∑
d|n

φ(d) = n

But then it must be that #Sd = φ(d) for all d | n. In particular, #Sd ≥ 1 for all d | n. But then
G must contain an element of order n. Therefore, G is cyclic.

OR

Suppose that |{x ∈ G | xn = 1}| ≤ n for all n. Consider a prime p | |G|. If there
were more than one Sylow p-subgroup of G, then there would be more than pr solutions
to gpr

= 1, where r is the largest power of p dividing |G|. A Sylow p-subgroup is cyclic
as gpr−1

= 1 has less than pr solutions so that there exists an element g with gpr
= 1 and

gpr−1 6= 1. Therefore, each Sylow p-subgroup of G is unique, hence normal and cyclic
(by the work above). But then the group G is cyclic since G is the product of its Sylow
p-subgroups if each Sylow p-subgroup is unique.

OR

Suppose |G| = pr for some prime p and r ≥ 1. By Lagrange’s Theorem, any nonidentity
element g ∈ G has order pa for some 1 ≤ a ≤ r. Choose r to be maximal. The elements
1, g, g2, . . . , gpa−1 are pa distinct solutions to xpa

= 1. By assumption, these are all the
solutions. Then if h ∈ G, then its order is pt, where t ≤ r. Therefore, hpr

= (hpt
)pt−r

= 1.
But then h = gi for some i. But then G = 〈g〉. Therefore, G is cyclic.

Now since G is a finite abelian group, by the Fundamental Theorem of Finitely Gener-
ated Abelian Groups, we have G = Sp1 ⊕ Sp2 ⊕ · · · ⊕ Spk , where the pi are the distinct prime
divisors of |G| and the Spi are the Sylow p-subgroups of G. Through this isomorphism,
we can write uniquely as g = s1s2 · · · sk, where si ∈ Si. Any solution xn = 1 in Spi is also
a solution of xn = 1 for x ∈ G. By the work above, it must be that each Spi is cyclic. Let
gi be a generator for Spi . We claim g = g1 · · · gk is a generator for G. It is sufficient to
show that |G| | |g1 · · · gk|. Since G is abelian, (g1 · · · gk)

n = gn
1 · · · gn

k = 1. But if m is the
order of g, then gm = gm

1 · · · gm
k = 1. Since every element of G is unique represented as a

product of the si, it must be that gm
i = 1. But then |Spi | | m for all i = 1, . . . , k. But then

|G| = |Sp1 | · |Sp2 | · · · · · |Spk | | m. But |m| | |G| so that |G| = m. Therefore, g generates g
and G is cyclic.

8.

(a) If M =


λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

...
0 0 · · · · · · λ

 is a Jordan block with λ ∈ C. What is the Jordan

canonical form of M2 over C?
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(b) If A is a matrix such that A and A2 have the same Jordan canonical form, what are the
possible Jordan forms of A?

9. Let L ⊇ K ⊇ F be field extensions, not necessarily of finite degree, with K algebraic over
F. If α ∈ L is algebraic over K, prove that α is algebraic over F.

Solution: As α is algebraic over K, we know there is a polynomial equation

anαn + an−1αn−1 + · · ·+ a1α + a0 = 0

where ai ∈ K. Consider F∗ = F(a0, a1, · · · , an). As K/F is algebraic, a0, · · · , an are algebraic
over F. So F∗/F is a finite extension as F∗ is generated by a finite number of algebraic
elements. Then α generates an extension of degree at most n as the minimal polynomial
for α must divide anαn + an−1αn−1 + · · ·+ a1α + a0. But then

[F∗ : F] = [F(α, a0, a1, · · · , an) : F(a0, a1, · · · , an)]] [F(a0, a1, · · · , an) : F]

is finite. So F(α, a0, · · · , an)/F is an algebraic extension so that α is algebraic over F.

10. Consider the number α =
√√

2− 1 and the field extension Q(α) of Q.

(a) Find the minimal polynomial of α over Q.

(b) Find the degree [Q(α) : Q] of the field extension.

(c) Find the Galois group Gal(Q(α)/Q).

Solution:

(a) We know

α =

√√
2− 1

α2 =
√

2− 1

α2 + 1 =
√

2

(α2 + 1)2 = 2

α4 + 2α2 − 1 = 0

So we suspect that the minimal polynomial for α is f (x) = x4 + 2x − 1. The only
rational roots can be ±1 by the Rational Root Theorem. Both are easily seen not to
be zeros. But then f (x) has no rational roots so that it must be irreducible over Q.
Then f (x) is an irreducible polynomial with root α. Therefore, f (x) is the minimal
polynomial for α.
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(b) The degree of the extension is the same as the degree of the minimal polynomial, which
we found in the previous part. Therefore, [Q(α) : Q] = 4.

(c)
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August 2015

1. Let p, q be primes, not necessarily distinct. Show that a group of order pq is not simple.

Solution: If p = q, then |G| = pq = p2. We have a more general result: any p-group (a
group of order pn) cannot be simple for n > 1. Suppose |G| = pn for n > 1. Recall the
Class Equation:

|G| = |Z(G)|+ ∑
g1,...,gr

|G : CG(gi)|,

where Z(G) is the center of G, CG(gi) is the centralizer of gi, and g1, . . . , gr are represen-
tatives for the distinct conjugacy classes of G with more than one element (for otherwise
it is in the center). The centralizer of gi, CG(gi), is a subgroup of G so that by Lagrange’s
Theorem its order must divide |G|. Since |G| = pn, |CG(gi)| = pk for some k < n (it cannot
be that k = n for then CG(gi) = G and then gi ∈ Z(G)). Then |G : CG(gi)| = |G|

|CG(gi)| = pn−k.
Now we have |G| − |G : CG(gi)| = |Z(G)|. Since p divides the left side, we must have
p | |Z(G)|. In particular, Z(G) is non-trivial. But Z(G) is always a normal subgroup so
that G cannot be simple. The result then follows with n = 2.11

Now if p 6= q, without loss of generality, assume that p > q. Let np denote the number
of Sylow p-subgroups. We know that np ≡ 1 mod p and that np | q. As np | p, it must be
that np ∈ {1, q}. But as np ≡ 1 mod p, np = 1 + np for some n ∈ 0, 1, 2, · · · . If n > 1, then
(1 + np) > p > q so that 1 + np - q, a contradiction. Therefore, n = 0 so that np = 1. Then
the Sylow p-subgroup is unique, hence normal, so that G is not simple.

2. Let G be a group with subgroup H (the subgroup need not be normal). The set G/H of
left cosets of H in G is a left G-set by means of g · xH = gxH, where g, x ∈ G.

(a) For a ∈ G, compute the stabilizer GaH of aH.

(b) Let X, Y be left G-sets. A map φ : X → Y is a homomorphism if φ(gx) = gφ(x) for all
g ∈ G, x ∈ X, and it is an isomorphism if there exists a homomorphism ψ : Y → X
satisfying ψφ = 1X and φψ = 1Y. The G-sets X, Y are isomorphic if there exists an
isomorphism X → Y. For x ∈ X, denote Gx the stabilizer of x.

(i) If φ : X → Y is a homomorphism of G-sets, prove that Gx ≤ Gφ(x), x ∈ X.

(ii) If φ : X → Y is an isomorphism, prove that Gx = Gφ(x), x ∈ X.

(c) Let H, K be subgroups of G.

11Since n = 2, the group must be abelian for there are only two groups up to isomorphism of order p2 for
any prime: Zp ⊕Zp or Z/p2Z, neither of which are simple since they have nontrivial center by the work
above. You should be able to prove this classification. Note that a p-group need not be abelian. Take p = 2 and
n = 3 so that |G| = 8. The dihedral group of order 8 is non-abelian nor is the quaternion group. Finally in the
case of n = 1, the group is isomorphic to Z/pZ and is simple.
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(i) If G/H and G/K are isomorphic G-sets, prove that H and K are conjugate sub-
groups of G. Hint: use (a) and part (ii) of (b).

(ii) Prove the converse of (i). Hint: Use a relevant theorem, or construct an isomor-
phism explicitly: if H = aKa−1 for some a ∈ G, right multiplication by a is a
bijective map G → G.

Solution:

(a)

g ∈ GaH ⇐⇒ gaH = aH

⇐⇒ a−1gaH = H

⇐⇒ (a−1ga)H = H

⇐⇒ a−1ga ∈ H

⇐⇒ a−1ga = h for some h ∈ H

⇐⇒ g = aha−1

⇐⇒ g ∈ {aha−1 | h ∈ H}
⇐⇒ g ∈ Na(H)

(b,i) Let g ∈ Gx so that gx = x. But then

φ(x) = φ(gx) = gφ(x)

so that g ∈ Gφ(x). But then Gx ≤ Gφ(x).

(b,ii) Let φ : X → Y be an isomorphism with inverse ψ : Y → X. By the previous part, we
know that Gx ≤ Gφ(x). But also by the previous part, we have Gφ(x) ≤ Gψ(φ(x)), but
Gψ(φ(x)) = Gx. Therefore, Gx = Gφ(x).

(c,i) Suppose that G/H ∼= G/K. Then there is a map φ : G/H → G/K that is an
isomorphism with inverse ψ : G/K → G/H. Then there is a g ∈ G (not necessarily
unique) such that

φ(1H) = φ(H) = gK

Now let h ∈ H. Then

gK = φ(H) = φ(hH) = hφ(H) = hgK

But then h ∈ GgK so g−1hg ∈ K. But then g−1Hg ≤ K ↔ H ≤ gKg−1. Applying
this same logic to ψ and K gives ψ(K) = g−1H so that gKg−1 ≤ H. This shows that
H = gKg−1 for some g ∈ G (again, not necessarily unique). But then H and K are
conjugate subgroups.
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(c,ii) Suppose that H, K are conjugate subgroups in G. Then there is a g ∈ G (not necessar-
ily unique), such that H = gKg−1. Define φ : G/H → G/K be given by rH 7→ rgK.
We need show that this map is well defined, a homomorphism, injective, and sur-
jective. Suppose that rH = sH. Then H = r−1sH so that r−1s ∈ H. That is, r−1s = h
for some h ∈ H. This shows s = rh. Then φ(sH) = φ(rhH) = φ(rH) so that φ is well
defined. We need see that φ is a homomorphism. But this follows easily as if g ∈ G
and rH ∈ G/H, then

φ(grH) = grgK = g(rgK) = gφ(rH)

To see injectivity, suppose that φ(rH) = φ(sH). Then rgK = sgK so that K =
g−1r−1sgK. But this shows that g−1r−1sg ∈ K. Then there is a k ∈ K such that
g−1r−1sg = k. Therefore, r−1s = gkg−1. By assumption, gkg−1 ∈ H so that there
is an h ∈ H such that r−1s = h. This shows that s = rh. This finally shows
sH = rhH = rH. Therefore, φ is injective. Now let sK ∈ G/K. Take r = sg−1 and
observe φ(rH) = rgK = sg−1gK = sK so that φ is surjective. Therefore, φ is an
isomorphism and G/H ∼= G/K.

3. Let φ : Fn → Fm be left multiplication by an m× n matrix A. Prove that the following
are equivalent:

(i) A has a left inverse, a matrix B such that BA = 1Fn

(ii) φ is injective

(iii) The rank of A is n.

Solution: Choose a basis of Fn, say {e1, e2, . . . , en} (there must be n basis elements since
dim Fn = n) and let A be the matrix of φ with respect to that basis. We show each is
equivalent to the others directly. [Choosing an ordering of the if and only if certainly gives
a short more direct proof.]

(i) ⇐⇒ (ii) Let A have a left inverse B. Suppose φ(X) = φ(Y) for X, Y ∈ Fn, i.e. AX = AY.
Then we have X = 1(X) = BAX = BAY = 1(Y) = Y so that X = Y. But then φ is
injective.

Now let φ be injective. We know that {φ(e1), φ(e2), . . . , φ(en)} are linearly indepen-
dent and can be extended to a basis of Fm, say by adding vectors f1, f2, . . . , fm−n ∈ Fm

(it must be that n ≤ m by linear independence) to {φ(e1), φ(e2), . . . , φ(en)}.
For every basis {v1, . . . , vm} of Fm and collection of vectors w1, . . . , wm (which need
not be distinct—they will not be how we use them below), there is a linear transfor-
mation sending each vi to wi: simply take the map sending each vi to wi and extend
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by linearity. By the linear independence of the {vi}, this linear transformation must
also be unique.

Now we have basis {φ(e1), φ(e2), . . . , φ(en), f1, f2, . . . , fm−n} of Fm. Let l be the
unique linear transformation sending φ(ei) to ei for 1 ≤ i ≤ n and l( f j) = 0 for
1 ≤ j ≤ m− n. By construction, lφ(ei) = ei for all i and is linear. But then lφ = 1Fn .
Since l is a linear transformation, we may represent it as a matrix L (using the chosen
basis, so L = (l(e1) l(e2) · · · l(en))). But then taking B = L gives the result.

(ii)⇐⇒ (iii) Let φ be injective. We know rank A ≤ n. Note n is the number of columns of A.
Without loss of generality, we can assume that A is in reduced-row echelon form
(applying row reduction does not change the rank of A or injectivity). Since φ is
injective, AX = 0 has at most one solution. But then there are no free variables, i.e.
A has a pivot in every column. But A has n columns so that rank A ≥ n. Therefore,
rank A = n.

Let the rank A be n. We know row operations do not affect the injectivity of multi-
plication by A (that is, the injectivity of φ) and do not affect the rank of A. So again
without loss of generality, we may assume that A is reduced-row echelon form. Then
A has a pivot in every column since rank A = n. Therefore, there is at most one
solution for every system AX = B. But then φ is necessarily injective.

4. Let V denote the vector space of real n× n matrices.

(a) Prove that 〈A, B〉 = trace(ATB) defines a positive definite bilinear form on V.

(b) Find an orthonormal basis for this form.

Solution:

(a) We first show that this is indeed a bilinear form on V. Let c ∈ R and A, B, C ∈ V. Then
we have (using the fact that the trace is linear)

〈 cA, B 〉 = trace((cAT)B) = ctrace(ATB) = c 〈 A, B 〉
〈 A, cB 〉 = trace(AT(cB)) = ctrace(ATB) = c 〈 A, B 〉

〈 A + B, C 〉 = trace((A + B)TC) = trace((AT + BT)C) = trace(ATC + BTC)

= trace(ATC) + trace(BTC) = 〈 A, C 〉+ 〈 B, C 〉
〈 A, B + C 〉 = trace(AT(B + C)) = trace(ATB + ATC)

= trace(ATB) + trace(ATC) = 〈 A, B 〉+ 〈 A, C 〉
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so that 〈 · , · 〉 is bilinear. To see that it is positive definite, observe that

〈 A, A 〉 = trace(AT A) =
n

∑
i,j

a2
i,j ≥ 0.

But as ai,j ∈ R and a2
i,j = 0 if and only if ai,j = 0, clearly the sum is 0 only if ai,j = 0

for all i, j. But then A is the zero matrix. Furthermore, if A is the zero matrix, clearly
〈 A, A 〉 = 0. Then 〈 ·, · 〉 is positive definite.

(b) An obvious choice of basis would be {Mi,j}1≤i,j≤n, where Mi,j is the matrix with 1 in
the ith, jth entry and 0 elsewhere. Clearly, this is a basis for V. We need only show that
it is orthogonal. Observe MT

i,j Mi,j = Mj,j so that

〈Mi,j, Mi,j〉 = trace(MT
i,j Mi,j) = trace(Mj,j) = 1

Finally suppose Ma,b 6= Mx,y,

〈Ma,b, Mx,y〉 = trace(MT
a,b Mx,y)

=
n

∑
i=1

(MT
a,b Mx,y)ii

=
n

∑
i=1

n

∑
j=1

(MT
a,b)i,j(Mx,y)j,i

=
n

∑
i=1

n

∑
j=1

δa,jδb,iδx,jδy,i

= 0

where δ is the Kronecker delta. [Observe the above is truly zero unless a = j, b = i,
x = j, y = i so that a = x = j, b = y = i so that Ma,b = Mx,y.] But then {Mi,j}1≤i,j≤n is
an orthonormal basis.

5. Let R be a commutative ring.

(i) If P and Q are prime ideals of R, determine when P ∩Q is again a prime ideal of R.

(ii) If A, B, and I are ideals of R with I ⊂ A ∪ B, show that I is contained in either A or B.

Solution:
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(i) We show that P ∩ Q is a prime ideal if and only if P contains Q or Q contains P.
Clearly, P ∩Q is an ideal of R as P, Q are ideals. Let P ∩Q be a prime ideal. Suppose
that P ( Q and Q ( P. Then there exists p ∈ P \Q and q ∈ Q \ P. Now pq ∈ P since
p ∈ P and P is an ideal. Similarly, pq ∈ Q. But then pq ∈ P ∩Q. Since P ∩Q is prime,
either p ∈ P∩Q or q ∈ P∩Q. Without loss of generality, assume p ∈ P∩Q. But then
p ∈ P and q ∈ Q, a contradiction. Therefore, either P ⊆ Q or Q ⊆ P, i.e. P ∩Q = P
or P ∩Q = Q.1213

Now suppose that P, Q are prime with one containing the other. Assume one ideal
contains the other. Without loss of generality assume P ⊆ Q. Now P ∩Q is an ideal
and since P ∩Q = P and P is prime, P ∩Q is a prime ideal.14

(ii) Suppose that the statement is false. Then there are a, b ∈ I such that a ∈ A but a /∈ B
and b ∈ B but b /∈ A. As I is a subring, a + b ∈ I. But then a + b ∈ A ∪ B so that
a + b ∈ A or a + b ∈ B. If a + b ∈ A, then (a + b) − a = b ∈ A, a contradiction.
However, if a + b ∈ B then (a + b)− b = a ∈ B, a contradiction.

6.

(i) Find the minimal polynomial of α =
√√

3− 1 over Q.

(ii) Find the Galois group Gal(Q(α)/Q).

Solution:
12Note this did not require that either P or Q be prime but just that P ∩Q was prime. But the work shows

that P ∩Q = P or P ∩Q = Q so that one is merely assuming P or Q is prime. The second part will use P, Q
prime — trivially.

13Note the intersection of prime ideals is not generally prime. Take R = k[x, y], where k is a field. Since
R/(x) ∼= k[y] and R/(y) ∼= k[x], (x), (y) are prime ideals. However, (x) ∩ (y) = (xy). But (xy) cannot be
prime since R/(xy) has zero divisors as x · y = 0 in R/(xy).

14Note one can easily verify that the intersection of ideals is an ideal. But kernels are always ideals and I ∩ J
is the kernel of the map φ : R→ R/I × R/J given by x 7→ (x mod I, x mod J). Now if I, J are prime ideals,
R/I, R/J are integral domains since I, J are prime. But then R/I × R/J is never a domain unless one of the
summands is zero. Since R/ ker φ ∼= im φ, one would need either this image to ‘be in only one summand’.
However, we have ker φ = I ∩ J. This gives intuition how one would come to the conclusion that one ideal
must contain the other.
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(i) We have

α =

√√
3− 1

α2 =
√

3− 1

α2 + 1 =
√

3

(α2 + 1)2 = 3

α4 + α2 + 1 = 3

α4 + 2α2 − 2 = 0

So that α is clearly a root of the polynomial p(x) = x4 + 2x2 − 2. However, observe
that p(x) is Eisenstein with p = 2 so that it is irreducible over Q. But then p(x) is the
minimal polynomial for α. Note as p(x) is irreducible, we know that |Q(α) : Q| =
deg p(x) = 4.

(ii) Notice that p(x) = x4 + 2x2 − 2 is even. Now as p(α) = 0, we know that p(−α) = 0.
Let β =

√
−
√

3− 1. Observe that

αβ =

√√
3− 1

√
−
√

3− 1 =

√
(
√

3− 1)(−
√

3− 1) =
√

3−
√

3 +
√

3 + 1 =
√

4 = 2

so that αβ ∈ Q(α). But as α ∈ Q(α) and Q(α) is a field, this implies α−1 ∈ Q(α).
Therefore, α−1 · αβ = β ∈ Q(α). This shows that ±α,±β ∈ Q(α). But the same
computation that showed α is a root of p(x), shows that β is a root of p(x). Since
p(x) is even, −β is a root of p(x). But then ±α,±β ∈ Q(α) must be all the roots
of p(x). Therefore, Q(α) is a splitting field for p(x). Then Q(α)/Q is Galois. Then
|Gal(Q(α)/Q)| = [Q(α) : Q] = 4. There are only two groups of order 4 up to
isomorphism: Z/4Z and Z/2Z×Z/2Z.

7.

(i) Let A be a matrix over the complex numbers C with elementary divisors f1 =
(x− 2)2, f2 = (x− 2)2(x + 3)2, and f3 = (x− 2)3(x + 3)2. Find the Jordan Canonical
Form of A.

(ii) Let R be a PID and M an R-module. If f : M→ R is an R-module homomorphism,
show that there exists a submodule X of M such that M = X⊕ ker f .

8. Let F = Zp be the integers module a prime p.

(a) If n > 0, show that there is a field K of order pn containing F.
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(b) Show that F[x] contains an irreducible polynomial of degree n.

9.

(i) If R is an integral domain with field of fractions K 6= R, show that K is not finitely
generated as an R-module.

(ii) True or False: “A unique factorization domain must be Noetherian.” Justify your
answer.

Solution:

(i) Suppose that K were finitely generated as an R-module. Let 〈k1, k2, · · · , kn〉 be a
generating set for K, where ki = ai/bi, where ai, bi ∈ R. Then given r ∈ R, there are
ri ∈ R such that

1
r
= r1

a1

b1
+ r2

a2

b2
+ · · ·+ rn

an

bn

Obtaining a common denominator on the left shows that given r ∈ R, there are
a, b ∈ R such that

1
r
=

a
b

That is, given r ∈ R, there are a, b ∈ R such that ar = b. In particular, this is true for
r = b2. But then we have ar = ab2 = b so that b(ab− 1) = 0. But as R is an integral
domain, we have ab− 1 = 0 so that ab = 1. But then every element of R is invertible.
But then if x, y ∈ R with xy = b, then axy = 1 ∈ R. But then R = F, a contradiction.

(ii) The statement is false. The UFD ∏∞
i=1 Z/2Z is such an example. It is simpler to

justify the following answer: let k be a field. Then R = k[x1, x2, · · · ] is a UFD: note
that k[x1, . . . , xn] is a UFD for all n ∈ N since k is a field. Note given f ∈ R, f
must involve finitely many variables, say the largest subscript occurring in f is N.
Then f ∈ k[x1, . . . , xN ], a UFD. Then f factors uniquely in k[x1, . . . , xN ]. But the only
possible nontrivial factorizations in R for f can only involve these variables. Then
f factors uniquely into irreducibles in R so that R is a UFD. However, R cannot be
noetherian as it contains a non finitely generated ideal (x1, x2, · · · ) (since any finite
generating set contains a xi with maximal subscript, say xN , so that xN+1 is not
generated by the chosen finite subset) or that

(x1) ≤ (x1, x2) ≤ (x1, x2, x3) ≤ · · ·

is an infinite ascending chain of ideals of R.
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January 2016

1. Let G be a group of order 351 = 33 · 13. Prove that G is simple.

Solution: Let np denote the number of Sylow p-subgroups of G. If n3 = 1, then the Sylow
3-subgroup is unique, hence normal. Similarly, if n13 = 1, then the Sylow 13-subgroup
is unique and hence normal. In either case, G would not be simple. Assume then that
n3, n13 > 1. As n3 ≡ 1 mod 3 and n3 | 13, we must have n3 = 13. Furthermore as n13 ≡ 1
mod 13 and n13 | 33, we must have n13 = 27. By Lagrange’s Theorem, the intersection of
any distinct Sylow 13-subgroups must be trivial for any non-identity element would be
a generator for the subgroup. Then there are 27 · 12 elements of order 13. But then there
are |G| − 27 · 12 = 27 elements of G not of order 13. But then there are 27 elements of G
having order a power of 3. But this contradicts the fact that there are 13 distinct Sylow
3-subgroups. Therefore, either n3 = 1 or n13 = 1 so that G contains a normal subgroup
(hence cannot be simple).

2. Let G be a group with subgroups H and K. Consider the action of H on the coset space
G/K by left multiplication: h · aK = haK for all h ∈ H and a ∈ G. Recall that the set
HaK = {b ∈ G | b = hak for some h ∈ H, k ∈ K} is called a double coset.

(a) Prove that the orbit of a coset aK ∈ G/K under the action of H is the set of left cosets
of K in G which are contained in the double coset HaK.

(b) Compute the stabilizer of aK.

(c) If G is finite, prove that |HaK| = |K| |H : H ∩ aKa−1| for every a ∈ G.

Solution:

(a) Let OaK denote the orbit of aK. Observe that ∪xK∈OaK xK is contained in HaK. Now if
hak ∈ HaK, then hak ∈ haK. However, haK = h · aK so that hak ∈ haK ∈ OaK. But then
ak ∈ ∪xK∈aK xK. Therefore, HaK = ∪xK∈OaK xK. Since the set of cosets partition G, the
sets xK are disjoint. Therefore,

HaK =
⊔

xK∈OaK

xK

Then if aK ∈ G/K, the orbit is precisely the set of left cosets aK in G contained in the
double coset HaK.

(b) We claim stab aK = H ∩ aKa−1. If h ∈ H ∩ aKa−1, then h = aka−1 for some k ∈ K.
But then h · aK = aka−1 · aK = aka−1aK = akK = aK so that h ∈ stab aK. Then
H ∩ aKa−1 ⊆ stab aK. Let h ∈ stab aK. Then aK = h · aK = haK. Then there
exists k ∈ K so that ak = ha. But then h = aka−1 so that h ∈ H ∩ aKa−1. Therefore,
stab aK ⊆ H ∩ aKa−1, showing that stab aK = H ∩ aKa−1.
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(c) By (a), we have

|HaK| = card

( ⊔
xK∈OaK

xK

)
= ∑

xK∈OaK

|xK| = |K| |OaK|.

By the Orbit-Stabilizer Theorem, |OaK| = |H : stab aK|. But by (b), stab aK = H ∩
aKa−1. But then

|HaK| = |K| |OaK| = |K| |H : stab aK| = |K| |H : H ∩ aKa−1|

as desired. Note that considering the action of K on G/H (proving everything mutatis
mutandis), we would obtain

|HaK| = |H| |K : K ∩ aHa−1|

3. Let S5 denote the symmetric group on five elements.

(a) Find a representative for each conjugacy class of S5 and compute the number of
elements in each class.

(b) Find all elements of S5 that commute with the 3-cycle (123).

4. Let A be a real symmetric n× n matrix, and let T : Rn → Rn be the linear operator given
by left multiplication by A.

(a) Prove that ker T = (im T)⊥ with respect to the usual Euclidean dot product on Rn.

(b) Prove that Rn = ker T ⊕ im T.

5. Let E be a finite field extension of F and let f ∈ F[t] be an irreducible polynomial.
Assume that the degree of f and [E : F] are relatively prime. Prove that f has no roots in E.

Solution: Note that if f had a root α ∈ F, then t− α ∈ F[t] would be a factor of f so that f
would be reducible, a contradiction. Suppose that f had a root α ∈ E. By the preceding
remarks, α ∈ E \ F. Since f is irreducible in F[t] and f (α) = 0, then f is the minimal
polynomial of α. Now F(α) ⊆ E. Furthermore,

[E : F] = [E : F(α)][F(α) : F] = deg f [E : F(α)]

Let p be a prime dividing deg f . Since p | deg f [E : F(α)], it must be that p | [E : F]. But
[E : F] and deg f are relatively prime. Then no prime divides deg f so that deg f = 1. But
then α ∈ F, a contradiction. Therefore, E contains no root of f .

6.
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(a) Construct a splitting field for the polynomial t3 + 2t + 1 over the field F3 with three
elements.

(b) Construct a splitting field for the polynomial t3 + t2 + t + 2 over F3. It is isomorphic to
the splitting field constructed in part (a)?

Solution:

(a) The polynomial p(t) = t3 + 2t + 1 is reducible over F3 if and only if p(t) has a zero
in F3. However, p(0) = 1, p(1) = 1, and p(2) = 1. Therefore, p(t) is irreducible over
F3[t]. We claim F = F3[t]/〈t3 + 2t + 1〉 is a splitting field for p(t). Now p(t) has a root
in F by construction, namely t = t + 〈t3 + 2t + 1〉. However, observe

p(t + 1) = (t + 1)3 + 2(t + 1) + 1 = t3
+ 1 + 2t + 2 + 1 ≡ t3

+ 2t + 1 = 0.

Therefore, p(t) has two roots in F so that the third (t− 1) must also be in F. Therefore,
F is the splitting field for p(t).

(b) The polynomial q(t) = t3 + t2 + t + 2 is reducible over F3 if and only if q(t) has a
zero in F3. However, q(0) = 2, q(1) = 2, and q(3) = 1. Therefore, q(t) is irreducible
over F3[t]. We claim F′ = F3/〈t3 + t2 + t + 2〉 is a splitting field for q(t). Now q(t)
has a root in F′ by construction, namely t = t + 〈t3 + t2 + t + 2〉. Moreover, since F′

has characteristic 3, Frobenius is an automorphism, i.e. the map Frob: x 7→ x3 is an
automorphism (it is an injective map between finite fields). Since t is a root of q(t) over
F′, we have t3 a root of q(t) over F′. [Note that t3 6= t over F′ as then t(t2 − 1) = 0 so
that t ∈ {0,±1}, a contradiction.] But then the third root of q(t) must also be in F′.
Therefore, F′ is a splitting field of q(t).

Now F = F3[u]/〈u3 + 2u + 1〉 = {au2 + bu + c : a, b, c ∈ F3} is a field with cardinality
33 = 27. Similarly, F′ is a field with cardinality 33 = 27. Let φ : F → F′ be given by
u 7→ t and extending by linearity. The map φ is clearly a homomorphism. Since 1 7→ 1,
the map is nonzero. Since maps between fields are either injective or the zero map,
it must be that φ is injective. But then φ is a injective map between finite sets, hence
surjective. But then φ is an isomorphism.

7. Let R be a PID and let M be a finitely generated torsion-free R-module.

(a) Let S be a finite set of elements generating M. Prove that S contains a maximal linearly
independent subset.

(b) Prove that M is free by showing that it is isomorphic to a submodule of a free R-module.

201



8. Let R = C[x, y] be the polynomial ring in two indeterminates over the complex numbers.
Let I = 〈x, y〉. Prove or disprove: I is a free R-module.

Solution: We prove something stronger: let I be an nontrivial ideal of a commutative ring
R with identity. Then I is a free module if and only if it is a principal ideal generated by a
nonzerodivisor. We proceed with this proof:

Suppose that I C R be a free R-module. Let {xα}α be a basis for I, not necessarily
countable. Observe that if we choose a, b ∈ {xα}α, where a, b are distinct, we have ab +
(−ab) = 0 is a nontrivial relation, contradicting the fact that {xα}α is a basis. Then it must
be that I = (x) for some x ∈ R. We only need show that x is a non-zerodivisor. Suppose
that x were a zero divisor, then there is a 0 6= y ∈ x such that xy = 0, contradicting the fact
that {x} is a basis for I. Then I = (x) is a principal ideal generated by a non-zerodivisor.

Now assume that I = (x) is a principal ideal generated by a non-zerodivisor. The
result is then immediate as I = Rx so that {x} serves as a basis for I so that I is free. To
confirm this, observe that if ax = 0 for 0 6= a ∈ R, then x is a zero divisor, contrary to the
assumption.

This proves the claim. Now in our case, R = k[x, y], where k is a field, is a commutative
ring with identity. Clearly, I is an ideal of R (in fact it is maximal as R/(x, y) ∼= k, a field).
It then suffices to show that (x, y) is not principal.

Suppose (x, y) were principal, i.e. (x, y) = ( f ) for some polynomial f ∈ R. Then g
would divide x, y, both of which are irreducible and not associated. But then g would be a
unit so that (x, y) = R, a contradiction.

OR

If (x, y) = ( f ) for some f ∈ R = k[x, y], then for g(x, y), h(x, y) ∈ R, there exists
m(x, y) ∈ R so that gx + hy = m f . But then x = m1 f and y = m2 f for some m1, m2 ∈ R. In
particular, f is a polynomial of at most degree 1 in x and y. Hence, f = ax + bc+ c for some
a, b, c ∈ k. BUt then x = m1(ax + by + c), implying b = 0. Similarly, y = m2(ax + c) so that
a = 0. But then f has degree 0, i.e. f ∈ k is a unit. But then (x, y) = ( f ) = R = k[x, y], a
contradiction.

OR

For principal ideals I, J in an integral domain, I ⊆ J if and only if J | I. Now as x is
irreducible, the only principal ideal containing (x) is (1) = R = k[x, y]. But (x, y) 6= 1 as
evaluating at x = y = 0 would give a contradiction. Therefore, (x, y) cannot be princi-
pal.

9. Prove that every square matrix with entries in the field of complex numbers is similar to
its transpose. Hint: A theorem about a certain canonical form for matrices may come in
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handy.

Solution: Let A be a square matrix over C. Consider the Jordan canonical form for A, J.
If the Jordan canonical form for A consists of a single Jordan block, its transpose consists
of the eigenvalue λ along the diagonal and 1’s directly underneath each λ (except the
bottom-right most λ). Let P be the matrix with Pij = 1 if i + j = n and 0 otherwise. Left
multiplication by P reverses order of the rows while right multiplication by P reverses the
order of the columns. But then JT = PJP−1. [Note that P−1 = P.] Now A is similar to J,
which is similar to JT, which is similar to AT. Since similarity is transitive, A is similar to
AT.

Now if the Jordan canonical form for A is the diagonal matrix consisting of Jordan
blocks J1, . . . , Jn. For each Jordan block Ji, construct Pi as above so that JT

i = Pi JiP−1
i . But

then let P be the block diagonal matrix consisting of P1, . . . , Pn. We have JT = PJP−1. Now
A is similar to J, which is similar to JT, which is similar to AT. Since similarity is transitive,
A is similar to AT. Therefore, A is similar to AT.

OR

Let A be a square matrix over C. The Smith normal form over C[x] of XIn − A and
XIn − AT are the same by symmetry. But then A and AT have the same invariant factors.
But then A and AT must have the same rational canonical form. Hence, A and AT have
the same Jordan canonical form. Since a matrix is similar to its Jordan canonical form and
similarity is transitive, A and AT are similar.
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May 2016

1. Let G be a finite group and H, K subgroups.

(a) Prove that the number of distinct conjugates of K by elements of H is |H : H ∩ NG(K)|,
where NG(K) is the normalizer of K in G.

(b) Take H = G in part (a) to conclude that G is not the union of all the conjugates of K.

2. Consider A5, the alternating group on 5 letters, a simple group of order 60 = 22 · 3 · 5.

(a) Prove that every element of A5 has prime-power order, and conclude that A5 is the
union of its Sylow subgroups.

(b) Compute the number of Sylow p-subgroups for p = 3, 5.

3. Write 〈 , 〉 for the standard Euclidean dot product on Rn, and ‖ ‖ for the standard
Euclidean norm, so that ‖x‖2 = 〈x, x〉. Let A be an n × n real matrix. Prove that the
following conditions (for A to be orthogonal) are equivalent.

(i) AT A = In, the n× n identity matrix.

(ii) ‖Ax‖ = ‖x‖ for all x ∈ Rn.

(iii) 〈Ax, Ay〉 = 〈x, y〉 for all x, y ∈ Rn.

(iv) The columns of A are orthonormal.

Solution:
(i)→(ii): Observe for all x ∈ Rn,

‖Ax‖2 = 〈Ax, Ax〉 = (Ax)T(Ax) = xT AT Ax = xT Inx = xTx = 〈x, x〉 = ‖x‖2.

Therefore, ‖Ax‖ = ‖x‖ for all x ∈ Rn.

(ii)→(iii): For all x, y ∈ Rn,

〈Ax, Ay〉+ 〈Ax, Ax〉+ 〈Ay, Ax〉+ 〈Ay, Ay〉 = 〈A(x + y), A(x + y)〉
= ‖A(x + y)‖2

= ‖x + y‖2

= 〈x + y, x + y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
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Hence, we have shown

〈Ax, Ay〉+ 〈Ay, Ax〉+ ‖Ax‖2 + ‖Ay‖2 = 〈x, y〉+ 〈y, x〉+ ‖x‖2 + ‖y‖2.

But as 〈Ax, Ax〉 = ‖x‖ and 〈Ay, Ay〉 = ‖y‖2, this implies that 2〈Ax, Ay〉 = 2〈x, y〉 (using
the fact that 〈· , ·〉 is symmetric) so that 〈Ax, Ay〉 = 〈x, y〉.

(iii)→(iv): Let e1, . . . , en be the standard basis vectors for Rn. The columns of A, say ai is
the ith column, are given by ai = Aei for i = 1, . . . , n. Then

〈ai, aj〉 = 〈Aei, Aej〉 = 〈ei, ej〉 = δi,j

for all i, j ∈ {1, . . . , n}. But then the columns of A are orthogonal.

(iv)→(i): Using the notation from above, we have

AT A =

a1
...

an

(a1 · · · an
)
=

aT
1 a1 · · · aT

1 an
...

. . .
...

aT
n a1 · · · aT

n an

 = (bi,j)i,j=1,...,n

where bi,j = aT
i aj = δij. But then AT A = (δi,j)i,j=1,...,n = In.

4. Let 〈 , 〉 be a symmetric bilinear form of Rn, and let A be the matrix of the form with
respect to some basis. True or false: the eigenvalues of A are independent of the choice
basis. Justify.15

5.

(a) Find an isomorphic direct sum of cyclic groups for an abelian group A generated by
x, y, z with the relations x + y = 0, 2x = 0, 4x + 2z = 0, and 4x + 2y + 2z = 0.

(b) Prove that Q, the additive group of rational numbers, is not a free Z-module.

6.

(a) Given a field F and any elements a1, . . . , an ∈ F, n ≥ 1, denote by φ : F[x1, . . . , xn]→ F
the unique ring homomorphism satsifying φ(xi) = ai, i = 1, . . . , n. Find an explicit
finite set of generators for the ideal ker φ of F[x1, . . . , xn]. Is ker φ a prime ideal?

15The statement is false if you take a general field. Consider V = k, where k is a field of characteristic not 2,
having at least four elements. Now f (x, y) = xy is a symmetric bilinear form. Choose a basis B = {b}. Now
the matrix for f is A = (b2). But one can choose nonzero b, b′ ∈ K with b2 6= (b′)2.
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(b) Let M = F[x]/I where I is a proper ideal of F[x]. Viewing M as an F[x]-module, state
and prove the necessary and sufficient condition (in terms of the decomposition of I
into a product of prime ideals of F[x]) for when M is indecomposable.

7. The characteristic polynomial of a square matrix with complex entries is (x− 2)3(x2 + 1)2

and the minimal polynomial is (x− 2)2(x2 + 1). List all possible Jordan canonical forms of
the matrix.

8. Let K = Q(−2− i, 1 +
√

3) be the subfield of C obtained by adjoining the elements
−2− i and 1 +

√
3 to Q.

(a) Find the degree [K : Q] of the field extension K/Q.

(b) Describe explicitly each automorphism in the Galois group Gal(K/Q).

(c) Describe Gal(K/Q) abstractly: what well known group is isomorphic to Gal(K/Q)?

(d) Is K/Q a Galois extension? Explain.

(e) Is K a splitting field of a polynomial in Q[x]? If yes, find such a polynomial. If no,
explain why.

(f) Find all the intermediate fields L satisfying Q ( L ( K.
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August 2016

1. Let G be a group that may either be infinite or finite. Let N be a normal subgroup of G.
Assume that [G : N] is finite. Prove that there are only finitely many subgroups H of G
such that N ⊆ H ⊆ G.
2. Let V be a vector space and let W1, . . . , Wn be subspaces of V. We say that W1, . . . , Wn
are independent if and only if the following condition holds:

If w1 + · · ·+ wn = 0 with wi ∈Wi for all i = 1, . . . , n,
then wi = 0 for all i = 1, . . . , n.

Now to make life a little easier, we consider only three subspaces W1, W2, W3. For each of
the following statements either prove if or provide a counterexample and disprove it.

(a) W1, W2, W3 are independent if and only if W1 ∩W2 = {0} and (W1 + W2) ∩W3 = {0}.

(b) W1, W2, W3 are independent if and only if Wi ∩Wj = {0} for all 1 ≤ i < j ≤ 3.

Solution:

(a) We prove a more general result: if M is a R-module and W1, . . . , Wn are R-submodules,
then M = W1 ⊕W2 ⊕ · · · ⊕Wn if and only if Wi ∩ (W1 + · · ·+ Ŵi + · · ·+ Wn) = {0},
where Ŵi indicates Wi is omitted from the sum.

If M = W1 ⊕W2 ⊕ · · · ⊕Wn and m ∈ Wi ∩ (W1 + · · ·+ Ŵi + · · ·+ Wn), then m = mi
for some mi ∈Wi and mi = ∑j 6=i rjmj, where mj ∈Wj and rj ∈ R. But if rj 6= 0 for all j,
then

0 = −mi + ∑
j 6=i

rjmj = 0 + 0 + · · ·+ 0

has two distinct expressions, a contradiction. Then mi = ∑j 6=i rjmj = ∑j 6=i 0 ·mj = 0.

Now assume that V = W1 + W2, where W1 ∩W2 = {0}. It is then immediate that
V = W1⊕W2. Assume then that the result holds for n = k. Define V ′ = W1 + · · ·+Wk
so that V = V ′ + Wk+1. Now by hypothesis, V ′ = W1 ⊕ · · · ⊕Wk. If v ∈ V, we
have v = w′ + x, where w′ ∈ V ′ and x ∈ Wk+1. Since the expression for w′ is
unique and Wi ∩ (W1 + · · ·+ Ŵi + · · ·+ Wn) = {0}, the expression for v is unique.
[If there were two: v = w′1 + x1 = w′2 + x2, then 0 = (w′1 − w′2) + (x1 − x2). Since
Wi ∩ (W1 + · · ·+ Ŵi + · · ·+ Wn) = {0} and the expression in V ′ is unique w′1 = w2.
But then x1− x2 = 0 so that x1 = x2.] Therefore, V = W1⊕ · · · ⊕Wk+1. The result then
follows by induction.

Now the stated result follows with V a k-module, i.e. a vector space with submodules
(subspaces) W1, W2, W3.
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(b) The statement if false. Let V be a vector space of dimension 2 over k. Let {x, y}
be a basis for V. Then V = X ⊕ Y, where X is the subspace spanned by x and
Y is the space spanned by y. Let Z be the space spanned by x + y. Observe that
X ∩Y = {0}, Y ∩ Z = {0}, and X ∩ Z = {0}. We have V = X + Y + Z but X, Y, Z are
not independent as 0 = 0 + 0 + 0 and 0 = (x + y) + (−x) + (−y).

3. Prove that there is no simple group of order 30.

Solution: Let G be a group of order 30 and let np denote the number of Sylow p-subgroups
of G. Observe |G| = 30 = 2 · 3 · 5. By Sylow’s Theorem, n5 ≡ 1 mod 5 and n5 | 6.
Therefore, n5 ∈ {1, 6}. Similarly, we know n3 ≡ 1 mod 3 and n3 | 10. Therefore, n3 ∈
{1, 10}. At least one of n3 or n5 is 1 since otherwise

30 = |G| ≥ 1 + 10(3− 1) + 6(5− 1) = 1 + 20 + 24 = 45,

a contradiction. But then G contains a unique, hence normal, Sylow subgroup. Therefore,
G cannot be simple.

OR

By Cayley’s Theorem, if G is a group of order 30, then G is isomorphic to a subgroup of
S30. Now G acts on G by right translation and the only identity fixes any point under this
action. Therefore, this embedding of G into S30 has no fixed point. By Cauchy’s Theorem,
there must be an element of order 2 in G. This element is represented (by the embedding of
G into S30) as a product of 15 2-cycles. But then this representation is an odd permutation.
The elements of G represented by an even permutation form a normal subgroup of index 2.
However, index 2 subgroups are always normal. Therefore, G cannot be simple.16

4. Let G be a group with |G| = 55 and let S be a set with |S| = 24. Assume that G acts on S.
Prove that the action has at least two points.

Solution: For s ∈ S, let stabG(s) denote the stabilizer of s and orb(s) denote the orbit of
s. By the Orbit-Stabilizer Theorem |G| = | stabG(s)|| orb(s)|. Furthermore, stabG(s) ≤ G
so that by Lagrange’s Theorem | stabG(s)| | |G|. Therefore for all s ∈ S, | stabG(s)| ∈
{1, 5, 11, 55}. But then for all s ∈ S, | orb(s)| ∈ {55, 11, 5, 1}. Let x denote the number of
distinct orbits of size 55, y denote the number of distinct orbits of size 11, z denote the
number of distinct orbits of size 5, and w denote the number of distinct orbits of size 1.
Note that | orb(s)| = 1 if and only if | stabG(s)| = |G| if and only if s is a fixed point of G.

16This same proof works for any group of order 2n, where n > 1 is odd. Therefore, there are no simple
groups of order 2n, where n is odd.
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The set of distinct orbits partition S. Therefore, 55x+ 11y+ 5z+w = 24 with x, y, z, w ∈
Z≥0. It is clear then that x = 0 so that 11y + 5z + w = 24. It is clear that 0 ≤ y ≤ 2 and
0 ≤ z ≤ 4. Furthermore, if z > 2, then 11y = 24− 5z−w < 14 so that y ≤ 1. Also, if y > 0,
then 5z = 24− 11y− w < 13 so that z ≤ 2. If S had no fixed point under the action of G,
then w = 0. Then 11y + 5z = 24.

The only possible solutions are

y = 0, z = 0y = 0, z = 1y = 0, z = 2y = 0, z = 3y = 0, z = 4y = 1, z =

5. Does there exist a Hermitian matrix with characteristic polynomial equal to x4 − 1? If
there does, construct one and prove it is one. If there does not, prove there does not. You
will get no points for a simple yes or no without supporting reasoning.
6. Let R be a UFD and I a proper principal ideal. Prove that R has a proper principal ideal
that is maximal with respect to the property of containing I and identify its generator in
terms of the generator of I.
7. Let R be a commutative ring and I an ideal of R. Define the radical of I to be the ideal

√
I def
= {r ∈ R | rn ∈ I for some n ≥ 1}

(a) Prove that
√

I is an ideal of R.

(b) Define an ideal I to be primary if, for each element r ∈ R, its image rR/I is either
nilpotent (that is, rm = 0 for some m ≥ 1) or a nonzerodivisor.

If I is a primary ideal, prove that
√

I is a prime ideal.

Solution:
8.

(a) Find all the possible rational canonical forms for a 8× 8 matrix A over Q that satisfies
(A− 3I)3(A2 + 1) = 0 and has characteristic polynomial (x− 3)4(x2 + 2)2.

(b) Find the Jordan canonical forms (over C) for the matrices from part (a).

(c) If, in addition to the information above, you also know that A satisfies

dim ker(A− 3I) = 2 dim ker(A− 3I)2 = 4

what is the Jordan canonical form of A? Why?

9. Let K be the splitting field of the polynomial p(x) = x4 − 2 ∈ Q[x].

(a) Show K is equal to an extension of the form Q(α, ζ), where α is a real number and ζ is
a roof of unity (which one?).
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(b) Find the degree of the extension K/Q. Justify completely.

(c) Determine whether the extension K/Q is Galois. Justify your answer. If it is Galois,
find the cardinality of its Galois group.

(d) Determine the group of automorphisms Aut(K/Q) (as an abstract group) using the
information above. Justify completely for any credit.
Hint: Determine all the automorphisms σ ∈ Aut(K/Q) in terms of α and ζ.

10.

(a) Let K = Q(ζ, 5
√

5), where ζ is a primitive 7th root of unity. Find the degree of the
extension K/Q.

(b) Let K = F2(α), where α is a nonzero root of x4 + x2 + x ∈ F2[x]. Determine whether
the polynomial is separable. Find the degree of the extension K/F2 and the cardinality
of K.
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May 2017

1. Let G be a group of order 30.

(a) Prove that either the Sylow 5-subgroup K or the Sylow 3-subgroup H is normal.

(b) Prove that HK is a cyclic subgroup of G.1718

Solution:

(a) Let np denote the number of Sylow p-subgroups of G. We know that n5 ≡ 1 mod 5
and np | 6. This implies n5 ∈ {1, 6}. Furthermore, n3 ≡ 1 mod 3 and n3 | 10. This
implies n3 ∈ {1, 10}. If n5 6= 1 and n3 6= 1, then n5 = 6 and n3 = 10. Then we must
have

|G| ≥ 1 + 6(5− 1) + 10(3− 1) = 1 + 24 + 20 = 45,

a contradiction. Therefore, at least one of n3, n5 is 1. But then G contains either a unique
Sylow 3-subgroup or a unique Sylow 5-subgroup. Since unique Sylow subgroups are
normal, either H is normal or K is normal.

(b) By (a), either H or K is normal. But then HK is a subgroup of G. Now as |G| = 2 · 3 · 5,
|H| = 3 and |K| = 5. By Lagrange’s Theorem, it must be that H and K are cyclic since
they are of prime order. Furthermore by Lagrange’s Theorem since gcd(|H|, |K|) = 1,
we know that H ∩ K = {1}. But then |HK| = |H||K|

|H∩K| = 3 · 5 = 15. But every group
of order 15 is cyclic: if G is a group of order 15, then n3 ≡ 1 mod 3 and n3 | 5. But
then n3 = 1. Similarly, n5 = 1. But then both Sylow subgroups of G are unique,
hence normal, and then G is a product of cyclic subgroups of relatively prime order.
Therefore, G is cyclic. Furthermore, we can even say HK is normal in G as its is an
index 2 subgroup of G.

2. Let G be a group with subgroup H (the subgroup need not be normal). If G acts on a set
X from the left, then we will say that X is a left G-set.

The set G/H of left cosets of H in G is a left G-set by means of g ◦ xH = gxH, g, x ∈ G.

17It is generally true that if p, q are distinct primes with p < q, if q 6≡ 1 mod p, then all groups of size pq
are cyclic (hence isomorphic) and if q ≡ 1 mod p, then up to isomorphism there are two groups of size pq:
Now let P ∈ Sylp(G) and Q ∈ Sylq(G). We know np | q = |G|

p and np ≡ 1 mod p. Then np ≡ 1 or q but
q 6≡ 1 mod p by assumption. Therefore, np = 1. Similarly, nq = 1. Then P, Q are normal subgroups of G.
Since P, Q are cyclic, let their generators be x, y, respectively. We know P ∩Q = {1}. Now xyx−1y−1 ∈ H ∩ K
as xyx−1 ∈ K by normality. Similarly, yx−1y−1 ∈ H. Therefore, xy = yx. Since |PQ| = |P||Q|

|P∩Q| = pq so that
PQ = 〈xy〉. Thus, HK is cyclic.

18In fact, if G is a group of order pqr, where p < q < r are primes, then one of the Sylow subgroups is
normal.
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(a) For a ∈ G, compute the stabilizer GaH of aH.

(b) Let X, Y be left G-sets. A map φ : X → Y is a homomorphism if φ(gx) = gφ(x) for all
g ∈ G, x ∈ X, and it is an isomorphism if there exists a homomorphism ψ : Y → X
satisfying ψφ = 1X and φψ = 1Y. The G-sets X, Y are isomorphic if there exists an
isomorphism X → Y. For x ∈ X, denote Gx the stabilizer of x.

(i) If φ : X → Y is a homomorphism of G-sets, prove that Gx ≤ Gφ(x), x ∈ X.

(ii) If φ : X → Y is an isomorphism, prove that Gx = Gφ(x), x ∈ X.

(c) Let H, K be subgroups of G.

(i) If G/H and G/K are isomorphic G-sets, prove that H and K are conjugate sub-
groups of G. Hint: use (a) and part (ii) of (b).

(ii) Prove the converse of (i). Hint. Use a relevant theorem, or construct an isomor-
phism explicitly: if H = aKa−1 for some a ∈ G, right multiplication by a is a
bijective map G → G.

Solution:

(a)

g ∈ GaH ⇐⇒ gaH = aH

⇐⇒ a−1gaH = H

⇐⇒ (a−1ga)H = H

⇐⇒ a−1ga ∈ H

⇐⇒ a−1ga = h for some h ∈ H

⇐⇒ g = aha−1

⇐⇒ g ∈ {aha−1 | h ∈ H}
⇐⇒ g ∈ Na(H)

(b,i) Let g ∈ Gx so that gx = x. But then

φ(x) = φ(gx) = gφ(x)

so that g ∈ Gφ(x). But then Gx ≤ Gφ(x).

(b,ii) Let φ : X → Y be an isomorphism with inverse ψ : Y → X. By the previous part, we
know that Gx ≤ Gφ(x). But also by the previous part, we have Gφ(x) ≤ Gψ(φ(x)), but
Gψ(φ(x)) = Gx. Therefore, Gx = Gφ(x).
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(c,i) Suppose that G/H ∼= G/K. Then there is a map φ : G/H → G/K that is an
isomorphism with inverse ψ : G/K → G/H. Then there is a g ∈ G (not necessarily
unique) such that

φ(1H) = φ(H) = gK

Now let h ∈ H. Then

gK = φ(H) = φ(hH) = hφ(H) = hgK

But then h ∈ GgK so g−1hg ∈ K. But then g−1Hg ≤ K ↔ H ≤ gKg−1. Applying
this same logic to ψ and K gives ψ(K) = g−1H so that gKg−1 ≤ H. This shows that
H = gKg−1 for some g ∈ G (again, not necessarily unique). But then H and K are
conjugate subgroups.

(c,ii) Suppose that H, K are conjugate subgroups in G. Then there is a g ∈ G (not necessar-
ily unique), such that H = gKg−1. Define φ : G/H → G/K be given by rH 7→ rgK.
We need show that this map is well defined, a homomorphism, injective, and sur-
jective. Suppose that rH = sH. Then H = r−1sH so that r−1s ∈ H. That is, r−1s = h
for some h ∈ H. This shows s = rh. Then φ(sH) = φ(rhH) = φ(rH) so that φ is well
defined. We need see that φ is a homomorphism. But this follows easily as if g ∈ G
and rH ∈ G/H, then

φ(grH) = grgK = g(rgK) = gφ(rH)

To see injectivity, suppose that φ(rH) = φ(sH). Then rgK = sgK so that K =
g−1r−1sgK. But this shows that g−1r−1sg ∈ K. Then there is a k ∈ K such that
g−1r−1sg = k. Therefore, r−1s = gkg−1. By assumption, gkg−1 ∈ H so that there
is an h ∈ H such that r−1s = h. This shows that s = rh. This finally shows
sH = rhH = rH. Therefore, φ is injective. Now let sK ∈ G/K. Take r = sg−1 and
observe φ(rH) = rgK = sg−1gK = sK so that φ is surjective. Therefore, φ is an
isomorphism and G/H ∼= G/K.

3. For each permutation σ ∈ Sn denote by f (σ) : Rn → Rn the linear operator given by
f (σ)(ej) = eσ(j), j = 1, . . . , n. Prove that:

(a) f (σ) is an orthogonal linear operator.

(b) The map f : Sn → GL(Rn) sending each σ to f (σ) is a monomorphism of groups.

(c) What are the eigenvalues of f (σ)? Is f (σ) diagonalizable? Explain.

4. Prove that
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(a) The matrix, relative to any basis, of a positive definite hermitian form on the complex
vector space Cn is nonsingular.

(b) For any complex n× n matrix A, the matrix I + A∗A is nonsingular, where I is the
n× n identity matrix and A∗ is the conjugate transpose of A.

5. Let I and J be ideals of a commutative ring R with identity. Assume that I + J = R19.

(a) Prove that I J = I ∩ J.20

(b) Prove that R/I × R/J ∼= R/I J.21

Solution:

(a) It is clear that I J and I ∩ J are ideals. Consider ij ∈ I J, where i ∈ I and j ∈ J. Since R is
commutative and I, J are ideals, we have ij = ji ∈ I and ij ∈ J so that ij ∈ I ∩ J. Now
if x ∈ I J, then x = i1 j1 + · · ·+ in jn, where i1, . . . , in ∈ I and j1, . . . , jn ∈ J. By the work
above, ir jr ∈ I ∩ J for r = 1, . . . , n. But then x = i1 j1 + · · ·+ in jn ∈ I ∩ J. Therefore,
I J ⊆ I ∩ J.

Now suppose x ∈ I ∩ J. Now 1 ∈ R = I + J so that 1 = i + j for some i ∈ I and
j ∈ J. Then x = 1 · x = (i + j)x = ix + jx. But since x ∈ I ∩ J, x ∈ I and x ∈ J so
that ix ∈ I and jx ∈ J. But we also have ix ∈ J and jx ∈ I. Then ix, jx ∈ I ∩ J so that
ix + jx ∈ I ∩ J. Therefore, x = ix + jx ∈ I ∩ J, proving I ∩ J ⊆ I J. Therefore, I J = I ∩ J.
Alternatively on the level of ideals,

I ∩ J = (I ∩ J)R = (I ∩ J)(I + J) = I(I ∩ J) + J(I ∩ J) ⊆ I J + J I = I J + I J = I J.

Since we have I J ⊆ I ∩ J, we must have I J = I ∩ J.

(b) First, we prove that if I + J = R, then if a + I ∈ R/I and b + J ∈ R/J, there exists
r ∈ R such that r + I = a + I and r + J = b + J. Since I + J = R, there exist i ∈ I and
j ∈ J such that i + j = 1. Then consider r := bi + aj. We have (bi + aj) + I = aj + I =
(aj + ai) + I = a(i + j) + I = a + I in R/I and (bi + aj) + J = bi + J = (bi + bj) + J =
b(i + j) + J = b + J in R/J.

19Such ideals are called coprime
20If R is a commutative ring, it is always the case that I J ⊆ I ∩ J. It is not the case that I J = I ∩ J: Take

a ∈ Z>1. Now let I = (a) and J = (a). Then I J = (a2) and I ∩ J = (a). Since a ∈ I ∩ J and a /∈ (a2), we have
I J ( I ∩ J. Even if I + J = R with R commutative, it is not the case that I J = I ∩ J, R need have identity: let G
be a nontrivial finite abelian group. Make G into a ring by defining multiplication g · g′ = 0 for all g, g′ ∈ G.
Then R given by (G,+, ·) is a ring. Take I = J = R. Clearly, I, J are ideals of R. We have I + J = R + R = R,
I ∩ J = R ∩ R = R, I J = RR = 0 so that I J 6= I ∩ J.

21This is a simple case of the Chinese Remainder Theorem.
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Now consider the map φ : R→ R/I × R/J given by r 7→ (r + I, r + J). We first show
φ is a homomorphism. Observe φ(1) = (1 + I, 1 + J) and φ(0) = (0 + I, 0 + J) = (I, J).
If r, s ∈ R, then

φ(r + s) =
(
(r + s) + I, (r + s) + J

)
=
(
(r + I) + (s + I), (r + J) + (s + J)

)
= (r + I, r + J) + (s + I, s + J) = φ(r) + φ(s)

φ(rs) = (rs + I, rs + J) =
(
(r + I)(s + I), (r + J)(s + J)

)
= (r + I, r + J)(s + I, s + J)

= φ(r)φ(s).

Therefore, φ is a ring homomorphism. By the work above, if (a+ I, b+ J) ∈ R/I× R/J,
then there exists r ∈ R such that φ(r) = (a + I, b + J). Therefore, φ is surjective. Now
if r ∈ I J = I ∩ J (using part (a)), then φ(r) = (r + I, r + J) = (0 + I, 0 + J) so that
r ∈ ker φ. But if r ∈ ker φ, (0 + I, 0 + J) = φ(r) = (r + I, r + J) so that r ∈ I and r ∈ J,
i.e. r ∈ I ∩ J = I J. Therefore, ker φ = I J. Then by the First Isomorphism Theorem,
R/I J ∼= R/I × R/J.

6. Let A be a complex matrix with characteristic polynomial cA(x) = (x + 1)7(x − 2)5.
Assume the following data about A, where I is the identity matrix of the appropriate size:

null(A + I) = 4

null(A + I)2 = 5
null(A− 2I) = 3

(a) Write down the possible Jordan canonical forms for A.

(b) If in addition you know that (A− 2I)2 = 4, what is the minimal polynomial of A?

This is a computational problem, and minimal justification is required.

7. Let F ⊆ K be a finite field extension. Prove that K can be generated by a finite number of
elements, each algebraic over F.22

Solution: Let K/F be finite and define n := [K : F]. Let α1, . . . , αn be a basis for K as an
F-vector space. We know [F(αi) : F] divides [K : F] for i = 1, . . . , n. Then [F(αi) : F] ≤
[K : F] = n < ∞. Recalling that a finite extension is algebraic, each αi is algebraic over
F (since the degree of F(αi)/F is finite). But then K, being generated by α1, . . . , αn, is
generated by a finite number of algebraic elements over F.

22K/F is finite if and only if K is generated by a finite number of algebraic elements over F. The converse is
simple to show.
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8. Let K be a splitting field for the polynomial p(x) = x7 − 2 ∈ Q[x]. Completely justify
your responses to each of the following questions.

(a) What is [K : Q]?

(b) Is K a Galois extension of Q?

(c) Is every permutation of the roots of p(x) given by an automorphism of K?

(d) Is AutQ(K)? abelian?
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August 2017

1. Let A ≤ B ≤ G be subgroups of a group G. Recall that a subgroup H of a group G is
called characteristic, if it is invariant under every automorphism of G, that is, f (H) = H for
every automorphism f of G. (In particular, by looking at all the inner automorphisms, one
sees that every characteristic subgroup is normal.)

(a) Show that if A is characteristic in B, and B is normal in G, then A is normal in G.

(b) Show that if B is cyclic and normal in G, then A is normal in G.

Solution:

(a) Let g ∈ G. We need show that gAg−1 = A. Now B is normal in G so that gBg−1 = B;
that is, conjugation by g is an automorphism of B. But A is characteristic in B so that
conjugation by g must fix A, i.e. gAg−1 = A, as desired.

(b) Let g ∈ G. Since B is cyclic and A ≤ B, A must be cyclic. However, cyclic groups have
unique subgroups. Since order is preserved under automorphisms, any automorphism
of B must send A to itself. But then A is characteristic in B. By (a), we know that A is
then normal in G.

OR

Since B is cyclic and A ≤ B, we know that A is cyclic as subgroups of cyclic groups
are cyclic. Then if B = 〈x〉 for some x ∈ G, we know A = 〈xj〉 for some integer j. Let
g ∈ G. Since B is normal in G, gxg−1 = xd for some integer d. But then for any integer
k

g(xj)kg−1 = (gxg−1)jk = (xd)jk = (xj)dk ∈ A

But then A is normal in G.

2. Let A, B and C be three finite abelian groups. Prove or disprove the following statement:
“If A⊕ C ∼= B⊕ C, then “A ∼= B”.23

Solution: By the Fundamental Theorem of Finitely Generated Abelian Groups (applying
it to the case of finite abelian), we can write A ∼= Z/pei

i ⊕ · · · ⊕Z/pek
k , B ∼= Z/pek+1

k+1Z⊕
23A group C is called cancellable if A× C ∼= B× C then A ∼= B. It turns out all finite groups are cancellable

and was proven by B. Jónsson and A. Tarski in 1947, see their book Direct Decompositions of Finite Algebraic
Systems.
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· · · ⊕Z/pek+n
k+nZ, and C ∼= Z/q f1

1 Z⊕ · · · ⊕Z/qem
m Z, where pi, qi are prime for all i (not

necessarily distinct) and ei, fi ∈ Z+. Then we have

A⊕ C ∼= Z/pei
i ⊕ · · · ⊕Z/pek

k ⊕Z/q f1
1 Z⊕ · · · ⊕Z/qem

m Z

B⊕ C ∼= Z/pek+1
k+1Z⊕ · · · ⊕Z/pek+n

k+nZ⊕Z/q f1
1 Z⊕ · · · ⊕Z/qem

m Z

The powers of the primes on each side and the number of quotients appearing on each side
of the congruences are unique. Therefore, n = m and it must be possible to re-arrange terms
so that qj = pk+j for 1 ≤ n ≤ n. But then we must have A ∼= Z/pei

i ⊕ · · · ⊕Z/pek
k
∼= B.

3.

(a) Let p be a prime number. Let G be a finite group of order |G| = pn, where p > n. Show
that every subgroup H of G of order p is normal.

(b) Let G be a group of order 99, show that G is abelian.

Solution:

(a) Note that n cannot have a factor of p since p > n. Let np(G) denote the number
of Sylow p-subgroups of G. We know that np | n and np ≡ 1 mod p. That is,
np ∈ {1, p + 1, 2p + 1, . . .}. However, p > n so that kp + 1 - n for k ≥ 1. Therefore,
it must be that k = 0 and np = 1. But then the Sylow p-subgroup is unique, hence
normal.

(b) Observe |G| = 99 = 32 · 11. We know that n11 | 9 so that n11 = 1. We know also that
n3 | 11 so that n3 = 1. Since these subgroups are unique, they are normal in G. Let Pp
denote the Sylow p-subgroups. By Lagrange’s Theorem, P3 ∩ P11 = {1}. But then we
have G = P3P11 and G ∼= P3 × P11. But then G is abelian.

4. Let A be a square matrix over C. Let A∗ denote its adjoint (i.e., its conjugate transpose).

(a) Prove A∗A has no negative eigenvalues.

(b) Prove that 0 is an eigenvalue of A∗A if and only if A is singular.

Solution:

(a) Let λ be an eigenvalue of A∗A and 0 6= v be an associated eigenvector. Then we have

λ‖v‖ = λ〈v, v〉 = 〈A∗Av, v〉 = 〈Av, Av〉 = ‖Av‖ ≥ 0

Therefore, λ ≥ 0.
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(b) This is true more generally, a matrix is singular if and only if 0 is an eigenvalue.
Applying this claim to the matrix A∗A gives the result—we need only prove the claim.
But observe

A singular ⇐⇒ det A = 0 ⇐⇒ det(A− 0 · I) = 0 ⇐⇒ 0 eigenvalue of A.

5.

(a) Suppose that R is a PID. Prove that R does not have an infinite collection of ideals such
that I1 ( I2 ( I3 ⊆ · · · .24

(b) Let R be a commutative ring. A proper ideal I ⊂ R is called primary if for all elements
r, a ∈ R such that ra ∈ I, if a /∈ I then rk ∈ I for some k > 0. For instance, every prime
ideal is primary.

If R is a PID, identify all the primary ideals of R.

Solution:

(a) If I1 ( I2 ( I3 ⊆ · · · is a chain of ideals in a PID, then I = ∪Ik is an ideal. Note that
Ik ⊆ I for all k. Since R is a PID, I = (r) for some r ∈ I. But since I = ∪Ik, r ∈ Ik for k.
But then I ⊆ Ik+n ⊆ I for all n ∈N∪ {0}. Therefore, I = Ik = Ik+n for all n ∈N.

(b) Recall that if I is an ideal of a commutative ring R,
√

I := {r ∈ R : rn ∈ I for some n ∈
N}— the radical of I. It is clear that I ⊆

√
I. We show that if I is a nonzero primary

ideal in a PID, then
√

I is prime. Let I be a nonzero primary ideal in a PID, then I = (r)
for some nonzero r ∈ R. If ab ∈

√
I, then (ab)n = anbn ∈ I for some n ∈N. Since I is

primary, either an ∈ I or (bn)m = bnm ∈ I. Without loss of generality, assume an ∈ I.
Since aan−1 ∈ I, either a ∈ I or an−2 ∈ I. If a ∈ I ⊆

√
I, we are done. If not, an−2 ∈ I.

Repeating this process inductively, we see that a ∈ I ⊆
√

I. Therefore, I is prime. [In
what follows, we use primes. But in a UFD (hence PID), an element is prime if and
only if it is irreducible.]

Now if I is a primary ideal in a PID, we know
√

I is a prime ideal by the work above. In
a PID, an ideal is prime if and only if it is of the form (p), where p is prime. Therefore,√

I = (p) for some prime p ∈ R. Since I is an ideal in a PID, we can write I = (r) for
some r ∈ R. As p ∈

√
I, pn ∈ I = (r) for some n ∈N. But if q is a prime appearing in

the factorization of r (R is a UFD since R is a PID), then q | r so that q | pn. But as p is
prime (recalling primes are irreducible), this implies p = q, up to associates. Therefore,

24Rings which satisfy this property (the ascending chain condition) are called noetherian.
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the only prime appearing in the factorization of r is p. Therefore, r = upk for k ∈ N

and u a unit in R. Therefore, I = (r) = (upk) = (pk).

Finally, suppose I = (pk), where k ∈ N and p is a prime of R. We claim I is primary.
Suppose ab ∈ I = (pk) ⊆ (p). If a ∈ I = (pk), we are done. So suppose a /∈ I. We have
ab ∈ (p) so that p | ab. Since p is prime, this implies a ∈ (p) or b ∈ (p). But if a ∈ (p),
then ak ∈ (pk) = I, a contradiction. Suppose b ∈ (p), then bk ∈ (pk) = I. Therefore, I
is primary. This shows that the primary ideals of R are precisely the ideals of the form
I = (p), where p is a prime element of R and the zero ideal.

6. Let N ⊆ M be R-modules, where R is a ring.

(a) If both N and M/N are free, prove that so is M.2526

(b) If M/N is free, prove that M ∼= (M/N)⊕ N.27

(c) Show with an example that the above need not hold when M/N is not free.

Solution:

(a) If N and M/N are free, they have a basis as an R-module. Let {nα}α∈I be an R-basis
for N, where nα ∈ N for all α ∈ I . Let {mβ + N}β∈J be a R-basis for M/N, where
mβ + N ∈ M/N for all β ∈ J . [Note that mβ ∈ M for all β ∈ J .] Let m ∈ M. In M/N,
write m + N = r1(mβ,1 + N) + r2(mβ,2 + N) + · · ·+ rk(mβ,k + N) = ∑k

i=1 ri(mβ,i + N),
where ri ∈ R. Then m−∑k

i=1 rimβ,i ∈ N since in M/N(
m−

k

∑
i=1

rimβ,i

)
+ N = (m + N)−

[(
k

∑
i=1

rimβ,i

)
+ N

]

= (m + N)−
k

∑
i=1

(rimβ,i + N)

= (m + N)−
k

∑
i=1

ri(mβ,i + N).

25The ‘converse’ is false: if M is free, it is not necessarily the case that N, M/N is free. Take M = R, where R
is any integral domain with a non-principal ideal I. There are other prelim problems based on this idea, e.g.
August 2012 Problem 7.

26Another similar and important exercise is to show that M is noetherian if and only if N, M/N is noetherian.
27This is a general concept that is seen in later course work. If M/N is free, then it is projective as an

R-module. Since there is an exact sequence 0 −→ N −→ M −→ M/N −→ 0, the sequence splits and
M ∼= M/N ⊕ N.
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Since m − ∑k
i=1 rimβ,i ∈ N, write m − ∑k

i=1 rimβ,i = r1nα,1 + r2nα,2 + · · · + rqnα,q =

∑
q
j=1 rjnα,j, where rj ∈ R. Therefore, we have

m =
k

∑
i=1

rimβ,i +
q

∑
j=1

rjnα,j.

Therefore, S := {nα}α∈I ∪ {mβ}β∈J spans M as an R-module. It remains to show that
the elements of S are linearly independent. Suppose to the contrary that

0 =
k

∑
i=1

rimβ,i +
q

∑
j=1

rjnα,j,

where the ri, rj are not all zero. Then in M/N, we have

0 =
k

∑
i=1

rimβ,i +
q

∑
j=1

rjnα,j

=

(
k

∑
i=1

rimβ,i +
q

∑
j=1

rjnα,j

)
+ N

∗
=

k

∑
i=1

rimβ,i + N

=
k

∑
i=1

(rimβ,i + N)

=
k

∑
i=1

ri(mβ,i + N),

where ∗= follows from the fact that ∑
q
j=1 rjnα,j ∈ N. But since {mβ + N}β∈J is a basis

for M/N, it must be that ri = 0 for i = 1, . . . , k. But then we have

0 =
k

∑
i=1

rimβ,i +
q

∑
j=1

rjnα,j =
q

∑
j=1

rjnα,j.

However, {nα}α∈I is a basis for N so that this implies rj = 0 for j = 1, . . . , q. But
then S is linearly independent. Therefore, M is a free R-module with basis S. Indeed,
M ∼= Rcard (I ∪J ) as R-modules, where card represents set cardinality.

(b) Consider the map φ : M → M/N, where φ is reduction modulo N, i.e. m 7→ m + N.
Clearly, this map is surjective: if m + N ∈ M/N, then φ(m) = m + N. Now M/N
is a free R-module so that is has a basis. Let {mα + N}α∈I be an R-basis for M/N,
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where mα + N ∈ M/N for all α ∈ I . [Note that mα ∈ M for all α ∈ I .] Define a
map ψ : M/N → M as follows: if m + N ∈ M/N, write m + N = r1(mα,1 + N) +
r2(mα,2 + N) + · · ·+ rk(mα,k + N) = ∑k

i=1 ri(mα,i + N), then ψ(m + N) = ∑k
i=1 rimα,i.

We must first show that ψ is well defined. However, each element of M/N has a unique
representation of the form ∑k

i=1 ri(mα,i + N) since M/N is free. Therefore, ψ is well
defined.

Now observe that if m + N = ∑k
i=1 ri(mα,i + N) ∈ M/N, then

φ(ψ(m + N)) = φ

(
ψ

(
k

∑
i=1

ri(mα,i + N)

))
= φ

(
k

∑
i=1

rimα,i

)

=

(
k

∑
i=1

rimα,i

)
+ N

=
k

∑
i=1

(rimα,i + N)

=
k

∑
i=1

ri(mα,i + N)

= m + N.

Therefore, φψ = 1M/N — the identity map id: M/N → M/N. We claim ker φ = N.
Clearly, if n ∈ N ⊆ M, then φ(n) = n + N = N = 0 + N so that n ∈ ker φ, i.e.
N ⊆ ker φ. If m ∈ ker φ, we have 0 + N = φ(m) = m + N so that m ∈ N, i.e.
ker φ ⊆ N. Therefore, N = ker φ. Finally, recall we have the canonical inclusion
ι : N ↪→ M, i.e. n 7→ n. [From the previous work, we have im ι = ker φ.]

Define a map θ : M/N ⊕ N → M via (m + N, n) 7→ ψ(m + N) + ι(n). Since ψ is well
defined, so too is θ. We need show that θ is an R-homomorphism. Since the notation in
the specific case is tedious, we show this holds more generally. Suppose ψ : T → S and
ι : W → S are R-homomorphisms. Define θ : T ⊕W → S via θ(t, w) := ψ(t) + ι(w).
Then for t, t′ ∈ T, w, w′ ∈W, and r ∈ R,

θ((t + t′, w + w′)) = ψ(t + t′) + ι(w + w′) = ψ(t) + ψ(t′) + ι(w) + ι(w′)
= ψ(t) + ι(w) + ψ(t′) + ι(w′)
= θ((t, w)) + θ((t′, w′))

rθ((t, w)) = r (ψ(t) + ι(w)) = rψ(t) + rι(w) = ψ(rt) + ι(rw) = θ((rt, rw))

Therefore, θ is an R-map. [It is also immediate that θ is an R-map from the fact that ψ, ι
are R-homomorphisms.] We claim that θ is in fact an isomorphism. We need show θ is
injective and surjective.
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To see that θ is injective, suppose θ(m + N, n) = 0. Then using the fact that φψ = 1M/N ,

0 = φ(θ(m + N, n))
= φ(ψ(m + N) + ι(n))
= φ(ψ(m + N) + n)
= φ(ψ(m + N)) + φ(n)
= (m + N) + (n + N)

= (m + N) + (0 + N)

= m + N

Since M/N is free, it must be that m + N = 0 + N, i.e. m = 0. But then 0 = θ(m +
N, n) = θ(0 + N, n) = ψ(0 + N) + ι(n) = 0 + n = n, i.e. n = 0. But then (m + N, n) =
(0 + N, 0) so that θ is injective. We need only show that θ is surjective. Let m ∈ M.
Define p := φ(m) ∈ M/N. Then ψ(p) ∈ M and using the fact that φψ = 1M/N ,

φ(m− ψ(p)) = φ(m)− φ(ψ(p)) = φ(m)− φ(ψ(φ(m))) = φ(m)− φ(m) = 0 + N

But then m−ψ(p) ∈ ker φ = N, i.e. there exists n ∈ N so that m−ψ(p) = n. Therefore,
m = ψ(p) + n = ψ(φ(m)) + n = ψ(φ(m)) + ι(n) = θ((p, n)). Therefore, θ is surjective.
But then θ is an isomorphism. This shows M/N ⊕ N ∼= M.

(c) Consider the Z-modules (abelian groups) M = Z and N = nZ for n ∈ Z>1. Clearly,
N ⊆ M, M is a free Z-module (generated by 1), and N is a free Z-module (generated by
n). However, M/N = Z/nZ is not a free Z-module as n · (m + N) = nm + N = 0+ N
for all m ∈ M/N, i.e. M/N has torsion (all free modules over an integral domain
are torsion free). We cannot have M ∼= M/N ⊕ N since M has no nonzero elements
of finite additive order while M/N ⊕ N has elements of finite additive order, e.g.
(1 + N, 0).

7.

(a) Prove that any two 3× 3 matrices over Q with the same characteristic polynomial and
the same minimal polynomial must be similar over Q.

(b) Give an example of two 4× 4 matrices over Q which are not similar over Q but have
the same characteristic polynomial and the same minimal polynomial. Justify.

8. Suppose K and L are field extensions of F such that gcd([K : F], [L : F]) = 1. Suppose
f ∈ F[x] is irreducible and has a root α ∈ K with α /∈ F. Prove that f has no roots in L.
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Solution: Assume to the contrary that there exists β ∈ L with f (β) = 0. Since f is
irreducible and f (β) = 0, f is the minimal polynomial for β ∈ L. Let d := deg f . Since
f is irreducible and f (α) =), f is the minimal polynomial for α ∈ K. Now α ∈ F if and
only if deg pα(x) = 1, where pα(x) is the minimal polynomial for α over F, it must be that
deg pα(x) = deg f > 1. Let m = [K : F] and n = [L : F]. Now

m = [K : F] = [K : F(α)][F(α) : F] = d[K : F(α)]
n = [L : F] = [L : F(β)][F(β) : F] = d[L : F(β)]

Let p be any prime dividing d. Since p | d[K : F(α)], we have p | m. Similarly, p | d[L : F(β)]
so that p | n. But then gcd(m, n) = gcd([K : F], [L : F]) > p, a contradiction. Therefore,
p = 1. But then deg pα(x) = deg f = 1 so that α ∈ F, a contradiction. Therefore, L contains
no root of f .

9. Let K be the splitting field of x6 − 3 over Q. Determine [K : Q] and find Gal(K/Q).

Solution: The polynomial x6 − 3 is irreducible over Q as it is Eisenstein with p = 3.
Define K := Q( 6

√
3, ζ), where ζ is a primitive sixth root of unity. Explicitly, set ζ = 1+i

√
3

2 .
Observe ± 6

√
3ζ i is a roof of x6 − 3, where i ∈ {0, 1, 5}. But each of these are elements of

K. Since x6 − 3 has 6 roots over C, it must be that K is the splitting field of x6 − 3 over
Q. Now by the work above, [Q( 6

√
3) : Q] = 6. Furthermore, [Q(ζ) : Q] = φ(6) = 2. Since

Q( 6
√

3) ⊆ R, it must be that ζ /∈ Q( 6
√

3). But then Q( 6
√

3, ζ) = Q( 6
√

3)(ζ) has degree
[Q( 6
√

3, ζ) : Q] = [Q( 6
√

3, ζ) : Q(ζ)][Q(ζ) : Q] = 6 · 2 = 12.
If σ ∈ Gal(K/Q), then σ is determined by its action on 6

√
3 and ζ. Define

σ : ζ 7→ ζ−1 6
√

3 7→ 6
√

3

τ : ζ 7→ ζ
6
√

3 7→ ζ
6
√

3

It is routine to verify that σ, ζ ∈ Gal(K/Q). Now σ2 = 1 and τ6 = 1. Furthermore,
(στ)(ζ) = ζ5 = (τ−1σ)(ζ) and (στ)( 6

√
3) = ζ−1 6

√
3 = (τ−1σ)( 6

√
3). As any element of

Gal(K/Q) takes ζ to either ζ or ζ−1 and 3
√

6 to ζ i 3
√

6 for some i. Therefore, σ and τ generate
Gal(K/Q). But then

Gal(K/Q) = 〈σ, τ | σ2 = 1, τ6 = 1, στ = σ−1σ〉,

which is precisely the presentation of the dihedral group D6.
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May 2018

1. Let V be a vector space over the real numbers. Let U and W be subspaces of V. Prove
that U ∪W is a subspace of V if and only if either U ⊆W or W ⊆ U.

Solution: If either U ⊆ W or W ⊆ U, then U ∪W = W or U ∪W = U, respectively,
which are subspaces. Assume that U ∪W is a subspace of V. Suppose to the contrary that
neither U nor W are subsets of the other. Choose then x ∈ U \W and y ∈ W \U. Since
U ∪W is a subspace, x + y ∈ U ∪W. But then x + y ∈ U or x + y ∈ W. If x + y ∈ U,
then y = (x + y)− x ∈ U, a contradiction. If x + y ∈ W, then x = (x + y)− y ∈ W, a
contradiction. Therefore, it must be that at least one of U \W or W \U is empty. This
implies U ⊆W or W ⊆ U.

2. Let G and H be groups and consider the product group G× H. Let eG be the identity
element of G. Consider the set X ⊆ G× H defined by X = {(eG, h) | h ∈ H}. Construct a
bijective correspondence between {subgroups of G} and {subgroups of G× H that contain
X}. Be sure to prove your bijection works.

Solution:
3. Prove that there is no simple group of order 56.

Solution: Note that 56 = 23 · 7. Let np denote the number of Sylow p-subgroups. By
Sylow’s Theorem, n2 ≡ 1 mod 2 and n2 | 7 so that n2 ∈ {1, 7}. Similarly, we know that
n7 ∈ {1, 8}. If n2 or n7 = 1, then the Sylow 2-subgroup, respectively Sylow 7-subgroup, is
unique, hence normal. But then the group would not be simple. Suppose then that n7 > 1.
Then there are n7 · 6 = 8 · 6 = 48 non-identity elements of order 7. But then there are
56− 48 = 8 remaining elements of the group, which must be the Sylow 2-subgroup (which
exists by Sylow’s Theorem). But then the Sylow 2-subgroup is unique, hence normal.
Therefore, no group of order 56 is simple.

4. Let A and B be n× n matrices over the complex numbers.

(a) Prove that if A is similar to B, then A and B have the same characteristic polynomial.

(b) Prove that if A and B are both diagonalizable and A and B have the same characteristic
polynomial, then A is similar to B.

(c) Show by example that if at least one of A of B is not diagonalizable, then it can be the
case that A and B have the same characteristic polynomial but A is not similar to B. Be
sure to prove your example is valid.
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5. Let G be the abelian group generated by four elements w, x, y, z, subject to the relations
y + 3z = 0

−2w + x + y + 3z = 0
−2w + 4x + y + 3z = 0

−3x + y + 5z = 0

Write G as a direct sum of cyclic groups in two ways, corresponding to the two versions of
the Fundamental Theorem of Finitely Generated Abelian Groups.

6. Let R be a commutative ring and M an R-module. Recall that M is said to be finitely
generated if there are elements x1, . . . , xn ∈ M such that M = Rx1 + · · ·+ Rxn.

(a) If N ⊆ M is a submodule such that both N and M/N are finitely generated, prove that
M is finitely generated.

(b) Give an example, with justification, of a finitely generated module M and a submodule
N which is not finitely generated.

7. Suppose that A is a square complex matrix with characteristic polynomial cA(x) =
(x− 1)4(x + 3)5. Assume that A− I has nullity 4 and A + 3I has nullity 1, where I is the
identity matrix of the same size as A. Find, with justification, all possible Jordan canonical
forms of A, and give the minimal polynomial for each.

8. Set K = Q(i, 4
√

2), where i is the complex root of −1 and 4
√

2 is the real fourth root of 2.

(a) Find the degree [K : Q].

(b) Identify all the elements of AutQ(K).

(c) Identify the isomorphism type of the group AutQ(K).

Justify all your conclusions.
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3 Analysis Prelim
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August 1991

1. Show that every uncountable subset of the real numbers has a limit point.

Solution: We prove the contrapositive: if a nonempty subset A ⊂ R has no limit points, it
must be at most countable. Suppose that A has no limit points. Let An = A ∩ [−n, n] for
n ∈N. Observe that each n is bounded and must contain no limit points. Note that every
bounded infinite subset of R has a limit point. As A has no limit point, it must be that An
is empty or finite for each n. But A = ∪∞

n=1An so that A is at most countable.

OR

Suppose that A is an uncountable subset of R. For n ∈ Z, let An = A ∩ [n, n + 1].
We know that A = ∪n∈ZAn. If An were finite for each n, then A would be countable, a
contradiction. Then An is infinite for some n, say n0. We know that An0 ⊆ [n0, n0 + 1].
As this is an infinite subset of a compact bounded subset of R, we know that An0 has a
limit point, say x0. But then A has a limit point as any neighborhood of x0 U in R has
neighborhood U ∩ [n0, n0 + 1] in [n0, n0 + 1].

2. The sequence of real numbers {xn} is defined by recursively by x1 = 1 and

xn+1 =
(
xn + x2

n
)1/3

Prove that xn converges and find the limit.

Solution: Observe that x1 = 1 and x2 = (1+ 12)1/3 = 21/3 > 1 = x1. Now assume that the
sequence xn is increasing for n = 1, 2, 3, · · · , k. Then using the fact that 3

√
x is an increasing

function,

nk > nk−1

n2
k > n2

k−1

nk + n2
k > nk−1 + n2

k−1

(nk + n2
k)

1/3 > (nk−1 + n2
k−1)

1/3

nk+1 > nk

Therefore by induction, nk is an increasing sequence. As x1 = 1 and xn is increasing,
xn > 0 for all n ∈ N. Observe also that x1 < 2 and x2 < 2. Assume that this is true for
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n = 1, 2, 3, · · · , k. Then

xk < 2

x2
k < 4

xk + x2
k < 6

(xk + xk)
1/3 < 61/3 < 2

xk+1 < 2

so that xn < 2 for all n ∈N. Then the sequence xn is increasing and bounded above. By the
Monotone Convergence Theorem, the sequence xn has a limit in R, say x. Then x satisfies
x = (x + x2)1/3. Then

x = (x + x2)1/3

x3 = x + x2

x3 − x2 − x = 0

x(x2 − x− 1) = 0

so that x = 0 or x = 1±
√

5
2 . As 0 < xn < 2 and {xn} is increasing, x = 0 and x = 1−

√
5

2 are

not possible. Therefore, the sequence xn converges to 1+
√

5
2 .

3. Let { fn} be a sequence of continuous functions defined on a compact metric space K and
suppose fn converges uniformly on K to a function f . Prove that f 2

n converges uniformly
to f 2 on K.

Solution: As the fn(x) are continuous on a compact metric space, they are bounded. Say
| fi(x)| ≤ Mi for some Mi ∈ R, depending on i. Moreover as fn(x)→ f (x) uniformly and
the fn are continuous, we know that f (x) is continuous. Therefore, f (x) is continuous on a
compact metric space and hence is bounded. Suppose | f (x)| < B for some B ∈ R.

Furthermore as fn(x) → f (x) uniformly, given ε > 0 there is an N ∈ N such that
| fn(x)− f (x)| < ε for n > N, no matter the choice of x ∈ K. But then | fn(x)| ≤ B + ε for
n > N. Let M = max{M1, M2, · · · , MN , B + ε}. Then | fn(x)| < M for all n ∈ N so that
{ fn(x)} is uniformly bounded.

Now given ε > 0, there is an N ∈N such that | fn(x)− f (x)| < ε/2M for n > N. Then
we have

| f 2
n(x)− f 2(x)| = | fn(x)− f (x)| | fn(x) + f (x)|

≤ | fn(x)− f (x)|
(
| fn(x)|+ | f (x)|

)
≤ ε

2M
· (M + M) = ε
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so that f 2
n(x)→ f 2(x) uniformly.

4. Prove the following: if f is continuous, real valued function on [0, 1] such that f (0) = 0
and ∫ 1

0
xn f (x) dx = 0 for n = 1, 2, 3, · · ·

then f (x) = 0 for all x ∈ [0, 1].

Solution: Observe that ∫ 1

0
axn f (x) dx = a

∫ 1

0
xn f (x) dx = 0

for all a ∈ R. But then given any polynomial with zero constant term p(x) = anxn +
an−1xn−1 + · · ·+ a1x, we have∫ 1

0
p(x) f (x) dx =

∫ 1

0
anxn f (x) + an−1xn−1 f (x) + · · ·+ a1x f (x) dx

= an

∫ 1

0
xn f (x) dx + an−1

∫ 1

0
xn−1 f (x) dx + · · ·+ a1

∫ 1

0
x f (x) dx

= 0 + 0 + · · ·+ 0
= 0

As f (x) is continuous on the compact interval [0, 1], there is a sequence of polynomials
{pn(x)} converging uniformly to f (x) on [0, 1]. Then given ε > 0, there is a N ∈ N

such that | f (x) − pn(x)| < ε for all x ∈ [0, 1] and n > N. As f (x) is continuous on
the compact interval [0, 1], it is bounded. Say | f (x)| < M on [0, 1]. Observe then that
pn(x) f (x) converges uniformly to f (x)2 as | f (x)2 − pn(x) f (x)| = | f (x)| | f (x)− pn(x)| <
Mε. Furthermore, observe that pn(0) = 0 for n > N, i.e. the pn(x) have 0 constant term as
| f (0)− pn(0)| = |0− pn(0)| = |pn(0)| < ε. But then

0 = lim
n→∞

∫ 1

0
pn(x) f (x) dx =

∫ 1

0
lim
n→∞

pn(x) f (x) dx =
∫ 1

0
f (x)2 dx

As f (x) is continuous, if there were any interval in [0, 1] on which f (x) 6= 0, then∫ 1
0 f 2(x) dx > 0, a contradiction. Therefore, it must be that f (x)2 = 0. But then

f 2(x) = f (x) f (x) = 0 forces f (x) = 0 for all x ∈ [0, 1].

5. Let F(x, y, z) = 3x + 2y + z− y sin(xz).

(a) Can the equation F(x, y, z) = 0 be solved for z = f (x, y) in a neighborhood of the point
(0,−1) satisfying f (0,−1) = 2? Justify your answer.
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(b) State a precise version of what is asked for in (a). Be as complete as possible.

6. The function f maps [0, 1] onto [0, 1] and is monotone. Prove f is continuous on [0, 1].

Solution: Note that f is continuous if and only if − f is continuous. If f is monotone
decreasing, then − f is monotone increasing. Therefore without loss of generality, we
assume that f is monotone increasing. Suppose to the contrary that f is not continuous.
Since f is monotone, it has no discontinuities of the second kind. Therefore, f has a simple
discontinuity at some point x0 ∈ [0, 1]. Let y−0 := limx→x−0

f (x) and y+0 := limx→x+0
f (x).

At least one of the intervals (y−0 , f (x0)), ( f (x0), y+0 ) must be nonempty. Choose one of the
nonempty intervals (if they both are nonempty, arbitrarily choose the first), and denote it I.
Then I ⊂ (y−0 , y+0 ) ⊂ ( f (0), f (1)). But then the image of f is not [0, 1], a contradiction.
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August 1992

1. Let {xn} be a sequence of complex numbers converging to a. Show that

lim
n→∞

1
n

n

∑
j=1

xj = a.

Solution: First, observe that∣∣∣∣∣ 1n n

∑
j=1

xj − s

∣∣∣∣∣ =
∣∣∣∣ x1 + x2 + x3 + · · ·+ xn

n
− a
∣∣∣∣

=

∣∣∣∣ x1 + x2 + · · ·+ xn

n
− na

n

∣∣∣∣
=

∣∣∣∣ (x1 − a) + (x2 − a) + · · ·+ (xn − a)
n

∣∣∣∣
=

∣∣∣∣∣ 1n n

∑
j=1

(xj − a)

∣∣∣∣∣
≤ 1

n

n

∑
j=1
|xj − a| = 1

n

N−1

∑
j=1
|xj − a|+ 1

n

n

∑
j=N
|xj − a|

Since limn→∞ xn = a, given ε > 0 there exists a N ∈ N such that |xn − a| < ε
2 for n ≥ N.

Moreover, since xn is a convergent sequence, the sequence {xn} is bounded. In particular
as xn → a, the sequence {|xn → a|} converges to 0 so that the sequence {|xn − a|} is
bounded. Then there exists a M ∈N such that |xn − a| ≤ M for all n. Then

1
n

N−1

∑
j=1
|xn − a| ≤ NM

n

Choose P ∈ N such that P > 2NM
ε . Then this implies P + 1 > 2NM

ε + 1 > 2NM
ε . But then

NM
P+1 < ε

2 . Therefore,
1
n

N−1

∑
j=1
|xj − a| < ε

2

for n > P.
Let J = max{P, N}, then∣∣∣∣∣ 1n n

∑
j=1

xj − s

∣∣∣∣∣ ≤ 1
n

N−1

∑
j=1
|xj − a|+ 1

n

n

∑
j=N
|xj − a| < ε

2
+

(n− N + 1) ε
2

n
<

ε

2
+

ε

2
= ε

for n > J . Therefore, 1
n ∑n

j=1 xj converges to a.

2.

232



(a) If fn ∈ C1(0, 2), n = 1, 2, . . . , and f ′n converges uniformly to zero, while fn(1) converges
to 1, prove that fn converges uniformly on (0, 2).

(b) Is the result true if each fn is only differentiable on (0, 2)?

3. Let (X, ρ) be a compact metric space and (Y, d) be a metric space.

(a) If f : X → Y is continuous and onto show that (Y, d) is complete.

(b) If f is also one-to-one, prove that f−1 : Y → X is continuous.

Solution:

(a) The image of a compact set under a continuous mapping is compact. But as f is onto,
we have Y = f (X) so that Y is compact. But then Y is a compact metric space so that Y
is complete.

(b) Since f is injective, it has an inverse f−1. We need show that f−1 is continuous (show-
ing that f is a homeomorphism). We know that f−1 is continuous if and only if f maps
closed sets to closed sets. Let C be closed in X. Since C is closed and X is compact, we
know that C is compact. Then as f is continuous, f (C) is compact. But as Y is a metric
space and f (C) is compact, we know that f (C) is closed.

4. Suppose f : R2 → R is C1. If fxy exists in a neighborhood of (0, 0) and is continuous at
(0, 0), prove that fyx exists at (0, 0) and fyx(0, 0) = fxy(0, 0).

5. Let p(x, y) = (xy− 1)2 + x2 for (x, y) ∈ R2. Find inf{p(x, y) : (x, y) ∈ R2}.

Solution: Clearly, p(x, y) ≥ 0 for all (x, y) ∈ R2. Now for n ∈N, choose x = 1
n and y = n.

Then we have

p(x, y) = p
(

1
n

, n
)
=

(
1
n
· n− 1

)2

+

(
1
n

)2

=
1
n2

Now given ε > 0, choose N ∈ N such that 1
N2 < ε. Then for n > N, we have

p( 1
n , n) = 1

n2 < ε. But then clearly, inf{p(x, y) : (x, y) ∈ R2} = 0.

6. Suppose f is continuous and greater than 1 on [0, 1]. Prove that for a positive a

lim
a→0

(∫ 1

0
| f (x)|a dx

) 1
a

= exp
(∫ 1

0
ln | f (x)| dx

)
Hints: First, establish the limit formally. Then attend to the intermediate results that require
justification.
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August 1993

1. Given a C1 function F : Rn → Rn satisfying

‖F(x)‖ ≤ ‖x‖2, x ∈ Rn,

prove that there is an ε > 0 such that the equation F(x) = x + α has a solution x whenever
the vector α satisfies ‖α‖ < ε.

2. If an ≥ 0 and ∑∞
n=1 an < ∞, prove that there exists a sequence bn such that limn→∞ bn = ∞

and ∑∞
n=1 anbn converges.

Solution: If an = 0 for all n, the result is trivial. We assume that an > 0 for all n (this will
be generalized to an ≥ 0 at the end with little modification). As ∑ an is finite, it is Cauchy.
In particular, the tail of the sequence tends to 0. That is,

lim
m→∞

∞

∑
n=m

an = 0

Let rn = ∑∞
m=n am. Then it is clear that rn → 0. We define the sequence bn = 1/

√
rn (which

is possible as rn > 0). As rn → 0, it is clear that
√

rn → 0 so that bn → ∞. We have

anbn(
√

rn +
√

rn+1) =
an√
rn
(
√

rn +
√

rn+1) = an + an

√
rn+1

rn

However, rn ≥ rn+1 so that this shows

anbn(
√

rn +
√

rn+1) =
an√
rn
(
√

rn +
√

rn+1) = an + an

√
rn+1

rn
< 2an = 2(rn − rn+1)

Dividing by
√

rn +
√

rn+1 > 0, yields

anbn =
an√
rn

<
2(rn − rn+1)√

rn +
√

rn+1
=

2(rn − rn+1)√
rn +

√
rn+1

·
√

rn −
√

rn+1√
rn −

√
rn+1

= 2(
√

rn −
√

rn+1 )

But we know that

∞

∑
n=1

2(
√

rn −
√

rn+1 ) = 2
∞

∑
n=1

(
√

rn −
√

rn+1 ) = 2
√

r1

as the series telescopes. Therefore by the Comparison Test, we know that

∞

∑
n=1

anbn =
∞

∑
n=1

an√
rn
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converges.
We need now only consider the case where an can take on zero values. However, this is

now trivial. Let f ∈ N be the first value such that an > 0. Let bn = 0 for n = 1, 2, · · · , f
and then take bn as before for n > f . We still have that bn → ∞ and observe

∞

∑
n=1

anbn =
∞

∑
n= f+1

anbn

to which the arguments above apply.

3. Assume that the family { fn}∞
n=1 of real-valued functions on [0, 1] is equicontinuous and

pointwise bounded. Also assume
∫ b

a fn(x) dx → 0 as n → ∞ for every 0 ≤ a < b ≤ 1.
Prove that fn → 0 uniformly.

4. Let PE denote the set of real-valued polynomials which involve no odd powers of the
variable, i.e. the coefficient of each odd power term is zero. Prove that PE is dense in
C([0, 1]) which the sup norm. For which closed intervals other than [0, 1] can the same be
proved?

5. For which non-decreasing functions β on [0, 1] does the Riemann-Stieltjes integral∫ 1
0 β dβ exist? Prove your assertion.

6. If f is continuous and lim
s→∞

f (s) = a, prove that
1

log t

∫ t

1

f (s)
s

ds→ a as t→ ∞.

Solution: Since lims→∞ f (s) = a, for ε > 0, there exists N1 ∈ N such that for s > N1,
we have | f (s) − a| < ε/2. Since f (s) is continuous on [1, N1], it is bounded, i.e. there
exists M ∈ R such that | f (s)| < M for s ∈ [1.N1]. Now log x is an increasing function and
limx→∞ log x = ∞. Choose then N2 ∈N so that (M+|a|) log N

log N2
< ε

2 . Finally, observe that

1
log t

∫ t

1

a
s

ds =
a

log t

∫ t

1

ds
s

=
a

log t
· log s

∣∣∣∣t
1
=

a
log t

· (log t− log 1) = a

Now given ε > 0, as above, choose N = max{N1, N2}. Then for t > N (noting that log x is
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increasing so log N
log t < 1), we have∣∣∣∣ 1

log t

∫ t

1

f (s)
s

ds− a
∣∣∣∣ = ∣∣∣∣ 1

log t

∫ t

1

f (s)
s

ds− 1
log t

∫ t

1

a
s

ds
∣∣∣∣

=

∣∣∣∣ 1
log t

∫ t

1

f (s)− a
s

ds
∣∣∣∣

≤ 1
log t

∫ t

1

| f (s)− a|
s

ds

=
1

log t

∫ N

1

| f (s)− a|
s

ds +
1

log t

∫ t

N

| f (s)− a|
s

ds

≤ 1
log t

∫ N

1

| f (s)|+ |a|
s

ds +
1

log t

∫ t

N

| f (s)− a|
s

ds

≤ 1
log t

∫ N

1

M + |a|
s

ds +
1

log t

∫ t

N

ε/2
s

ds

=
M + |a|

log t

∫ N

1

ds
s
+

ε/2
log t

∫ t

N

ds
s

=
M + |a|

log t
· log s

∣∣∣∣N
1
+

ε/2
log t

· log s
∣∣∣∣t

N

=
M + |a|

log t
(log N − log 1) +

ε/2
log t

(log t− log N)

=
(M + |a|) log N

log t
+

ε

2
·
(

1− log N
log t

)
<

ε

2
+

ε

2
= ε.

Therefore,
1

log t

∫ t

1

f (s)
s

ds→ a as t→ ∞.
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August 1994

1. For which real x does the series
∞

∑
n=1

ne−nx converge?

Solution: We know that the series converges if lim sup cn+1
cn

< 1, where cn = ne−nx. But

lim
n→∞

∣∣∣∣∣ (n + 1)e−(n+1)x

ne−nx

∣∣∣∣∣ = lim
n→∞

∣∣∣∣n + 1
n
· e−nxe−x

e−nx

∣∣∣∣ = |e−x|

So we want |e−x| = e−x < 1. This implies that x > 0. We need now only check the case
where x = 0. But this is easily done as

∞

∑
n=1

ne−nx
∣∣∣∣

x=0
=

∞

∑
n=1

n

which clearly diverges. So the series ∑∞
n=1 ne−nx converges for x > 0.

2. Suppose that f is a differentiable function on [0, ∞), lim
x→∞

f (x)/x = 0, and lim
x→∞

f ′(x) = a.
Prove that a = 0.

3. Find limn→∞ xn when xn+1 =
√

xn + a, a > 0, and x1 =
√

a.

4. Prove that if a function f (x) is integrable on [a, b] then its absolute value | f (x)| is also
integrable on [a, b] and ∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
| f (x)| dx.

5. Let f be a complex valued function on a set D and suppose that | f (x)| < 1 for each
x ∈ D.

(a) Show that the sequence of powers of f , { f , f 2, f 3, . . .} converges pointwise.

(b) Find necessary and sufficient conditions for the convergence to be uniform.

6. Let K(x, y) be continuous on the rectangle [a, b]× [c, d] ⊂ R2. For integrable functions f
on [c, d] define an operator T by

(T f )(x) =
∫ d

c
K(x, y) f (y) dy.

(a) Show that (T f )(x) is a continuous function on [a, b].
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(b) Show that S = {T f :
∫ d

c | f (x)| dx ≤ 1} is an equicontinuous family of functions on
[a, b].

7. Let U = {(u, v) ∈ R2 : u > 0} and define F : U → R2 by F(u, v) = (u cos v, u sin v) =
(x, y).

(a) Show that F is an open mapping on U.

(b) Find ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y.

8. Let f (x, y) = x2 + y2 − 5 be a function on R2.

(a) Describe thoroughly the results of applying the Implicit Function Theorem in a neigh-
borhood of the point (2, 1).

(b) Describe thoroughly the results of applying the Implicit Function Theorem in a neigh-
borhood of the point (

√
5, 0).
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August 1997

1. Let K ⊂ Rn be a compact set and let ε > 0. Set J = {x ∈ Rn : dist(x, K) ≤ ε}, where
dist(x, K) = inf{‖x− y‖2 : y ∈ K} and ‖t‖2 is the usual norm in Rn. Prove that J is com-
pact.

2. Determine the convergence or divergence of the following sequences {xn}∞
n=1.

(a) xn =
1

n2 + 1
+

2
n2 + 2

+ · · ·+ n
n2 + n

(b) xn =

(
−1

2

)n

+ sin
(nπ

2

)
(c) xn =

nn + (−n)n

2
+

(
1 +

1
2n

)n

Solution:

(a) Observe

(1 + 2 + · · ·+ n) · 1
n2 + n

≤ xn ≤ (1 + 2 + · · ·+ n) · 1
n2 + 1

n(n + 1)
2

· 1
n2 + n

≤ xn ≤
n(n + 1)

2
· 1

n2 + 1
1
2
≤ xn ≤

n2 + n
2n2 + 2

for all n ∈N. By Squeeze Theorem, we have

lim
n→∞

1
2
≤ lim

n→∞
xn ≤ lim

n→∞

n2 + n
2n2 + 2

1
2
≤ lim

n→∞
xn ≤

1
2

so that we must have limn→∞ xn = 1
2 .

(b) Define a sequence bn = (− 1
2 )

n. Clearly, bn → 0 as n→ ∞. If the sequence xn converged,
then so too would the sequence {xn − bn} = {sin( nπ

2 )}. But

{xn − bn} = {0, 1, 0,−1, 0, 1, 0,−1, 0, . . .}

clearly does not converge. Therefore, {xn} does not converge.
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(c) The sequence cn = (1 + 1/(2n))n converges as

lim
n→∞

(
1 +

1
2n

)n

= lim
n→∞

[(
1 +

1
2n

)2n
]1/2

=

[
lim
n→∞

(
1 +

1
2n

)2n
]1/2

=
√

e.

If the sequence xn converged, then the sequence {xn − cn} would converge. But
xn − cn = nn+(−n)n

2 . However,

nn + (−n)n

2
=

{
nn, n even
0, n odd

so that {xn − cn} cannot converge. But then neither can {xn} converge.

3. Determine whether or not ∑∞
n=1 un(x) converges uniformly on I, where un(x) and I are

given in parts (a) and (b) below

(a) I = R and un =

{
0, |x| ≤ n or |x| ≥ n + 1
n sin(1/n2), n < |x| < n + 1

(b) I = [1, ∞) and un(x) =
∫ x

1 e−nt2
dt, x ∈ I.

4. Let D+ and D− denote the operation of taking derivatives of real functions from the right

and left respectively, for example D+ f (x) = lim
y→x+

f (y)− f (x)
y− x

, D− is defined similarly.

(a) Give an example of a function for which D+ f (0), D− f (0) both exist but are not equal.

(b) Prove or disprove: if D+ f (0), D− f (0) both exist then the function f is continuous at
x = 0.

5. Suppose that f (x) = x and g(x) =


0, 0 ≤ x < 1/2
1/2, x = 1/2
1, 1/2 < x ≤ 1

, evaluate:

(a)
∫ 1

0 f dg

(b)
∫ 1

0 g d f

6. For a nonnegative integer l let Pl(x) = ∑l
k=0 akxk for real numbers ak and x ∈ [−1, 1].

Given a positive integer n set F (n) = {Pl(x) : 0 ≤ l ≤ n and |ak| < 1 for k = 0, . . . , l}. So
F (n) is the set of polynomials of degree less than or equal n whose coefficients all have
absolute value less than 1. Prove or disprove, for each n, the set F (n) is equicontinuous.

7. Let f (x, y) = |x|1/2|y|1/2 + xy be a real function on R2.
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(a) Find the partial derivatives of f at the origin.

(b) Discuss the differentiability of f at the origin.

8. Let x = r cos θ sin φ, y = r sin θ sin φ, and z = r cos φ. Define the map F(r, θ, φ) = (x, y, z)
from (r, θ, φ) ∈ R3 to (x, y, z) ∈ R3.

(a) Prove or disprove, F has a global inverse on R3.

(b) Find
∂

∂x
θ(0, 1, 0).
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August 1998

1. Construct an open set containing every rational number but not every real number.
What can be said about the closure of any such set?

Solution: Let I be a finite collection of irrational numbers in R. Clearly, I is bounded.
Without loss of generality, assume the finite elements of I are i1, i2, · · · , in such that i1 <
i2 < · · · < in. Now let

S = R \ I =
n⋃

j=1

(ij, ij+1)
⋃
(−∞, i1) ∪ (in, ∞)

It is clear that S is open as it is the union of open sets. Clearly, S contains all rational
as x ∈ S for all x ∈ R except for x ∈ I. As a concrete example, take I = {

√
2}. Then

S = (−∞,
√

2) ∪ (
√

2, ∞) = R \ {
√

2} = {
√

2}C.
Now suppose S contains all rational numbers but S 6= R and that S is open. Consider

S. If x ∈ R, then every open neighborhood of x contains a rational number distinct from x
as Q is dense in R. But then every open neighborhood of every point x ∈ R intersects x at
a point distinct from x. Then x is a limit point of S. But then x ∈ S. Therefore, S = R. Or to
see this second part, note that S ⊃ Q and Q is dense in R so that R = R ⊃ S ⊃ Q = R.

2. Prove the inequalities

pyp−1(x− y) ≤ xp − yp ≤ pxp−1(x− y),

where x and y are real numbers satisfying 0 < y < x, and p is a real number satisfying
1 ≤ p < ∞.28

Solution: Consider the function f (x) = xp. Observe that f (x) is smooth on R. In particular,
f (x) is differentiable on [y, x], f ′′(x) exists and is everywhere continuous. By the Mean
Value Theorem, there exists c ∈ (y, x) such that f ′(c) = f (x)− f (y)

x−y . However, f ′(x) = pxp−1

and f ′′(x) = p(p− 1)xp−2 > 0. Since f ′′(x) ≥ 0 for all x ∈ [0, ∞), f ′(y) ≤ f ′(c) ≤ f ′(x).
However, this is pyp−1 ≤ xp−yp

x−y ≤ xp. This is precisely,

pyp−1(x− y) ≤ xp − yp ≤ pxp−1(x− y).

OR

28The result also holds, with inequalities reversed, for 0 < p < 1.
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Let r ∈ (0, 1) and 0 < p < 1. Since r < 1, we have r < p. Observe p is the p-fold sum
of 1. Now r < 1 so that by induction, rn < 1 and rn < rn−1 for all n ∈N. Then we have

prp−1 = rp−1 + rp−1 + · · ·+ rp−1︸ ︷︷ ︸
p times

< rp−1 + rp−2 + · · ·+ r + 1
< 1 + 1 + · · ·+ 1︸ ︷︷ ︸

p times

= p

Noting that ∑n−1
k=0 rk = 1−rn

1−r , multiplication by 1− r yields

prp−1(1− r) ≤ 1− rp ≤ p(1− r)

Now 0 < y < x so that y/x < 1. Setting r = y/x yields

p
(y

x

)p−1 (
1− y

x

)
≤ 1−

(y
x

)p
≤ p

(
1− y

x

)
Now multiplication by xp > 0 gives

xp · p
(y

x

)p−1 (
1− y

x

)
≤ xp ·

[
1−

(y
x

)p]
≤ xp · p

(
1− y

x

)
p · xp−1 ·

(y
x

)p−1 (
1− y

x

)
· x ≤ xp − xp ·

(y
x

)p
≤ p · xp ·

(
1− y

x

)
pyp−1(x− y) ≤ xp − yp ≤ pxp−1(x− y).

3. Let F(x, y, u, v) = 3x2 − y2 + u2 + 4uv + v2 and G(x, y, u, v) = x2 − y2 + 2uv.

(a) Show that the equations

F(x, y, u, v) = 9,
G(x, y, u, v) = −3

determine x and y as functions of u and v in a neighborhood of u = 1, v = 1 with
x(1, 1) = 2 and y(1, 1) = 3. Also find ∂y

∂u at (u, v) = (1, 1).

(b) If the numbers 9 and −3 on the right-hand sides of the equations above are both
replaced by 0, show that there is no open set in the (u, v)-plane on which the resulting
equations define x and y as functions of u and v.
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4. Let f be a real valued continuous function on [0, 1) such that

lim
x→1−

f (x) = f (0).

Prove that f cannot be one-to-one.

5. Suppose f is real-valued continuous on [0, 1] and∫ 1

0
f (x) e−λx2

dx = 0, all λ ≥ 0.

Show that f (x) ≡ 0 on [0, 1].
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August 1999

1. Use e = 1
0! +

1
1! +

1
2! +

1
3! + · · · to prove that e is irrational.

Solution: Let sn = 1
0! +

1
1! +

1
2! + · · · +

1
n! . Observe that sn increases monotically to e.

Furthermore, we have

e− sn =
1

(n + 1)!
+

1
(n + 2)!

+ · · · < 1
(n + 1)!

(
1 +

1
n + 1

+
1

(n + 1)2 + · · ·
)

=
1

(n + 1)!
· 1

1− 1
n+1

=
1

(n + 1)!
· n + 1

n
=

1
n! n

Now suppose that e were rational and that e = p/q, where p, q ∈ Z, q 6=, and gcd(p, q) = 1.
Of course, p, q > 0 as e > 0. By the work above, we have 0 < e − sq < 1

q! q so that

0 < q!(e− sq) <
1
q which holds if and only if 0 < q!e− q!sq <

1
q . By assumption, e = p/q

so that q!e = (q− 1)!p ∈ Z. Furthermore,

q!s = q!
(

1
0!

+
1
1!

+
1
2!

+ · · ·+ 1
q!

)
∈ Z

Therefore, this shows that q!(e− sq) is an integer. But then as 0 < q!(e− sq) <
1
q and q ≥ 1

this implies there is an integer between 0 and 1, a contradiction.

2. Let an, bn ≥ 0. Assume that ∑ an converges and that lim sup bn
an
≤ M < ∞. Show that

∑ bn converges.

Solution: As lim sup bn
an
≤ M < ∞, there is a n0 ∈N such that bn

an
≤ M for all n > n0. But

then
0 ≤ bn ≤ Man

for all n > n0. As ∑ an converges, M ∑ an converges so that M ∑n>n0
an converges. But

then we have ∑n>n0
bn converges. But

∑ bn =
n0

∑
n=0

bn + ∑
n>n0

bn

is the sum of two convergent series. Therefore, ∑ bn converges.

3. Let f be bounded on the real interval (a, b), show that if addition f is both continuous
and monotone then f is uniformly continuous.
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4. Define

f (x) =

{
0, x irrational
1
n , x = m

n , where m, n

Prove that f is integrable on [0, 1].29

Solution: Note that by definition, f (x) ≥ 0 for all x ∈ [0, 1]. If x ∈ Q, we force x = m
n ,

where m, n ∈ Z+ to avoid x = m
n = −m

−n . Let P = {x0, . . . , xn} be a partition of [0, 1]. Since
the irrational numbers are dense in R, there exists an irrational number in each interval
[xi, xi+1] for i = 0, . . . , n− 1}. Thus, we must have L(P, f ) = 0 for every partition P of
[0, 1]. Hence to show that f (x) is integrable, it is sufficient to show for every ε > 0, there
exists a partition P with U(P, f ) < ε.

Let Sn = {x : f (x) ≥ 1
n}. If x ∈ Sn, then x = r

s , where r, s ≤ n. In particular since
0 ≤ r, s ≤ n, the set Sn is finite as it can at most contain the elements { r

s : r = 0, . . . , n, s =
1, . . . , n}.

Let ε > 0 and choose n ∈N such that 1
n < ε

2 . Let E = {i : Sn ∩ [xi, xi+1] = ∅}. It is clear
that |E| ≤ |Sn|, where | · | represents the cardinality of the set. If i ∈ E, then Mi <

1
n < ε

2
and if i /∈ E then Mi = 1, where Mi = supx∈[xi ,xi+1]

f (x). Observe ∆xi = xi+1 − xi <
ε

2|Sn| .
But then we have

U(P, f ) =
n

∑
i=1

Mi∆xi

= ∑
i∈E

Mi∆xi + ∑
i/∈E

Mi∆xi

< ∑
i∈E

ε

2
∆xi + ∑

i/∈E
∆xi

<
ε

2
+ |Sn| ·

ε

2|Sn|
< ε.

But then U(P, f ) = U(P, f )− L(P, f ) < ε. Therefore, f (x) is integrable. Furthermore,

0 = L(P, f ) ≤
∫ 1

0
f (x) dx ≤ U(P, f ) < ε.

But then
∫ 1

0 f (x) dx = 0.

5. Let { fn} be a sequence of uniformly bounded Riemann integrable function on [0, 1], set
Fn(s) =

∫ s
0 fn(t) dt for 0 ≤ s ≤ 1. Prove that a subsequence of {Fn} converges uniformly

29Note: it is assumed f (x) = 1
n when x = m

n ∈ Q. If x = 0, the given f (x) is not well defined. We assume
f (x) = 1 if x = 0 so that f is continuous at every irrational number but discontinuous at every rational number,
as one can show. However, this value does not affect integrability or the value of the integral.
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on [0, 1].

Solution: The space [0, 1] is compact. We know also that Fn(s) is continuous on [0, 1]. By
assumption, the set { fn} is uniformly bounded. Suppose that | fn(x)| ≤ M for all n and
x ∈ [0, 1]. Then

|Fn(s)| =
∣∣∣∣∫ s

0
fn(t) dt

∣∣∣∣ ≤ ∫ s

0
| fn(t)| dt ≤

∫ s

0
M dt = Ms ≤ M(1− 0) = M

Therefore, {Fn(s)} is uniformly bounded for all n and s ∈ [0, 1]. Now we see that {Fn} is
(uniformly) equicontinuous: suppose that s > r, then we have

|Fn(s)− Fn(t)| =
∣∣∣∣∫ s

r
fn(t) dt

∣∣∣∣ ≤ ∫ s

r
| fn(t)| dt ≤

∫ s

r
M dt = M(r− s) ≤ M(1− 0) = M

Then given ε > 0, simply choose δ = ε/M. Therefore given |s − r| < δ, we have
|Fn(s)− Fn(t)| ≤ M(r− s) < Mδ < ε so that {Fn} is (uniformly) equicontinuous. But then
there is a subsequence of {Fn(s)} that converges for each s ∈ [0, 1].

6. Let f (x) be a differentiable mapping of the connected open subset V of Rn. Suppose
that f ′(x) = 0 on V, prove that f is constant on V.

Solution: Fix x ∈ V and define S = {y ∈ V : f (y) = f (x)}. Note that S is nonempty as
x ∈ S. We need show that S is open and closed.

Let y ∈ S, then y ∈ V so that there exists r > 0 such that Nr(y) ⊆ V since V is
open. But Nr(y) is a convex, open subset of Rn and ‖ f ′(x)‖ ≤ 0 for all x ∈ Nr(y). Then
| f (u)− f (v)| ≤ 0|u− v| = 0 for all u, v ∈ Nr(y). Then f (u) = f (v) for all u, v ∈ Nr(y).
But then Nr(y) ⊆ S so that S is open.

Now let {yn} ⊆ S be a sequence such that yn → y ∈ V. Since V is open, there exists
r > 0 such that Nr(y) ⊆ V. Now as Nr(y) is convex, f (u) = f (v) for all u, v ∈ Nr(y).
But then f (yn) = f (x) as yn ∈ S. But lim f (yn) = f (y) since f is continuous. But then
f (x) = f (y) so that S is closed.

Now S is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V.

7. Let f (x, y) = (u, v), where u = x2 − y2 and v = 2xy. Describe a map from R2 to R2.

(a) What is the range of this map?

(b) Show there is no neighborhood of (0, 0) in which f has an inverse.
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August 2001

1. Let A be an uncountable set of real numbers. Prove that A has an accumulation point.

Solution: Let An = A ∩ [n, n + 1]. As A = ∪n∈Z An, if each An were countable then A
would be the countable union of countable sets, hence countable, a contradiction. Then for
some n0 ∈ Z, An0 is uncountable. However, An0 ⊂ [n0, n0 + 1]. But then An0 is an infinite
subset of a compact set in R so that An0 has a limit point in [n0, n0 + 1], say x. But for
each ε > 0, there is a y ∈ An0 such that B(x, ε). But y ∈ A so that x is a limit points of A.

2. Let f (x) be a differentiable mapping of the connected open subset V of Rn. Suppose
that f ′(x) = 0 on V. Prove that f is constant on V.

Solution: Fix x ∈ V and define S = {y ∈ V : f (y) = f (x)}. Note that S is nonempty as
x ∈ S. We need show that S is open and closed.

Let y ∈ S, then y ∈ V so that there exists r > 0 such that Nr(y) ⊆ V since V is
open. But Nr(y) is a convex, open subset of Rn and ‖ f ′(x)‖ ≤ 0 for all x ∈ Nr(y). Then
| f (u)− f (v)| ≤ 0|u− v| = 0 for all u, v ∈ Nr(y). Then f (u) = f (v) for all u, v ∈ Nr(y).
But then Nr(y) ⊆ S so that S is open.

Now let {yn} ⊆ S be a sequence such that yn → y ∈ V. Since V is open, there exists
r > 0 such that Nr(y) ⊆ V. Now as Nr(y) is convex, f (u) = f (v) for all u, v ∈ Nr(y).
But then f (yn) = f (x) as yn ∈ S. But lim f (yn) = f (y) since f is continuous. But then
f (x) = f (y) so that S is closed.

Now S is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V.

3. Prove or disprove: the function f (x) = x3/2 log x is uniformly continuous on the interval
(0, 1).

Solution: First, observe that g(x) = x3/2 and h(x) = log x are differentiable on (0, 1). We
have g′(x) = 3

2 x1/2 and h′(x) = 1
x . Now using l’Hôpital’s Rule, we have

lim
x→0

x3/2 log x = lim
x→0

log x
1

x3/2

L.H.
= = lim

x→0

1
x

− 3
2x5/2

= lim
x→0

(
−2

3
x3/2

)
= 0.

Furthermore, we have limx→1 g(x) = 1 and limx→1 h(x) = 0 so that limx→1 g(x)h(x) =
limx→1 g(x) · limx→1 h(x) = 1 · 0 = 0. Finally, since g(x) and h(x) are differentiable on
(0, 1), they are continuous on (0, 1), forcing their product f (x) to be continuous on (0, 1).
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Define F(x) via

F(x) =

{
f (x), x ∈ (0, 1)
0, otherwise

Now by the work above F(x) is continuous on [0, 1]. But then F is continuous on a compact
interval and is hence uniformly continuous. But then F(x) is uniformly continuous on
(0, 1). But F(x) = f (x) on (0, 1) by construction. Therefore, f (x) is uniformly continuous
on (0, 1).

4. Let f (x, y) = (u, v), where u = x2 − y2 and v = 2xy describe a map from R2 to R2.

(a) What is the range of this map?

(b) Show that if (u, v) 6= (0, 0) then f has an inverse in a neighborhood of (u, v).

(c) Show that there is no neighborhood of (0, 0) in which f has an inverse.

5. Prove that
∞

∑
n=1

sin(n4x)
n2

defines a continuous function on R.

Solution: Let fn(x) = sin(n4x)
n2 . It is clear that fn(x) is continuous for each n ∈N. It is clear

also that ∣∣∣∣∣ ∞

∑
n=1

sin(n4x)
n2

∣∣∣∣∣ ≤ ∞

∑
n=1

∣∣∣∣sin(n4x)
n2

∣∣∣∣ ≤ ∞

∑
n=1

1
n2 < ∞

so that by the Weierstrass M-test, ∑∞
n=1 fn(x) = ∑∞

n=1
sin(n4x)

n2 converges uniformly on R.
That is, gm(x) = ∑m

n=1 fn(x) converges uniformly. Each gm(x) is continuous as it is the
finite sum of continuous functions. But then gm is a sequence of continuous functions that
converges uniformly so that the limit, namely ∑∞

n=1
sin(n4x)

n2 is continuous.

6.

(a) Find the limit

lim
λ→∞

λ
∫ 1

−1
e−λ|y| dy.

(b) Let g : R→ R be a bounded, continuous function. For x ∈ R, find the limit

lim
λ→∞

λ
∫ 1

−1
g(x + y)e−λ|y| dy.

Hint: Try a “nice” g first, formulate a guess, and then try to prove your guess is correct.
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January 2002

1. Let A and B be subsets of a metric space. Prove that A ∩ B ⊂ A ∩ B and given an
example when A ∩ B 6= A ∩ B.

Solution: Let x ∈ A ∩ B. If x ∈ A∩ B, then x ∈ A ⊂ A and x ∈ B ⊂ B. But then x ∈ A∩ B.
Now if x ∈ (A ∩ B)′ then all neighborhoods of x intersect A ∩ B at a point y distinct from
x. But observe that y ∈ A and y ∈ B. But then x ∈ A′ and x ∈ B′ so that x ∈ A and x ∈ B.
Therefore, x ∈ A ∩ B. This shows that A ∩ B ⊂ A ∩ B.

To see strict inclusion, take A = (−1, 0) and B = (0, 1). Then we have A = [−1, 0] and
B = [0, 1] so that A ∩ B = ∅ and A∩ B = {0}. As another example we have A = (0, 1)∪N

and B = (−1, 0)∪N. Then we have A = [0, 1]∪N and B = [−1, 0]∪N so that A ∩ B = N

and A ∩ B = N∪ {0}. As a final example, take A = Q and B = QC. Then we have A = R

and B = R so that A ∩ B = ∅ and A ∩ B = R.

2. Let f and f ′ be continuous functions on R. Prove that the sequence of functions

gn(x) =
f (x + 1/n)− f (x)

1/n

converges to f ′(x) uniformly on every interval [a, b], −∞ < a < b < ∞.

3. Let f be a Riemann integrable function on [0, 1] and

F(x) =
∫ x

0
f (t) dt

(a) Show that there is a constant C such that |F(x)− F(y)| ≤ C|x− y| for every x, y ∈ [0, 1].

(b) Given an example of f such that F is not differentiable at some point.

Solution:

(a) Since f (t) is Riemann integrable on [0, 1], we know that f (t) is bounded on [0, 1].
Suppose that | f (t)| ≤ M for all t ∈ [0, 1]. Without loss of generality, suppose that
x > y, then

|F(x)− F(x)| =
∣∣∣∣∫ x

0
f (t) dt−

∫ y

0
f (t) dt

∣∣∣∣
=

∣∣∣∣∫ x

y
f (t) dt

∣∣∣∣
≤
∫ x

y
| f (t)| dt

≤
∫ x

y
M dt = M(x− y) = M|x− y|
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(b) If f (t) is continuous on [0, 1], then we know that F(x) is differentiable on [0, 1]. Our
example must need then be not continuous at some point. Let

f (t) =

{
0, t ∈ [0, 1

2 )

1, t ∈ [ 1
2 , 1]

Then we have

F(1/2 + h)− F(1/2)
h

=

∫ 1
2+h

0 f (t) dt− 0
h

=
1
h

∫ 1
2+h

0
f (t) dt =

1
h

∫ 1
2+h

1
2

1 dt =
h
h
= 1

so that F(x) clearly cannot be differentiable at x = 1
2 .

4. Show that the sequence

fn(x) =
tan−1(nx)√

n

is equicontinuous on R and converges uniformly to f (x) = limn→∞ fn(x).

Solution:
5. Determine the values of α for which f is differentiable at (0, 0) when

f (x, y) =

(x2 + y2)α sin
(

1
x2 + y2

)
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

6. Show that if φ(y) is a continuously differentiable function on (−a, a), a > 0, such that
φ(0) = 0 and |φ′(y)| ≤ k < 1 on (−a, a), then there is ε > 0 and a unique differentiable
function g on (−ε, ε) satisfying the equation x = g(x) + φ(g(x)).
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August 2002

1. Let f : (0, 1) → R be continuous, bounded, and decreasing. Prove that f is uniformly
continuous on (0, 1).

Solution: We show that f (x) has a continuous extension g(x) on [0, 1]. That is, there is
a continuous function g(x) : [0, 1] → R such that g(x) = f (x) on (0, 1). But as g(x) is
continuous on a compact set so that it is uniformly continuous and as g(x) = f (x) on (0, 1),
we know that f (x) is uniformly continuous on (0, 1).

As f (x) is decreasing, f (x) < f (y) if x > y. Let L = inf{ f (x) | x ∈ (0, 1)}. As
f (x) is bounded, it is clear that L is finite. Let ε > 0 be given. By the properties of the
infimum, there is a y0 = f (x0) such that L ≤ y0 ≤ L + ε. Choose δ = 1− x0 > 0 so that
0 < 1− x < δ for x ∈ (x0, 1). But then L ≤ f (x) < f (x0) < L + ε. But this shows for
x ∈ (x0, 1), we have | f (x)− L| < ε. As f (x) is continuous, this shows that f (x) → L as
x → 1. If L′ = sup{ f (x) | x ∈ (0, 1)}, a similar argument shows that limx→0 f (x) = L′.
Define

g(x) =


L′, x = 0
f (x), 0 < x < 1
L, x = 1

The work above shows that g(x) is continuous then the comments above show that f (x) is
uniformly continuous.

2. Consider the function f : Rn → R given by f (x) =
∑n

j=1 x3
j

‖x‖2 if x 6= 0 and f (0) = 0, where
x = (x1, x2, · · · , xn) and ‖x‖ is the Euclidean norm of x. Prove that f is continuous on Rn.

Solution: Observe that ∑n
j=1 x3

j = x3
1 + x3

2 + · · ·+ x3
n and ‖x‖2 = x2

1 + x2
2 + · · ·+ x2

n are both
polynomial functions in n variables, which are continuous. If f (x), g(x) are continuous,
then f (x)

g(x) is continuous at x if g(x) 6= 0 at x. It follows immediately that f (x) is continuous

if ‖x‖2 6= 0. But as ‖ · ‖ is a norm, ‖x‖ = 0 if and only if x = 0. We then only need consider
continuity at the origin. That is, given ε > 0, we need produce a δ > 0 such that

| f (x)− f (0)| =
∣∣∣∣∣∑

n
j=1 x3

j

‖x‖2 − 0

∣∣∣∣∣ =
∣∣∣∣∣∑

n
j=1 x3

j

‖x‖2

∣∣∣∣∣ < ε

We do this by induction. If n = 1, we have f1(x) = x3

x2 = x and f (0) = 0. But this is trivially
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continuous at the origin. Now assume that fn(x) is continuous for n = 1, 2, · · · , k. Then

| fk+1(x)− f (0)| =
∣∣∣∣∣∑

k+1
j=1 x3

j

‖x‖2 − 0

∣∣∣∣∣
=

∣∣∣∣∣∑
k+1
j=1 x3

j

‖x‖2

∣∣∣∣∣
=

∣∣∣∣∣ x3
1 + x3

2 + · · ·+ x3
k + x3

k+1

x2
1 + x2

2 + · · ·+ x2
k + x2

k+1

∣∣∣∣∣
≤
∣∣∣∣∣ x3

1 + x3
2 + · · ·+ x3

k + x3
k+1

x2
1 + x2

2 + · · ·+ x2
k

∣∣∣∣∣
=

∣∣∣∣∣ x3
1 + x3

2 + · · ·+ x3
k

x2
1 + x2

2 + · · ·+ x2
k
+

x3
k+1

x2
1 + x2

2 + · · ·+ x2
k

∣∣∣∣∣
=

∣∣∣∣∣ fk(x) +
x3

k+1

x2
1 + x2

2 + · · ·+ x2
k

∣∣∣∣∣
3. Prove that the system

xy5 + yu5 + zv5 = 1

x5y + y5u + z5v = 1

has a unique solution u = f (x, y, z), v = g(x, y, z) in a neighborhood of the point
(u, v, x, y, z) = (1, 0, 0, 1, 1). Find ∂u

∂x (0, 1, 1).

Solution: Let F(u, v, x, y, z) = (xy5 + yu5 + zv5 − 1, x5y + y5u + z5v− 1). It is routine to
check that F(1, 0, 0, 1, 1) = (0, 0). F(u, v, x, y, z) has Jacobian(

5yu4 5zv4 y5 5xy4 + u5 v5

y5 z5 5x4y x5 + 5y4u 5z4v

)
Since each of these partials exist and are continuous, we know that F(u, v, x, y, z) is con-
tinuously differentiable on R5. At the point (u, v, x, y, z) = (1, 0, 0, 1, 1), this Jacobian
is (

5 0 1 1 0
1 1 0 5 0

)
We also have Fu,v ∣∣∣∣5 0

1 1

∣∣∣∣ = 5 6= 0
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Then by the Implicit Function Theorem, there are unique functions f (x, y, z) and g(x, y, z)
such that u = f (x, y, z) and v = g(x, y, z) on some open set about (1, 0, 0, 1, 1). Furthermore
by the Implicit Function Theorem, we have

∂u
∂x

(0, 1, 1) = −

∣∣∣∣1 0
0 1

∣∣∣∣∣∣∣∣5 0
1 1

∣∣∣∣ = −
1
5

4. Let Q0 be the set of rationals in the interval [0, 1]. For a bounded function f : Q0 → R

and n = 1, 2, · · · , define

Sn( f ) =
1
n

n

∑
k=1

f (k/n)

If limn→∞ Sn( f ) exists, we say that f is S-summable and let S( f ) = limn→∞ Sn( f ) de-
note this limit. Let f1, f2, · · · be bounded functions on Q0 which are S-summable and
suppose that fk → f uniformly on Q0 as k → ∞. Prove that f is S-summable and that
limk→∞ S( fk) = S( f ).

5. Let a1, a2, · · · be a sequence of real numbers such that limk→∞ ak = L ∈ R exists. For
0 < p < 1, define

A(p) =
∞

∑
k=1

p(1− p)k−1ak

Prove that this sum converges and that limp→0 A(p) = L.

6. Prove that

lim
n→∞

1
n5/2

n

∑
k=1

k3/2 =
2
5
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January 2003

1. Prove that a continuous function on R has a finite or countable number of strict local
maxima.

Solution: Let S = {x0 : ∃δ > 0 3 |x − x0| < δ ⇒ f (x) < f (x0)}. We must show that
S is at most countable. We look at Nδ0(x0) for each x0 ∈ S such that δ is as small as
possible. Note that since f is continuous, each open neighborhood contains only one point
of S. Then choose a rational number in each open neighborhood (since Q is dense in R,
this is possible). But note that Q is at most countable. Therefore, the number of open
neighborhoods is at most countable. Therefore, S is at most countable.

OR

Let M be the set of strict local maxima of a function f . For each x ∈ M, there is a
δx > 0 such that | f (x)| > y for all |x− y| < δ as x is a strict maxima. Let δ0 = min δx/2
for all x ∈ M. It is clear that δ0 > 0 for otherwise there is a maxima with no neighborhood
about it so as to be the only maxima. But one can cover R with intervals of length δ0, each
containing at most one maxima. We can also choose a single rational for each of these
intervals so that the number of strict maxima are at most countable.

2. Proof or counterexample: Let f be a continuous function on [0, 1] that is differentiable
on a dense subset. Also, f ′ > 0 wherever it is defined. Then f is increasing. (Hint: think
about the Cantor function.)

Solution:
3. Find

lim
n→∞

n2
∫ 1

0
ex2

xn(1− x) dx.

Hint: limn→∞ n2
∫ 1

0 xn(1− x) dx = 1.

Solution: First, recall that ex = ∑∞
k=0

xk

k! so that

ex2
=

∞

∑
k=0

x2k

k!
.
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and the convergence of the summation to ex2
is uniform on [0, 1]. But then

lim
n→∞

n2
∫ 1

0
ex2

xn(1− x) dx = lim
n→∞

n2
∫ 1

0

n

∑
k=0

x2k

k!
xn(1− x) dx

= lim
n→∞

n2
∫ 1

0
∑ k = 0n x2k+n

k!
(1− x) dx

= lim
n→∞

n

∑
k=0

1
k!

∫ 1

0
x2k+n(1− x) dx

Now

lim
n→∞

n2
∫ 1

0
x2k+n(1− x) dx = lim

n→∞
n2
∫ 1

0
xn(1− x) dx

= lim
n→∞

n2
∫ 1

0
xn − xn+1 dx

= lim
n→∞

n2
[

xn+1

n + 1
− xn+2

n + 2

]1

0

= lim
n→∞

n2
[

1
n + 1

− 1
n + 2

]
= lim

n→∞

n2

(n + 1)(n + 2)
= 1

Therefore,

lim
n→∞

n2
∫ 1

0
ex2

xn(1− x) dx = lim
n→∞

n

∑
k=0

1
k!

∫ 1

0
x2k+n(1− x) dx

= lim
n→∞

n

∑
k=0

1
k!

=
∞

∑
k=0

1
k!

= e

4. Let an, bn ≥ 0. Assume that ∑ an converges and that lim sup bn
an
≤ M < ∞. Show that

∑ bn converges.

Solution: As lim sup bn
an
≤ M < ∞, there is a n0 ∈N such that bn

an
≤ M for all n > n0. But

then
0 ≤ bn ≤ Man
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for all n > n0. As ∑ an converges, M ∑ an converges so that M ∑n>n0
an converges. But

then we have ∑n>n0
bn converges. But

∑ bn =
n0

∑
n=0

bn + ∑
n>n0

bn

is the sum of two convergent series. Therefore, ∑ bn converges.

5. Let f (x) be a differentiable mapping of the connected open subset V of Rn to Rm.
Suppose that f ′(x) = 0 on V. Prove that f is constant on V.

Solution: Fix x ∈ V and define S = {y ∈ V : f (y) = f (x)}. Note that S is nonempty as
x ∈ S. We need show that S is open and closed.

Let y ∈ S, then y ∈ V so that there exists r > 0 such that Nr(y) ⊆ V since V is
open. But Nr(y) is a convex, open subset of Rn and ‖ f ′(x)‖ ≤ 0 for all x ∈ Nr(y). Then
| f (u)− f (v)| ≤ 0|u− v| = 0 for all u, v ∈ Nr(y). Then f (u) = f (v) for all u, v ∈ Nr(y).
But then Nr(y) ⊆ S so that S is open.

Now let {yn} ⊆ S be a sequence such that yn → y ∈ V. Since V is open, there exists
r > 0 such that Nr(y) ⊆ V. Now as Nr(y) is convex, f (u) = f (v) for all u, v ∈ Nr(y).
But then f (yn) = f (x) as yn ∈ S. But lim f (yn) = f (y) since f is continuous. But then
f (x) = f (y) so that S is closed.

Now S is both open and closed in V. Since S is nonempty and V is connected, it must
be that S = V. Therefore, f is constant on V.

6. Let f (x, y) = (u, v), where u = x4 − y4 and v = 2xy, be a map from R2 to R2.

(a) Show that if (u, v) 6= (0, 0) then f has an inverse in a neighborhood of (u, v).

(b) Show that there is no neighborhood of (0, 0) in which f has an inverse.

Solution:

(a) We have

J f (x, y) = det
(

4x3 −4y3

2y 2x

)
= 8x4 + 8y4

Then (u, v) = (0, 0) if and only if x4 − y4 = 0 and 2xy = 0 if and only if x = ±y and
x = 0 or y = 0 if and only if (x, y) = (0, 0). So if (u, v) 6= (0, 0), then (x, y) 6= (0, 0)
and J f (x, y) 6= 0. Clearly, f ∈ C′(R2) since all the partial derivatives for f exist and are
continuos. By the Inverse Function Theorem, f has an inverse in a neighborhood of
(u, v).
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(b) Let Nr(0, 0) be a neighborhood of (0, 0). Let (x, y) ∈ Nr(0, 0), then (−x,−y) ∈ Nr(0, 0).
But f (x, y) = (x4 − y4, 2xy) = ((−x)4 − (−y)4, 2(−x)(−y)) = f (−x,−y). But then
f cannot be injective in a neighborhood of (0, 0). But then f is not injective in any
neighborhood of (0, 0) so that there can exist no neighborhood of (0, 0) in which f has
an inverse.

258



August 2003

1. If f is continuous on [a, b] and

F(x) =
∫ x

a
f (t) dt

for x ∈ [a, b], show that F′ = f on (a, b).

Solution: Let x ∈ [a, b], ε > 0, and h be such that x + h < b and 0 < h < δ (δ given by the
continuity of f below). Observe that

F(x + h)− F(x)
h

=

∫ x+h
a f (t) dt−

∫ x
a f (t) dt

h
=

∫ x+h
x f (t) dt

h
=

1
h

∫ x+h

x
f (t) dt

As f is continuous at x, there is a δ > 0 such that when | f (t) − f (x)| < ε whenever
|t − x| < δ. Now if t ∈ [x, x + h], x ≤ t ≤ x + h so that 0 < t − x ≤ h < δ. But then
|t− x| < δ so that | f (t)− f (x)| < ε. Then f (x)− ε < f (t) < f (x) + ε and

f (x)− ε < f (t) < f (x) + ε∫ x+h

x
( f (x)− ε) dt <

∫ x+h

x
f (t) dt <

∫ x+h

x
( f (x) + ε) dt

( f (x)− ε)
∫ x+h

x
dt <

∫ x+h

x
f (t) dt < ( f (x) + ε)

∫ x+h

x
dt

( f (x)− ε) h <
∫ x+h

x
f (t) dt < ( f (x) + ε) h

f (x)− ε <
1
h

∫ x+h

x
f (t) dt < f (x) + ε

−ε <
1
h

∫ x+h

x
f (t) dt− f (x) < ε

so that
∣∣∣ F(x+h)−F(x)

h − f (x)
∣∣∣ < ε. But then F′(x) exists for x ∈ (a, b) and F′ = f on (a, b).

OR

Consider x ∈ (a, b). Let h > 0 sufficiently small so that x + h ∈ [a, b]. [For instance,
take h = (b− a)/n for some n ∈N>1.]

F(x + h)− F(x)
(x + h)− x

=

∫ x+h
a f (t) dt−

∫ x
a f (t) dt

h

=
1
h

∫ x+h

x
f (t) dt
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As f (x) is continuous on [a, b], the Extreme Value Theorem says that there are r, s ∈ [a, b]
such that f (r) = m and f (s) = M, where m, M are the minimum and maximum of f (x)
on [a, b], respectively. But then we have

1
h

∫ x+h

x
m dt ≤ 1

h

∫ x+h

x
f (t) dt ≤ 1

h

∫ x+h

x
M dt

But simple calculation shows that

1
h

∫ x+h

x
m dt =

hm
h

= m

1
h

∫ x+h

x
M dt =

hM
h

= M

Therefore, we have

f (r) = m ≤1
h

∫ x+h

x
f (t) dt ≤ M = f (s)

f (r) = m ≤F(x + h)− F(x)
(x + h)− x

≤ M = f (s).

We obtain the same inequality considering h < 0 such that x + h ∈ [a, b] (again, one
can take h = (a − x)/n for some n ∈ N>1), mutatis mutandis. Given ε > 0, we can
find a N ∈ N such that N > (b− a)/ε, implying (b− a)/N < ε. But then taking h as
above with n > N, we have |h| < ε. Furthermore, r, s ∈ (x − |h|, x + |h|) ⊂ Bε(x). As
r → x and s → x as n → ∞ and f is continuous, lim|h|→0 f (r) = limr→x f (r) = f (x) and
lim|h|→0 f (s) = lims→x f (s) = f (x). Then by the Squeeze Theorem,

F′(x) := lim
h→0

F(x + h)− F(x)
(x + h)− x

= f (x).

2. Prove that (
n

∑
k=1

1
k

)
− ln n→ γ

for some γ ∈ (1/2, 1).

Solution: Let xn =
(
∑n

k=1
1
k

)
− log n. Observe that

xn − xn−1 =
1
n
− log n + log(n− 1) =

1
n
+ log

(
1− 1

n

)
< 0,
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where the inequality follows from the fact that log(1− x) is a concave function (simply
examine its derivative) and hence lies beneath y = −x and this line is tangent to log(1− x),
evaluating this function at x = 1

n , we have log
(
1− 1

n

)
≤ − 1

n .
Moreover, this sequence is bounded below as

xn =
n

∑
k=1

1
k
>
∫ n+1

1

dt
t
= log(n + 1) > log n

as log x is an increasing function. But then xn > 0 for all n. Therefore, {xn} is a monotone
decreasing sequence which is bounded below. Therefore, {xn} is convergent. Call the limit
of this sequence γ. We only need show γ ∈ (1/2, 1).

Observe that

1
n
− log

(
1 + n

n

)
=
∫ 1/n

0

t
1 + t

dt ≤
∫ 1/n

0
t dt =

1
2n2

1
n
− log

(
1 + n

n

)
=
∫ 1/n

0

t
1 + t

dt ≥
∫ 1/n

0

t
1 + 1

n

dt =
1

2n(n + 1)
.

Therefore,

γ =
∞

∑
n=1

(
1
n
− log

(
1 + n

n

))
≤

∞

∑
n=1

1
2n2 ≤

∞

∑
n=1

1

2n2 − 1
2

=
∞

∑
n=1

1
2

(
1

n− 1
2

− 1
n + 1

2

)
= 1

and

γ =
∞

∑
n=1

(
1
n
− log

(
1 + n

n

))
=

∞

∑
n=1

1
2n(n + 1)

=
∞

∑
n=1

1
2

(
1
n
− 1

n + 1

)
=

1
2

.

Therefore, γ ∈ (1/2, 1).

OR

Observe that e1/k < e for k ≥ 1. It is simple to prove by induction that ∏n
k=1 e1/k ≤ ne
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for n ∈N. Then we have

exn = e

(
∑n

k=1

1
k

)
−ln n

=
e

∑n
k=1

1
k

eln n

=
e

∑n
k=1

1
k

n

=
∏n

k=1 e1/k

n
≤ ne

n
= e

Furthermore, one can show via induction that ∏n
k=1 me1/k ≥ (n− 1)e1/n for n ∈N. Then

exn =
∏n

k=1 e1/k

n

=
e ∏n

k=2 e1/k

n

=
e1/2e1/2 ∏n

k=2 e1/k

n

≥ e1/2 ∏n
k=2 e1/k

n

≥ e1/2(n− 1)e1/n

n

= e1/2 · n− 1
n
· e1/n

which tends to e1/2 as n → ∞. But then e1/2 ≤ exn ≤ e1. This implies (as e is monotone
increasing) that 1

2 ≤ xn ≤ 1 for all n . But then γ ∈ (1/2, 1).

3. Let f : R→ R be given by

f (x) =

{
x, x ∈ R \Q or x = 0

p sin
(

1
q

)
, x = p

q , p, q ∈ Z, gcd(p, q) = 1

Where is f continuous?
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Solution: As limx→0
sin x

x = 1, we have limq→∞ q sin(1/q) = limq→∞
sin(1/q)

1/q = 1. Then for
all ε > 0, there exists a M such that for q > M,∣∣∣∣sin (1/q)

1/q
− 1
∣∣∣∣ < ∣∣∣∣ q

p

∣∣∣∣ ε

2

for any fixed p. Let x /∈ Q and ε > 0 be given. Let δ1 = ε/2, δ2 = limq≤M |x− p/q|, and
δ = min{δ1, δ2}. Then for any y, y = p/q ∈ Q with |x− y| < δ, we have

| f (x)− f (y)| = |x− p sin(1/q)|

=

∣∣∣∣x− p
q
+

p
q
− p sin(1/q)

∣∣∣∣
≤
∣∣∣∣x− p

q

∣∣∣∣+ ∣∣∣∣ p
q
− p sin(1/q)

∣∣∣∣
= |x− y|+

∣∣∣∣ p
q

∣∣∣∣ ∣∣∣∣1− sin(1/q)
1/q

∣∣∣∣
< δ +

∣∣∣∣ p
q

∣∣∣∣ ∣∣∣∣ q
p

∣∣∣∣ ε

2
≤ ε

2
+

ε

2
= ε

Taking δ = ε, we have for any y /∈ Q, | f (x) − f (y)| = |x − y| < δ = ε so that f is
continuous for x /∈ Q. Moreover using the work above, f is continuous at x = 0.

Now let x ∈ Q with x = p/q as in the definition of f . Suppose f were continuous, then
for ε = 1

2

∣∣∣p (sin(1/q)− 1
q

)∣∣∣, there would be δ > 0 such that for y /∈ Q with |x− y| < δ,
| f (x)− f (y)| < ε. But

| f (x)− f (y)| = |p sin(1/q)− y| ≥
∣∣∣∣p sin(1/q)− p

q

∣∣∣∣+ ∣∣∣∣ p
q
− y
∣∣∣∣ > 1

2

∣∣∣∣p(sin(1/q)− 1
q

)∣∣∣∣+ δ > ε,

a contradiction. But then f cannot be continuous for x ∈ Q. Therefore, f is continuous on
the irrationals and x = 0 only.

OR

Note that we need only consider q > 0 as otherwise we have sin(1/q) = − sin(1/|q|)
and the result follows mutatis mutandis. Moreover, we only need consider p ≥ 0 as if x =
p/q, where p/q is rational written in reduced form and p, q > 0, we have −x = (−p)/q
and f (−x) = −p sin(1/q) = − f (x).

It is clear that f (x) is discontinuous at each nonzero rational point. Let p/q be a nonzero
rational written in reduced form. For each n ∈ N, one can find an irrational xn in the
interval (p/q − 1/n, p/q + 1/n) as the irrationals are dense in R. Then we can find a
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sequence {xn} of irrational numbers converging to p/q. If f (x) were continuous at p/q,
then by the continuity of f (x), we would have

lim
n→∞

f (xn) = f ( lim
n→∞

xn) = f (p/q) = p sin
(

1
q

)
But we know that limn→∞ f (xn) = limn→∞ xn = p/q as f (xn) = xn for all xn. Then we
must have p/q = p sin(1/q). If q =, then we have 1 = sin(1), which is clearly false. If
q 6= 1, then we have sin(1/q) < 1/q as for 0 < x < π/2, we know that sin x < x. But this
contradicts the fact that p/q = p sin(1/q) as it must be that p/q > p sin(1/q).

To see continuity at 0, observe that f (0) = 0 so that | f (x)− f (0)| = | f (x)|. However,
| f (x)| ≤ x so that as x → 0, it must be that f (x) → 0 by Squeeze Theorem. To see
continuity of f (x) at each irrational point, observe that limx→∞ sin x/x = 1 so that

lim
q→∞

sin(1/q)
1/q

= 1

Then for ε > 0, there exists an N ∈N such that |q sin(1/q)− 1| ≤ ε/2 for q > N. Now let
x ∈ R be irrational. There exists a 0 < δ < ε/2 such that for each rational p/q, written in
lowest form, with |p/q− x| ≤ δ, then q > N.

| f (p/q)− f (x)| = |p sin(1/q)− x|

=

∣∣∣∣ p
q
· q sin(1/q)− x

∣∣∣∣
=

∣∣∣∣ p
q
· q sin(1/q)− p

q
+

p
q
− x
∣∣∣∣

≤
∣∣∣∣ p

q
· q sin(1/q)− p

q

∣∣∣∣+ ∣∣∣∣ p
q
− x
∣∣∣∣

=

∣∣∣∣ p
q
(q sin(1/q)− 1)

∣∣∣∣+ ∣∣∣∣ p
q
− x
∣∣∣∣

≤ ε

2
+

ε

2
= ε

If y were irrational with |y− x| ≤ ε/2, then | f (y)− f (x)| = |y− x| ≤ ε/2 < ε.

4. For each n, let fn : R → R be a non-decreasing function, and assume fn converges
pointwise to a continuous function f . Prove that fn converges uniformly on compact sets
to f .

Solution: Let a = x0 < · · · < xm = b and choose δ such that |xk+1 − xk| < δ for all
k. Then for x ∈ [a, b], we have x ∈ [xk, xk+1] for some k so that |x − xk| < δ. But then
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| f (x)− f (xk)| < ε/5 by the uniform continuity of f on [a, b] (since f is continuous on a
compact set). Since fn → f , there exists N ∈N such that for n > N, | fn(x)− f (x)| < ε/5.
But then

| fn(x)− f (x)| ≤ | fn(x)− fn(xk)|+ | fn(xk)− f (xk)|+ | f (xk)− f (x)| < | fn(x)− fn(xk)|+
2ε

5

Now | fn(x)− fn(xk)| = fn(x)− fn(xk) since x > xk and fn is non-decreasing,

| fn(x)− fn(xk)| ≤ fn(xk+1)− fn(xk) = | fn(xk+1)− fn(xk)|
≤ | fn(xk+1)− f (xk+1)|+ | f (xk+1)− f (xk)|+ | f (xk)− fn(xk)|

<
ε

5
+

ε

5
+

ε

5
=

3ε

5

But then
| fn(x)− f (x)| < | fn(xk)− fn(xk)|+

2ε

5
< ε

for all x ∈ [a, b]. Therefore, fn converges uniformly to f on compact sets to f .

5. Let f be a continuous function on [0, 1] such that∫ 1

0
e−

nx
1−x f (x) dx = 0

for all n ≥ 0. Show that f is identically zero.

Solution: Define A as

A := { f (x) = a0 + a1e
−x

1−x + a2e
−2x
1−x + · · ·+ ame

−mx
1−x and f (1) = 0 : x ∈ [0, 1), ai ∈ R}

Let f , g ∈ A so that f (x) = a0 + a1e
−x

1−x + a2e
−2x
1−x + · · ·+ ame

−mx
1−x and g(x) = b0 + b1e

−x
1−x +

b2e
−2x
1−x + · · · + bpe

−mx
1−x . Without loss of generality, assume m ≤ p. Then ( f + g)(x) =

(a0 + b0) + (a1 + b1)e
−x

1−x + (a2 + b2)e
−2x
1−x + · · ·+ (am + bm)e

−mx
1−x + · · ·+ bpe

−px
1−x ∈ A. Also,

( f g)(x) ∈ A since
(

aie
−ix
1−x

) (
bje

−jx
1−x

)
= aibje

−(i+j)x
1−x ∈ A. Clearly, if c ∈ R then c f ∈ A.

Therefore, A ⊆ C([0, 1], R) is an algebra. Let x1, x2 ∈ [0, 1] be distinct points. Then

e
−x

1−x ∈ A and e
−x1

1−x1 6= e
−x2

1−x2 . But then A separates points. Let x ∈ [0, 1]. Then f (x) = 1 ∈ A
and f (x) = 1 6= 0 and A vanishes at no point. The interval [0, 1] is compact. By Stone-
Weierstrass, A = C([0, 1], R), i.e. there is a { fn} ⊂ A such that { fn} converges uniformly
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to f on [0, 1]. Then∫ 1

0
f 2(x) dx =

∫ 1

0
lim
n→∞

fn(x) · f (x) dx

= lim
n→∞

∫ 1

0
fn(x) f (x) dx

= lim
n→∞

[∫ 1

0
a0 f (x) dx + · · ·+

∫ 1

0
ame

−mx
1−x f (x) dx

]
= lim

n→∞
0

= 0

But then
∫ 1

0 f 2(x) dx = 0. As f 2 ≥ 0 and f 2 is continuous, it must be that f 2 = 0 for all
x ∈ [0, 1] so that f ≡ 0 on [0, 1].

6. Show that there is an open interval containing 0 and a unique curve (x(t), y(t)), t ∈ I
with (x(0), y(0)) = (1, 1) satisfying

x + y2 + sin t = 2

x2 + ty2 = 1.

Find the velocity of the curve at t = 0. For a given t0 ∈ I is there a unique solution (x, y) to
the above with t = t0?

Solution: Let F = ( f1, f2) : R3 → R2 such that f1(x, y, t) = x + y2 + sin t− 2, f2(x, y, t) =
x2 + ty− 1. Then F(1, 1, 0) = (0, 0).

F′(1, 1, 0) =
(

1 2y cos t
2x 2ty y2

) ∣∣∣∣
(1,1,0)

=

(
1 2 1
2 0 1

)
Define

Ax =

(
1 2
2 0

)
Ay =

(
1
1

)
Now det Ax = −4 6= 0. Then Ax is invertible. By the Implicit Function Theorem, there
exists U ⊆ R3 open such that (1, 1, 0) ∈ U and I ⊆ R open such that 0 ∈ I and for all
t ∈ I, there is a unique (x, y) such that (x, y, t) ∈ U and F(x, y, t) = 0. But then there
is a differentiable function h in a neighborhood of (1, 1, 0) such that h(0) = (1, 1, ) and
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F(h(t), t) = 0, i.e. the system has a unique solution (x, y) = h(t) in a neighborhood of
(1, 1, 0) and

h′(0) = −A−1
x Ay =

1
4

(
0 −2
−2 1

)
=

1
4

(
−2
−1

)
=

−1
2

−1
4

 .

Finally given t0 ∈ I, there is a unique solution (x, y) to the system of equations with
t = t0.

267



January 2004

1. Show that if E ⊆ Rk is not compact, there is a continuous function f : E→ R which is
unbounded.

Solution: If E ⊆ Rk is not compact, then by the contrapositive to Heine-Borel it is not
bounded or not closed. If E is unbounded, then f : E → R given by f (x) = ‖x‖ is an
unbounded function. If E is not closed, then EC is not open so that there is a x0 ∈ EC such
that no neighborhood of x0 is contained entirely within EC. That is, all neighborhoods of
x0 intersect E. Then f : E → R given by f (x) = 1

‖x−x0‖ for x ∈ E is unbounded. Notice
the function is defined at all x ∈ E as x0 /∈ E. But as x0 is a limit point of E, there is a
sequence xn in E which converges to x. That is, for any ε > 0 there is an N ∈N such that
|xn − x0| < ε for n > N. Take ε = 1

n and choose such an N. Then we have

f (xn) =
1

‖xn − x0‖
>

1
1
n

= n

for all n > N so that f (x) is an unbounded function.

2. Let f : (0,+∞) → R be a differentiable function such that lim
x→+∞

f (x)
x

= 0. Prove that

there is a sequence xn ↗ +∞ such that f ′(xn)→ 0.

Solution: Consider the sequence {xn}, where xn = 2n. Then xn+1 = 2n+1 = 2 · 2n = 2xn ≥
xn. Clearly, xn ↗ ∞. Since limx→∞

f (x)
x = 0, for all ε > 0, there exists N ∈N such that for

n > N, we have
∣∣∣ f (xn)

xn

∣∣∣ < ε
4 . But this implies

∣∣∣ f (2xn)
2xn

∣∣∣ < ε
4 . As f is differentiable, for all n,

there exists cn ∈ (xn, xn+1) such that f ′(cn) =
f (xn+1)− f (xn)

xn+1−xn
. This implies

f ′(cn) =
f (2xn)− f (xn)

2xn − xn
=

f (2xn)− f (xn)

xn
.

Therefore for n > N, we have
∣∣∣ f (2xn)

2xn

∣∣∣ < ε
4 . Then∣∣∣∣ f (xn)− f (xn) + f (2xn)

2xn

∣∣∣∣ < ε

2
.

Using this for n > N, we have∣∣∣∣ f (xn)

2xn

∣∣∣∣− ∣∣∣∣ f (2xn)− f (xn)

2xn

∣∣∣∣ < ε

4
1
2

∣∣∣∣ f (xn)

xn

∣∣∣∣− 1
2
| f ′(cn)| <

ε

4∣∣∣∣ f (xn)

xn

∣∣∣∣− | f ′(cn)| <
ε

4

268



Therefore, | f ′(cn)| < ε
2 + ε

2 = ε. Then for all n > N, we have | f ′(cn)| < ε so that
f ′(xn)→ 0.

3. Let f : [x1, x2] → R be a differentiable function, where 0 < x1 < x2. Prove that there
exists c ∈ (x1, x2) such that

1
x1 − x2

∣∣∣∣ x1 x2
f (x1) f (x2)

∣∣∣∣ = f (c)− c f ′(c).

Solution: Let g(x) = f (x)
x and h(x) = 1

x . By the Mean Value Theorem, there exists
c ∈ (x1, x2) such that g′(c)(h(x1)− h(x2)) = h′(c)(g(x1)− g(x2)). Then

c f ′(c)− f (c)
c2

(
1
x1
− 1

x2

)
= − 1

c2

(
f (x1)

x1
− f (x2)

x2

)
f (c)− c f ′(c)

(
x2 − x1

x1x2

)
=

x2 f (x1)− x1 f (x2)

x1x2

f (c)− c f ′(c) = x2 f (x1)− x1 f (x2) ·
1

x2 − x1

Therefore,
1

x1 − x2

∣∣∣∣ x1 x2
f (x1) f (x2)

∣∣∣∣ = f (c)− c f ′(c).

4. Let f , ρ : [0,+∞)→ R be functions which are Riemann integrable on each interval [0, A],
A > 0. Assume that ρ(x) ≥ 0 for all x ≥ 0 and∫ +∞

0
ρ(x) dx = 1, lim

x→+∞
f (x) = L ∈ R.

(i) Calculate t
∫ +∞

0
ρ(tx) dx, where t > 0.

(ii) Show that limt↘0 t
∫ +∞

0 ρ(tx) f (x) dx = L.

Solution:

(i) Let u = tv so that du = t dx. Then 1
t du = dx. Then we have

t
∫ ∞

0
ρ(tx) dx =

∫ ∞

0
ρ(u) du = 1
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(ii) Let ε > 0. Using (i), we have∣∣∣∣t ∫ ∞

0
ρ(tx) f (x) dx− L

∣∣∣∣ = ∣∣∣∣t ∫ ∞

0
ρ(tx) f (x) dx− L · t

∫ ∞

0
ρ(tx) dx

∣∣∣∣
=

∣∣∣∣t ∫ ∞

0
ρ(tx)( f (x)− L) dx

∣∣∣∣
≤ t

∫ ∞

0
ρ(tx)| f (x)− L| dx

Now as limx→∞ f (x) = L, there exists an N ∈N such that for x > N, | f (x)− L| < ε.
But then we have∣∣∣∣t ∫ ∞

0
ρ(tx) f (x) dx− L

∣∣∣∣ ≤ t
∫ ∞

0
ρ(tx)| f (x)− L| dx

= t
∫ N

0
ρ(tx)| f (x)− L| dx + t

∫ ∞

N
ρ(tx)| f (x)− L| dx

< t
∫ N

0
ρ(tx)| f (x)− L| dx + t

∫ ∞

N
ρ(tx)ε dx

Since ρ(tx), f (x) ∈ R[0, N], ρ(tx), f (x) are bounded on [0, N], so∣∣∣∣t ∫ ∞

0
ρ(tx) f (x) dx− L

∣∣∣∣ < t
∫ N

0
ρ(tx)| f (x)− L| dx + t

∫ ∞

N
ρ(tx)ε dx

≤ tMN + εt
∫ ∞

N
ρ(tx) dx

≤ tMN + ε

for some M ∈ R. Choosing t < ε
2MN , we have that limt↘0 t

∫ +∞
0 ρ(tx) f (x) dx = L.

5. Consider the series
∞

∑
n=1

xn

n + x2n . Find all the values x ≥ 0 where the series is convergent.

Show that the series converges uniformly on the set [0, 1/2] ∪ [2,+∞). Is the series uni-
formly convergent on [0, 1)? Justify your answer.

Solution: Observe ∣∣∣∣ xn+1

n + 1 + x2n+2 ·
n + x2n

xn

∣∣∣∣ = ∣∣∣∣ nx + x2n+1

n + 1 + x2n+2

∣∣∣∣ .

If x = 0, the series sum is clearly 0. If 0 < x < 1, we have

lim
n→∞

∣∣∣∣ nx + x2n+1

n + 1 + x2n+2

∣∣∣∣ = ∣∣∣ x1 ∣∣∣ = |x| = x < 1
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so that the series converges absolutely by the Ratio Test as x < 1. If x = 1, then

∞

∑
n=1

xn

n + x2n =
∞

∑
n=1

1
n + 1

which diverges by limit comparison with the series ∑∞
n=1

1
n — which diverges by the p-test.

[Alternatively, one could use the Integral Test or observe that

∞

∑
n=1

1
n + 1

>
∞

∑
n=1

1
n + n

=
1
2

∞

∑
n=1

1
n

.

so that the series diverges by the Comparison Test.] If x > 1, then

∞

∑
n=1

xn

n + x2n ≤
∞

∑
n=1

xn

x2n =
∞

∑
n=1

(
1
x

)n

The series ∑∞
n=1

(
1
x

)n

is geometric with |r| = |1/x| < 1 since x > 1. Therefore, the series

∑∞
n=1

xn

n + x2n converges (absolutely as the terms are all nonnegative) by the Comparison

Test. Then ∑∞
n=1

xn

n + x2n converges absolutely for x ∈ [0, 1) ∪ (1, ∞).

Let fn(x) = xn

n+x2n . We have

f ′n(x) =
n2xn−1 − nx3n−1

(n + x2n)2 .

Observe that f ′n(x) > 0 for x ∈ [0, 1/2] but f ′n(x) < 0 for x ∈ [2, ∞). Therefore, fn is
increasing on [0, 1/2] but decreasing on [2, ∞). Then for x ∈ [0, 1/2],

xn

n + x2n ≤

(
1
2

)n

n +

(
1
2

)2n ≤
1
n

(
1
2

)n

and ∑∞
n=1

1
n

( 1
2

)n
converges absolutely by the Ratio Test. Therefore, ∑∞

n=1
xn

n + x2n converges

uniformly on [0, 1/2] by the Weierstrass M-test. For x ∈ [2, ∞),

xn

n + x2n ≤
2n

n + 22n ≤
2n

22n =

(
1
2

)n

and ∑∞
n=1

( 1
2

)n
converges by the Geometric Series Test with r = 1/2 (or by the Ratio or Root

Test). Therefore, ∑∞
n=1

xn

n + x2n converges uniformly on [2, ∞) by the Weierstrass M-test.
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But then the series converges uniformly on [0, 1/2] ∪ [2, ∞).

6. Consider the function f : R2 → R defined by f (x, y) =
x2y

x2 + y2 if (x, y) 6= (0, 0) and

f (0, 0) = 0. Show that f is uniformly convergent on {(x, y) : x2 + y2 ≤ 1}. Find the first
order partial derivatives of f at (0, 0). Is f differentiable at (0, 0)? Justify your answer.

Solution: Note that f is continuous for (x, y) 6= (0, 0) as f (x, y) =
x2y

x2 + y2 is then a

quotient of continuous functions. Observe∣∣∣∣ x2y
x2 + y2

∣∣∣∣ ≤ ∣∣∣∣ (2xy)x
x2 + y2

∣∣∣∣ ≤ ∣∣∣∣ (x2 + y2)x
x2 + y2

∣∣∣∣ = |x|
and x → 0 as (x, y)→ (0, 0). Therefore by Squeeze Theorem, lim(x,y) f (x, y) = 0 = f (0, 0).
Then f (x, y) is continuous for all (x, y) ∈ R2. But then f (x, y) is continuous on the compact
set {(x, y) : x2 + y2 ≤ 1}. Hence, f (x, y) is uniformly continuous on {(x, y) : x2 + y2 ≤ 1}.
Now

D1 f (0, 0) = lim
h→0

f (h, 0)− f (0, 0)
h

= lim
h→0

0 = 0

D2 f (0, 0) = lim
h→0

f (0, h)− f (0, 0)
h

= lim
h→0

0 = 0

Suppose f (x, y) were differentiable at (0, 0). Let u = (u1, u2) be a unit vector. Then
Du f (0, 0) = ∇ f (0, 0) · u. But

Du f (0, 0) = lim
t→0

f ((0, 0) + tu)− f (0, 0)
t

= lim
t→0

t3u2
1u2

t2(u2
1 + u2

2
t

= lim
t→0

u2
1u2 = u2

1u2

and ∇ f (0, 0) · u = (0, 0) · u = 0u1 + 0u2 = 0. But then u1u2 = 0 which is not true for all
unit vectors u, e.g. u = (1/

√
2, 1/
√

2). Therefore, f is not differentiable at (0, 0).
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August 2005

1. Let g be a continuous function on [0, 1] with g(1) = 0 and let hn(x) = xng(x) for
n = 1, 2, · · · . Prove that hn converges uniformly.

Solution: Though certainly not the shortest route, we prove this by showing far more
general results (these results could be assumed for the exam in which case only the final
argument is needed). We have a more general result: if fn(x), gn(x) are sequences of
bounded functions which converge uniformly on E to functions f , g, respectively, then
fn(x)gn(x) converges uniformly to f g on E. We know that { fn} and {gn} are uniformly
bounded. Then there P, Q such that | fn(x)| < P and |gn(x)| < Q for all n ∈N and x ∈ E.
Let M = max{P, Q}. It is clear that | fn(x)| < M and |gn(x)| < M so that | f (x)| < M an
|g(x)| < M. Using the convergence of { fn} and {gn}, given ε > 0, there is a N ∈N such
that | fn(x)− f (x)| < ε/(2M) and |gn(x)− g(x)| < ε/(2M) for all n > N. But then

| fn(x)gn(x)− f (x)g(x)| = | fn(x)gn(x)− fn(x)g(x) + fn(x)g(x)− f (x)g(x)|
≤ | fn(x)gn(x)− fn(x)g(x)|+ | fn(x)g(x)− f (x)g(x)|
= | fn(x)| |gn(x)− g(x)|+ |g(x)| | fn(x)− f (x)|

< M
ε

2M
+ M

ε

2M
= ε

so that fn(x)gn(x) converges uniformly to f (x)g(x) on E.
Let { fn} and {gn} (not necessarily bounded) converge uniformly to f (x), g(x) on a set

E, respectively. Then we know that the sequences { fn} and {gn} are Cauchy. Then given
ε > 0, there is a N ∈N such that | fn(x)− fm(x)| < ε/2 and |gn(x)− gm(x)| < ε/2 for all
n, m > N and x ∈ E. But then

|
(

fn + gn
)
(x)−

(
fm − gm

)
(x)| = |

(
fn(x)− fm(x)

)
−
(

gn(x)− gm(x)
)
|

≤ | fn(x)− fm(x)|+ |gn(x)− gm(x)|

<
ε

2
+

ε

2
= ε

so that fn + gn is uniformly convergent on E.
Take fn(x) = xn and gn(x) = g(x). Observe that gn(x), g(x) are bounded on [0, 1] as

they are continuous on a compact interval. It is clear that fn(x) converges uniformly to 0
on [0, 1). Then fn(x)gn(x) = xng(x) → 0 uniformly on [0, 1). Now let f ′n(x) = 1 at x = 1
and 0 elsewhere. It is clear that f ′n(x) → 0 uniformly on [0, 1]. But then f ′n(x)gn(x) → 0
uniformly on [0, 1]. But observe

hn(x) =

{
fn(x)gn(x), x ∈ [0, 1)
f ′n(x)gn(x), x = 1
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is then uniformly convergent.

OR

Since g is continuous on [0, 1], g is uniformly continuous on the compact set [0, 1]. Since
xn, g are continuous on [0, 1], hn is continuous on [0, 1]. But then hn is uniformly continuous
on [0, 1]. Now since x ∈ [0, 1]

hn+1(x) = xn+1g(x) = x · xng(x) = xhn(x) ≤ hn(x)

for all x ∈ [0, 1] and n. But then {hn} is a decreasing sequence. We show that hn converges
to h. Let ε > 0 and x ∈ [0, 1). Take N ∈N such that xN < ε

g(x) (using xn → 0 as n→ ∞ as
x ∈ [0, 1)). Then for n > N,

|hn(x)− h(x)| = |xng(x)| ≤ |xN g(x)| <
∣∣∣∣ ε

g(x)
· g(x)

∣∣∣∣ = ε.

For x = 1, hn(1) = g(1) = 0. But then hn converges to h on [0, 1]. But then by Dini’s
Theorem, {hn} converges uniformly to h on [0, 1].

2. Let an, n = 1, 2, · · · be a sequence of positive numbers such that ∑∞
n=1 an converges.

(a) Prove that lim infn→∞ nan = 0.

(b) Show by example that lim supn→∞ nan > 0 is possible.

Solution:

(a) Suppose that lim infn→∞ nan 6= 0. Then there exists ε > 0 such that lim infn→∞ nan ≥ ε
since an > 0. But then limn→∞(lim infk≥n kak) ≥ ε. Then there exists N ∈N such that
for k ≥ N, kak > ε. But then ak >

ε
k . But then ∑∞

k=1 ak > ∑∞
k=1

ε
k = ε ∑∞

k=1
1
k diverges by

the Comparison Test, a contradiction. Therefore, lim infn→∞ nan = 0.

(b) Define

an =


1
2l , n = 2l for some l ∈N

1
n2 , otherwise

Clearly, an > 0 for a n ∈N. Now
∞

∑
n=1

an ≤
∞

∑
n=1

1
n2 +

∞

∑
n=2l

1
2n =

∞

∑
n=1

1
n2 +

∞

∑
l=0

1
22l ≤

∞

∑
n=1

1
n2 +

∞

∑
l=0

1
2l =

π2

6
+

1
1− 1

2

=
π2

6
+ 2

so that ∑∞
n=1 an converges. But we have taking the sequence {2n}, we have

lim sup
n→∞

nan ≥ 2n · 1
2n = 1.
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3. Let F(x1, x2, y1, y2) = (x1x2 + x1y1 + y2, x1y2 + x2y2
1). Check that F(1, 1, 1, 1) = (3, 2).

(a) Prove that there is a neighborhood U of (1, 1, 1, 1) and a neighborhood W of (1, 1) and
a function g : W → R2 such that for all (y1, y2) ∈ W there is a unique (x1, x2) ∈ R2

given by g(y1, y2) such that (x1, x2, y1, y2) ∈ U and F(x1, x2, y1, y2) = (3, 2).

(b) Find g′(1, 1).

(c) Find an approximate solution to the equation F(x1, x2, 1.001, 1.003) = (3, 2). Assume
that (1.001, 1.003) ∈W.

Solution:

(a) We have F(1, 1, 1, 1) = (1 + 1 + 1, 1 + 1) = (3, 2). Define F̂(x1, x2, y1, y2) = (x1x2 +
x1y1 + y2 − 3, x1y2 + x2y2

1 − 2). Then F̂(1, 1, 1, 1) = (0, 0) and

A := F̂(1, 1, 1, 1) =
(

x2 + y1 x1 x1 1
y2 y2

1 2x2y1 x1

) ∣∣∣∣
(1,1,1,1)

=

(
2 1 1 1
1 1 2 1

)
.

Define then

Ax =

(
2 1
1 1

)
Ay =

(
1 1
2 1

)
We have

det Ax =

∣∣∣∣2 1
1 1

∣∣∣∣ = 2− 1 = 1 6= 0.

Therefore, Ax is invertible so that the Implicit Function Theorem applies. By the Implicit
Function Theorem, there exists a neighborhood U of (1, 1, 1, 1) and a neighborhood
of (1, 1) and a function ĝ : W → R2 such that for all (y1, y2) ∈ W, there exists
(x1, x2) ∈ R2 given by ĝ(y1, y2) such that (x1, x2, y1, y2) ∈ U and F̂(x1, x2, y1, y2) =
(0, 0). Define g : W → R2 by g(y1, y2) = (ĝ(y1, y2) + 3, ĝ2(y1, y2) + 2) so that we have
F(x1, x2, y1, y2) = (3, 2).

(b) We have

g′(1, 1) = −A−1
x Ay = −

(
1 −1
−1 2

)(
1 1
2 1

)
=

(
1 0
−3 −1

)
.
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(c) We need find g(1.001, 1.003).

x1 = g1(1, 001, 1.003) = g1(1.001, 1.003)− g1(1, 1) + g1(1, 1)

=
∂g1

∂y1
(0.001) +

∂g1

∂y2
(0.003) + 1

= 1(0.001) + 0(0.003) + 1 = 1.001

x2 = g2(1, 001, 1.003) = g2(1.001, 1.003)− g2(1, 1) + g1(1, 1)

=
∂g2

∂y1
(0.001) +

∂g2

∂y2
(0.003) + 1

= −3(0.001)− (0.003) + 1 = 0.994

Therefore, (x1, x2) = (1.001, 0.994).

4. Prove that

lim
n→∞

ln(2) + ln(3) + · · ·+ ln(n)
n ln n

= 1

Solution: We know that

ln(1) + ln(2) + · · ·+ ln(n) = ln(n!)

By Stirling’s formula, we know that ln(n!)− n ln n− n + O(ln n). So we have

ln(n!)
n ln n

=
n ln n− n + O(ln n)

n ln n
= 1− 1

ln n
+

O(ln n)
n ln n

which clearly tends to 1 as n→ ∞.

OR
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We know that ln n =
∫ n

1
1
x dx. So we have

∑n
m=2

∫ m
1

1
x dx

n
∫ n

1
1
d dx

=

∫ 2
1

1
x dx +

∫ 2
1

1
x dx +

∫ 3
2

1
x dx + · · ·+

∫ n
n−1

1
x dx

n
(∫ 2

1
1
x dx +

∫ 3
2

1
x dx + · · ·+

∫ n
n−1

1
x dx

)
=

(n− 1)
∫ 2

1
1
x dx + (n− 2)

∫ 3
2

1
x dx + · · ·+ (n− n + 1)

∫ n
n−1

1
x dx

n
(∫ 2

1
1
x dx +

∫ 3
2

1
x dx + · · ·+

∫ n
n−1

1
x dx

)
=

n
(∫ 2

1
1
x dx +

∫ 3
2

1
x dx + · · ·+

∫ n
n−1

1
x dx

)
−
∫ 2

1
1
x dx− 2

∫ 3
2

1
x dx− · · · − (n− 1)

∫ n
n−1

1
x dx

n
(∫ 2

1
1
x dx +

∫ 3
2

1
x dx + · · ·+

∫ n
n−1

1
x dx

)
= 1−

∫ 2
1

1
x dx + 2

∫ 3
2

1
x dx + · · ·+ (n− 1)

∫ n
n−1

1
x dx

n
(∫ 2

1
1
x dx + · · ·+

∫ n
n−1

1
x dx

)
and observe the right term tends to 0 as n→ ∞, as desired.

5. Let f : Rn → R be a continuously differentiable function such that

f (tx) = t5 f (x), ∀t > 0, ∀x = (x1, . . . , xn) ∈ Rn.

Prove that f satisfies the partial differential equation

n

∑
j=1

xj
∂ f
∂xj

(x) = 5 f (x), ∀x ∈ Rn.

Solution: Let x ∈ Rn. Define γx(t) = tx and g(t) = f ◦ γx(t). Then g′(t) = ∇ f (γx(t)) ·
γ′x(t). Then g′(1) = ∇ f (x) · x. Now

n

∑
j=1

xj
∂ f
∂xj

(x) = ∇ f (x) · x = g′(1).

But g(t) = f ◦ γx(t) = f (γx(t))− f (tx) = t5 f (x). Hence, g(t) = t5 f (x) so that g; (t) =
5t4 f (x) and g′(1) = 5 f (x). Therefore,

n

∑
j=1

xj
∂ f
∂xj

(x) = g′(1) = 5 f (x).

This proves ∑n
j=1 xj

∂ f
∂xj

(x) = 5 f (x) for x ∈ Rn.
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6. Prove that if {an} is a sequence of positive numbers, then

lim sup
n→∞

(an)
1/n ≤ lim sup

n→∞

an+1

an

Solution: Note that if lim supn→∞
an+1

an
= ∞, we have

lim sup
n→∞

(an)
1/n ≤ lim sup

n→∞

an+1

an
.

So assume lim supn→∞
an+1

an
= α < ∞. Choose β > α. Then there exists N ∈ N such

that for n > N, an+1
an
≤ β. So an+1 ≤ βan. Furthermore, an+2 ≤ βan+1 ≤ β2an. Hence

by induction, an+3 ≤ β3an so that for p > 0, we have aN+p ≤ βpaN or an ≤ aN β−B · βn

taking p = n− N. Then (an)1/n ≤ (aN β−N)1/n · β. Then lim supn→∞(an)1/n ≤ β for β > 2
since aN/βN > 0. Therefore, limn→∞(an/βn)1/n = 1. Then lim supn→∞(an)1/n ≤ α which
improves lim supn→∞(an)1/n ≤ lim supn→∞

an+1
an

.
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January/August 2006

1. Prove the chain rule: if g is differentiable at a, g(a) = b, and f is differentiable at b, then
f ◦ g is differentiable at a and ( f ◦ g)′(a) = f ′(b)g′(a).

Solution: Since g is differentiable at a, g(x) = g(a) + g′(a)(x− a) + φa(x)(x− a), where φa
is continuous at a and φa(a) = 0, i.e. φa(x)→ 0 as x → a. Similarly since f is differentiable
at b, f (y) = f (b) + f ′(b)(y− b) + φb(y)(y− b), where φb is continuous at b and φb(b) = 0,
i.e. φb(y)→ 0 as y→ b. Then

f (g(x)) = f (g(a)) + f ′(g(a))(g(x)− g(a)) + φb(g(x))(g(x)− g(a))
= f (g(a)) + f ′(g(a))(g(a) + g′(a)(x− a) + φa(x)(x− a)− g(a))

+ φb(g(x))(g′(a)(x− a) + φa(x)(x− a))

= f (g(a)) + f ′(g(a))g′(a)(x− a) +
[
φa(x) f ′(g(a))(x− a) + φb(g(x))g′(a)(x− a)

+ φb(g(x))φa(x)(x− a)
]

and φa(x) f ′(g(a))(x − a) + φb(g(x))g′(a)(x − a) + φb(g(x))φa(x)(x − a) → 0 as x → a.
Therefore, f ◦ g is differentiable at x = a and ( f ◦ g)′(a) = f ′(g(a))g′(a) = f ′(b)g′(a).

2. Let f (0) = 0 and f (t) = t2 sin(1/t) for t 6= 0 and let φ(x, y) = f (x) + f (y).

(a) Prove that ∂φ
∂x exists everywhere in R2 but is not continuous at (0, 0).

(b) Prove that φ is differentiable at (0, 0) and find φ′(0, 0).

Solution:

(a) We have

lim
h→0

φ(x + h, y)− φ(x, y)
h

= lim
h→0

f (x + h) + f (y)− f (x)− (y)
h

= lim
h→0

f (x + h)− f (x)
h

= f ′(x)

and for x 6= 0, f ′(x) = 2x sin(1/x)− cos(1/x). For x = 0,

f ′(0) = lim
h→0

f (h)− f (0)
h

= lim
h→0

h2 sin
(

1
h

)
h

= lim
h→0

h sin
(

1
h

)
= 0

where the last inequality follows from the Squeeze Theorem with −h ≤ h sin(1/h) ≤ h
as h→ 0. Therefore,

∂φ

∂x
=

2x sin
(

1
x

)
− cos

(
1
x

)
, x 6= 0

0, x = 0
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exists for all (x, y) ∈ R2. But

lim
(x,y)→(0,0)

∂φ

∂x
= lim

x→0
2x sin

(
1
x

)
− cos

(
1
x

)
= − lim

x→0
cos

(
1
x

)
does not exist so that ∂φ

∂x is not continuous at (0, 0).

(b) We have

lim
(h1,h2)→(0,0)

φ(h1, h2)− φ(0, 0)
|h| = lim

(h1,h2)→(0,0)

h2
1 sin(1/h1) + h2

2 sin(1/h2)√
h2

1 + h2
2

But we also have

− h2
1 + h2

2√
h2

1 + h2
2

≤ h2
1 sin(1/h1) + h2

2 sin(1/h2)√
h2

1 + h2
2

≤ h2
1 + h2

2√
h2

1 + h2
2

Then

−
√

h2
1 + h2

2 ≤
h2

1 sin(1/h1) + h2
2 sin(1/h2)√

h2
1 + h2

2

≤
√

h2
1 + h2

2

Therefore by Squeeze Theorem, we have

lim
(h1,h2)→(0,0)

lim
(h1,h2)→(0,0)

φ(h1, h2)− φ(0, 0)
|h| = 0

so that φ′(0, 0) = 0.

3. Let f : [0, 1) → R be differentiable with bounded derivative. Prove that f can be
extended to a continuous function on [0, 1].

Solution: We show that limx→1 f (x) exists. Note that | f ′(x)| ≤ M for some M > 0. Note
that limx→1 f (x) = L if and only if for all sequences {pn}, pn 6= 1 for all n, and pn → 1,
we have f (pn)→ L. Now let pn → 1. Since {pn} converges, {pn} is Cauchy. Then for all
ε > M > 0, there exists N ∈N such that for n, m > N, |pn − pm| < ε

M . By the Mean Value
Theorem, there exists ξ ∈ (pn, pm) such that

| f (pn)− f (pm)| = | f ′(ξ)| |pn − pm| < M · ε

M
= ε
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for n, m > N. But then { f (pn)} is Cauchy, which implies { f (pn)} converges as every
Cauchy sequence in R converges. Then limx→1 f (x) = L for some L. Then f (1−) = L =
f (1+). Define f̂ : [0, 1]→ R such that

f̂ (x) =

{
f (x), x ∈ [0, 1)
L, x = 1

Clearly, f̂ is continuous and f̂ ≡ f on [0, 1).

4. If ∑n
k=0

ak
k+1 = 0, prove that the polynomial ∑n

k=0 akxk has at least one root in the interval
(0, 1).

Solution: Consider the polynomial F(x) = ∑n
k=0

ak
k+1 xk+1. Clearly, this function is differ-

entiable (hence continuous) on [0, 1]. Observe that F(0) = 0 and F(1) = ∑n
k=0

ak
k+1 = 0

by assumption. By Rolle’s Theorem, there must be a point c ∈ (0, 1) such that F′(c) = 0.
However, F′(x) = ∑n

k=0 akxk so that there is a point c such that ∑n
k=0 akck = 0. That is,

∑n
k=0 akxk has a root in (0, 1).

OR

Note that the polynomial ∑n
k=0 akxk is continuous on [0, 1]. Then by the Mean Value

Theorem for integrals, there exists ξ ∈ (0, 1) such that

n

∑
k=0

akξk =
∫ 1

0

n

∑
k=0

akxk dx =
n

∑
k=0

∫ 1

0
akxk dx =

n

∑
k=0

[
ak

k + 1
xk+1

]1

0
=

n

∑
k=0

ak

k + 1
= 0.

But then ∑n
k=0 akxk has at least one root in the interval (0, 1).

5. Assume f : [0, ∞)→ R is nonnegative, Riemann integrable on [0, b] for every b > 0, and

lim
b→∞

∫ b

0
f (t) dt < ∞

Prove or give a counterexample;

(a) lim
x→∞

f (x) = 0,

(b) f is continuous implies lim
x→∞

f (x) = 0,

(c) f is uniformly continuous implies lim
x→∞

f (x) = 0.

Solution:
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(a)

(b)

(c)

6. Let f , fn : [0, 1] → R and φ : R → R. Prove or give a counterexample to each of the
following statements;

(a) If fn → f uniformly on [0, 1] and φ is continuous, then φ ◦ fn → φ ◦ f uniformly.

(b) If fn → f uniformly on [0, 1] and φ is uniformly continuous, then φ ◦ fn → φ ◦ f
uniformly.

(c) If fn → f uniformly on [0, 1] and f and φ are continuous, then φ ◦ fn → φ ◦ f uniformly.

Solution:

(a) Let fn = x + 1
n and f (x) = x. Clearly, fn converges pointwise to f (x). Let ε > 0 and

take N ∈N such that 1
N < ε, i.e. N > 1

ε . Then for n > N, we have

| fn(x)− f (x)| =
∣∣∣∣x +

1
n
− x
∣∣∣∣ = 1

n
≤ 1

N
< ε

for x ∈ [0, 1] so that { fn} converges uniformly to f . Take φ(x) = x2. Clearly, φ is
continuous. If φ ◦ fn were to converge uniformly to φ ◦ f , for ε > 0, there would exist
N ∈N such that for n > N, |φ ◦ fn − φ ◦ f | < ε for all x ∈ [0, 1]. Take ε = 2. Observe
for x = 1 and n > N,

|φ ◦ fn − φ ◦ f | =
∣∣∣∣∣
(

x +
1
n

)2

− x2

∣∣∣∣∣ =
∣∣∣∣2x

n
+

1
n2

∣∣∣∣ = ∣∣∣∣2 + 1
n2

∣∣∣∣ > 2 = ε,

a contradiction. Therefore, φ ◦ fn does not converge to φ ◦ f uniformly.

(b) Suppose that fn converges to f uniformly on [0, 1] and that φ is uniformly continuous.
Then given ε > 0, there exists δ > 0 such that for |x− y| < δ, |φ(x)− φ(y)| < ε> Since
fn converges to f uniformly, there exists N ∈N such that for n > N, | fn(x)− f (x)| < δ.
But then for n > N, | fn(x)− f (x)|δ which implies |φ( fn(x))− φ( f (x))| < ε for all x, y
with |x− y| < δ. But then φ ◦ fn converges to φ ◦ f uniformly.

(c) The statement is false by (a).
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January 2007

1. Let X be a metric space and let Aj be subsets of X, j = 1, 2, . . .. For each of the following
statements, prove it or give a counterexample (the ′means limit points):

(i) (A1 ∪ A2)′ ⊆ A′1 ∪ A′2

(ii)
⋃∞

j=1 Aj ⊆
⋃∞

j=1 Aj

Solution:

(i) If A1, A2 are empty, then the result is trivial. Let x ∈ (A1 ∪ A2)′. Then every neighbor-
hood of x intersects A1 ∪ A2 of some point distinct from x. Without loss of generality,
assume the neighborhoods intersect A1. But then x ∈ A′1. But then x ∈ A′1 ∪ A′2 so
that (A1 ∪ A2)′ ⊆ A′1 ∪ A′2.

(ii) The statement is false. We give three counterexamples. First as the rationals are
countable, enumerate them a1, a2, a3, · · · . Let Aj = {aj}. Then Aj = Aj for all j. But
∪ Aj = Q and Q = R. So R = ∪∞

j=1Aj 6⊆ ∪∞
j=1Aj = Q. As a second example, take

Aj = {1/j} for j ∈N. Then A′j = ∅. Then

{1/j}∞
j=1 ∪ {0} =

∞⋃
j=1

Aj 6⊆
∞⋃

j=1

Aj = {1/j}∞
j=1

As a final counterexample, take Aj = [1/j, 1]. We have Aj = Aj but

[0, 1] =
∞⋃

j=1

Aj 6⊆
∞⋃

j=1

Aj = (0, 1]

2. Prove that the series
∞

∑
n=1

n2

n!
is convergent and find its sum.

Solution: Observe

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (n + 1)2

(n + 1)!
· n!

n2

∣∣∣∣
= lim

n→∞

∣∣∣∣∣
(

n + 1
n

)2 n!
(n + 1)!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣(1 +
1
n

)
1

n + 1

∣∣∣∣
= 0 < 1
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So the series converges by the Ratio Test. Observe also ex def
= ∑∞

n=0
xn

n! . So

d
dx

ex =
∞

∑
n=0

nxn−1

n!
= ex

d2

dx2 ex =
∞

∑
n=0

n(n− 1)xn−2

n!
= ex

So
∞

∑
n=0

nxn−1

n!
= e1

+
∞

∑
n=0

n(n− 1)xn−2

n!
= e1

∞

∑
n=0

n2

n!
= 2e

One could also do this by shifting index

∞

∑
n=1

n2

n!
=

∞

∑
n=1

n
(n− 1)!

=
∞

∑
n=0

n + 1
n!

=
∞

∑
n=0

n
n!

+
∞

∑
n=0

1
n!

= e + e = 2e

3. Let f : (−1, 1)→ R be a differentiable function such that f (0) = 0 and f ′′(0) ∈ R exists.

Prove that the limit lim
x→0

f (2x)− 2 f (x)
x2 exists.

Solution: Observe that f (2x)− 2 f (x) is differentiable as f (x) is and that x2 is differentiable.
As x → 0, we know that f (2x)− 2 f (x)→ 0 and x2 → 0. Furthermore, d

dx x2 = 2x 6= 0 on
all of (−1, 1). Therefore by L’Hôpitals, we know that

lim
x→0

f (2x)− 2 f (x)
x2 = lim

x→0

2 f ′(2x)− 2 f ′(x)
2x

= lim
x→0

f ′(2x)− f ′(x)
x

Again, f ′(2x)− f ′(x) is differentiable as f ′(x) is and x is differentiable and d
dx x = 1 6= 0

on all of (−1, 1). Therefore by L’Hôpitals, we know that

lim
x→0

f ′(2x)− f ′(x)
x

= lim
x→0

2 f ′′(2x)− f ′′(x)
1

= 2 f ′′(0)− f ′′(0) = f ′′(0)

4.
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(a) Let f 4 ∈ R (this means f 4 is integrable dx on some closed interval) prove or disprove,
f ∈ R.

(b) Let f 5 ∈ R prove or disprove, f ∈ R.

Solution:

(a) The statement is false. Take f (x) to be the

f (x) =

{
0, x /∈ Q

1, otherwise

This function is not Riemann integrable (inf U(P, f ) = b− a while sup L(P, f ) = 0 on
any compact interval [a, b]). However, f (x)2n = 1 for all n ∈ N is clearly Riemann
integral.

(b) If f happens to be bounded on [a, b], then the statement is true. Suppose f 2n−1(x) ∈ R
for n ∈ N. As f (x) is bounded on [a, b], m ≤ f (x) ≤ M for some m, M ∈ R. Then
m3 ≤ f 5(x) ≤ M5 on [a, b]. We know that φ(x) = x1/(2n−1) is continuous on R, in
particular [m3, M3]. But then φ( f 1/(2n−1)) = f (x) is integrable on [a, b].

5. Let f (x, y) be a real continuous function on the rectangle [0, 1]× [0, 2]. Given ε > 0
show that there exists n and real continuous functions gi(x) on [0, 1] and hi(y) on [0, 2] for
i = 1, . . . , n so that

| f (x, y)−
n

∑
i=1

gi(x)hi(y)| < ε

for all (x, y) in the rectangle.

Solution: Define

A =

{
n

∑
i=1

gi(x)hi(y) : n ∈N, gi : [0, 1]→ R, hi : [0, 2]→ R both continuous

}
.

Note that [0, 1]× [0, 2] compact andA ⊆ C([0, 1]× [0, 2], R). Let ∑n
i=1 gi(x)hi(y), ∑m

i=1 g̃i(x)h̃i(y) ∈
A. Without loss of generality, assume n ≤ m. Then

n

∑
i=1

gi(x)hi(y) +
m

∑
i=1

g̃i(x)h̃i(y) =
m

∑
i=1

fi(x) · 1 ∈ A,

where fi(x) = gi(x)hi(y) + g̃i(x)h̃i(y) for i = 1, . . . , n and fi(x) = g̃i(x)h̃i(y) for i =
n + 1, . . . , m. [Note that 1 ∈ A and fi(x) ∈ A for i = 1, . . . , m.] Moreover, ∑n

i=1 gi(x)hi(y) ·
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∑m
i=1 g̃i(x)h̃i(y) ∈ A. Finally, c ∑n

i=1 gi(x)hi(y) = ∑n
i=1 cgi(x)hi(y) ∈ A since cgi is continu-

ous, where c ∈ R. Therefore, A is an algebra.
Choose distinct (x1, y1), (x2, y2) ∈ [0, 1]× [0, 2]. Then either x1 6= x2 or y1 6= y2. Define

p1(x) = x, p2(y) = y, h1(x) = 1, and h2(y) = 1. Clearly, p1(x)h2(y), p2(y)h1(x) ∈ A. If
x1 6= x2, then p1(x1)h2(y1) = x1 6= x2 = p1(x2)h2(y2). If y1 6= y2, then p2(y1)h1(x1) =
y1 6= y2 = p2(y2)h1(x2). Therefore, A separates points. Moreover, choosing g(x) = h(y) =
1, then 0 6= g(x)h(y) = 1 ∈ A so that A vanishes at no point of [0, 1]× [0, 2]. By Stone-
Weierstrass, A = C([0, 1]× [0, 2], R). Then for all f (x, y) ∈ C([0, 1]× [0, 2], R), there exists
a sequence of elements of A that converges uniformly to f . Therefore given ε > 0, there
exists n ∈N, gi(x) : [0, 1]→ R, hi(y) : [0, 2]→ R, both continuous, such that

| f (x, y)−
n

∑
i=1

gi(x)hi(y)| < ε

6. Given the equations x− f (u, v) = 0 and y− g(u, v) = 0 (a) give conditions that assure
you can solve for (x, y) in terms of (u, v) and (b) similarly that you can solve for (u, v) in
terms of (x, y). (c) Assuming these conditions are satisfied prove that

∂x(u, v)
∂u

∂u(x, y)
∂x

=
∂y(u, v)

∂v
∂v(x, y)

∂y

Solution:

(a) Define F = (F1, F2) : R4 → R2, where F1(x, y, u, v) = x− f (u, v) and F2(x, y, u, v) =
y− g(u, v). Suppose F ∈ C1 and there exists (a, b, c, d) such that F(a, b, c, d) = (0, 0).
Then ∣∣∣∣∣∣∣∣

∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

∣∣∣∣∣∣∣∣
∣∣∣∣
(a,b,c,d)

=

∣∣∣∣1 0
0 1

∣∣∣∣ ∣∣∣∣
(a,b,c,d)

=

∣∣∣∣1 0
0 1

∣∣∣∣ = 1 6= 0

Then by the Implicit Function Theorem, there exists h, differentiable in a neighborhood
of (a, b, c, d), such that h(c, d) = (a, b) and F(h(u, v), u, v) = 0, i.e. the system has
a unique solution (x, y) = h(u, v) in a neighborhood of (a, b, c, d). Therefore, it is
sufficient that F ∈ C1 and F(a, b, c, d) = (0, 0).

(b) Note that if F ∈ C1 and there is (a, b, c, d) such that F(a, b, c, d) = 0,

B :=

∣∣∣∣∣∣∣
∂F1

∂u
∂F1

∂v
∂F2

∂u
∂F2

∂v

∣∣∣∣∣∣∣ 6= 0.
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Then by the Implicit Function Theorem, there exists a ĥ, differentiable in a neighbor-
hood of (a, b, c, d), such that ĥ(a, b) = (c, d) and F(x, y, ĥ(x, y)) = 0, i.e. the system has
a unique solution (u, v) = ĥ(x, y) in a neighborhood of (a, b, c, d). Then it is sufficient
that F ∈ C1 and there is (a, b, c, d) such that F(a, b, c, d) = 0.

(c) Assuming the conditions in (a) and (b) hold, the Implicit Function Theorem gives

h′(u, v) = −
(

1 0
0 1

)∂F1

∂u
∂F1

∂v
∂F2

∂u
∂F2

∂v

 =

−∂F1

∂u
−∂F1

∂v
−∂F2

∂u
−∂F2

∂v


and ∂x(u,v)

∂u = − ∂F1
∂u , ∂y(u,v)

∂v = − ∂F2
∂v . Furthermore, the Implicit Function Theorem gives

ĥ(x, y) = − 1
det B

 ∂F2

∂v
−∂F1

∂v
−∂F2

∂u
∂F1

∂u

(1 0
0 1

)
= − 1

det B

 ∂F2

∂v
−∂F1

∂v
−∂F2

∂u
∂F1

∂u


and ∂u(x,y)

∂x = − 1
det B

∂F2
∂v , ∂v(x,y)

∂y = − 1
det B

∂F1
∂u . Therefore,

∂x(u, v)
∂u

∂u(x, y)
∂x

= −∂F1

∂u
· − 1

det B
∂F2

∂v
=

1
det B

∂F1

∂u
∂F2

∂v
∂y(u, v)

∂v
∂v(x, y)

∂y
= −∂F2

∂v
· − 1

det B
∂F1

∂u
=

1
det B

∂F1

∂u
∂F2

∂v

But then
∂x(u, v)

∂u
∂u(x, y)

∂x
=

∂y(u, v)
∂v

∂v(x, y)
∂y

.
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August 2007

1. Show that any set E in a connected metric space X with no boundary in X is either X or
empty. Note: if we denote the closure of E by E and the complement of E by Ec then the
boundary of E is given by E ∩ Ec.

Solution: Recall bd E = E ∩ EC. It is clear that X = E ∪ EC. We show that E is clopen.
Suppose that E were not open. Then there is an x ∈ E such that all neighborhoods of x
intersect EC. But then x ∈ EC ′ ⊂ EC. But then x ∈ E ⊂ E and x ∈ EC so that x ∈ bd E,
contradicting the fact that E has no boundary. To see that E is closed, suppose it is not. Then
there is an x ∈ X such that all neighborhoods of x intersect E but x /∈ E. So x ∈ E′ ⊂ E. As
x /∈ E then x ∈ EC ⊂ EC. But then x ∈ bd E, a contradiction. This shows that E is clopen.
As X is a connected metric space, one of E, EC must be empty forcing the other to be X.

2. Suppose that a function f is defined on [0, ∞), bounded on any interval [0, a], a < ∞,
and limx→∞( f (x + 1)− f (x)) exists. Show that

lim
x→∞

f (x)
x

= lim
x→∞

( f (x + 1)− f (x)).

Solution: By the Stolz-Cesáro Theorem30, if yn ↗ ∞, then limn→∞
xn
yn

= limn→∞
xn+1−xn
yn+1−yn

if
the limit exists. Now that x ↗ ∞. Then by Stolz-Cesáro Theorem,

lim
x→∞

f (x)
x

= lim
x→∞

f (x + 1)− f (x)
(x + 1)− x

= lim
x→∞

[ f (x + 1)− f (x)] .

Therefore, limx→∞
f (x)

x = limx→∞ [ f (x + 1)− f (x)].

3. Suppose that ∑ an and ∑ bn are series with non-negative terms and the series ∑ bn
converges. Show that if

an+1

an
≤ bn+1

bn

for all n ≥ n0, then the series ∑ an also converges. Derive that ∑ an converges if an > 0 and

if there is a p > 1 so that
an+1

an
< 1− p

n
for all n. [Hint: Use bn = n−p.]

Solution: Note that an+1
an
≤ bn+1

bn
so that an+1 ≤ bn+1

bn
an. But then

an+2 ≤
bn+2

bn+1
an+1 ≤

bn+2

bn+1
· bn+1

bn
an =

bn+2

bn
an.

30Stolz-Cesáro Theorem: if {an} and {bn} are sequences of real numbers with {bn} strictly monotone and
divergence, if limn→∞

an+1−an
bn+1−bn

= l exists, then limn→∞
an
bn

= l.
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Assume that an+k−1 ≤ bn+k−1
bn

an. Then

an+k ≤
bn+k

bn+k−1
an+k−1 ≤

bn+k

bn+k−1
· bn+k−1

bn
an =

bn+k

bn
an.

Therefore, an+k ≤ bn+k
bn

an for all k ≥ n0 − n. Note that ∑∞
n=1 an converges if and only if

∑∞
n=1 an+k converges for k ≥ n0 − n (since the series differ by finitely many terms). Then

∞

∑
n=1

an+k ≤
∞

∑
n=1

bn+k

bk
ak =

ak

bk

∞

∑
n=1

bn+k < ∞

since ∑∞
n=1 bn converges. Therefore, ∑∞

n=1 an converges. Assume that there exists p > 1
such that an+1

an
< 1− p

n . Take bn = n−p. Note that ∑∞
n=1 bn = ∑∞

n=1
1

np converges since p > 1.
Now bn > 0 and an+1

an
< 1− p

n . Note that by the Binomial Theorem, we have

(1 + c)k =
k

∑
i=0

(
k
c

)
ci = 1 + kc + · · ·+ kck−1 + ck ≥ 1 + kc.

Then
an+1

an
< 1− p

n
≤
(

1 +
1
n

)−p

=

(
n + 1

n

)−p

=
(n + 1)−p

n−p =
bn+1

bn
.

By our original work, ∑ an converges.

4. Let f (x) be continuous on [0, 1] and suppose that∫ 1

0
f (x) xn dx =

1
n + 1

for all n = 0, 1, 2, . . .. What can you say about the function f (x)? Prove your answer.

Solution: If n = 0, then we have
∫ 1

0 f (x) dx = 1
0+1 = 1. Note that

∫ 1

0
f (x)p(x) dx =

∫ 1

0
f (x)(anxn + · · ·+ a0) dx

= an

∫ 1

0
f (x)xn dx + · · ·+ a0

∫ 1

0
f (x) dx

=
an

n + 1
+

an−1

n
+ · · ·+ a1

2
+ a0

=
∫ 1

0
p(x) dx.
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Now since f is continuous on [0, 1], by Weierstrass’ Theorem, there exists a sequence {pn}
of polynomials such that {pn} converges uniformly to f on [0, 1]. Then using uniform
convergence, ∫ 1

0
( f (x))2 dx =

∫ 1

0
f (x) lim

n→∞
pn(x) dx

= lim
n→∞

∫ 1

0
f (x)pn(x) dx

= lim
n→∞

∫ 1

0
pn(x) dx

=
∫ 1

0
lim
n→∞

pn(x) dx

=
∫ 1

0
f (x) dx

= 1.

Therefore,
∫ 1

0 ( f (x))2 dx =
∫ 1

0 f (x) dx = 1. Now as f (x) is continuous, ( f (x) − 1)2 is
continuous and nonnegative on [0, 1]. Finally,∫ 1

0
( f (x)− 1)2 dx =

∫ 1

0
f (x)2 − 2 f (x) + 1 dx

=
∫ 1

0
f (x)2 dx− 2

∫ 1

0
f (x) dx +

∫ 1

0
1 dx

= 1− 2 · 1 + 1
= 0

Therefore, ( f (x)− 1)2 = 0 on [0, 1]. This implies that f (x) = 1 on [0, 1].

5. Prove that the only function f (x) satisfying f 2(x) is Riemann integrable on [0, 1] and

f (x) =
∫ x

0
f 2(t) dt for x ∈ [0, 1]

is the function f (x) ≡ 0.

6. Consider the map (u, v) = f (x, y) from R2 to R2 given by u = x2 + y2, v = x2 + y2 − y.

(a) Find all the points (x, y) so that f (x, y) = (1, 1/2).

(b) Choose one of the points you found in (a) and call it a = (x0, y0). What does the
Inverse Function Theorem say about f near a? State your answer carefully.
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(c) Why is (a) not a contradiction to (b)?

Solution:

(a) Observe v = x2 + y2 − y = u− v so that y = u− v. Furthermore, u = x2 + y2 so that
x2 = u− y2 = u− (u− v)2. Then x = ±

√
u− (u− v)2. Now y = 1− 1

2 = 1
2 . Then

x = ±
√

1− (1− 1
2 )

2 = ±
√

3
4 = ±

√
3

2 . Therefore,

X := {(x, y) : f (x, y) = (1,
1
2
)} = {(

√
3

2
,

1
2
), (−

√
3

2
,

1
2
)}.

(b) Clearly, f ∈ C1(R2) since f has continuous partial derivatives. Moreover,

J f (x, y) =
∣∣∣∣2x 2y
2x 2y− 1

∣∣∣∣ = 2x(2y− 1)− 4xy = −2x.

Now J f (±
√

32, 1
2 ) = ∓

√
3 6= 0. Therefore, the Inverse Function Theorem applies to all

points p ∈ X. But then there exist neighborhoods of p ∈ X such that f−1 ∈ C1 exists
and f−1( f (p)) = p for p ∈ X.

(c) The statement of (b) holds only for some neighborhood of p ∈ X and does not imply
that f has an inverse outside of that neighborhood.
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August 2008

1. Let f : R2 → R be given by the formula

f (x, y) =


x2y

x2 + y2 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0)

(a) Show that f is continuous at (0, 0).

(b) Prove that the first order partial derivatives of f at (0,0) exist.

(c) Prove that f is not differentiable at (0,0).

Solution:

(a) Using polar coordinates, we have

lim
(x,y)→(0,0)

∣∣∣∣ x2y
x2 + y2

∣∣∣∣ = lim
r→0

∣∣∣∣ r3 sin θ cos2 θ

r2

∣∣∣∣ = lim
r→0

∣∣r sin θ cos2 θ
∣∣ ≤ lim

r→0
|r| = 0

so that f (x, y) is continuous at the origin.

OR

Observe that

lim
(x,y)→(0,0)

∣∣∣∣ x2y
x2 + y2

∣∣∣∣ ≤ lim
(x,y)→(0,0)

∣∣∣∣ x2y
x2

∣∣∣∣ = lim
(x,y)→(0,0)

|y| = 0

so that f (x, y) is continuous at the origin.

OR

Note that

| f (x, y)| =
∣∣∣∣ x2y
x2 + y2

∣∣∣∣ = ∣∣∣∣x · xy
x2 + y2

∣∣∣∣ ≤ ∣∣∣∣x · 2xy
x2 + y2

∣∣∣∣
Now (x − y)2 ≥ 0 for all x, y. But then x2 − 2xy + y2 ≥ 0, showing x2 + y2 ≥ 2xy.
Then

| f (x, y)| ≤
∣∣∣∣x · 2xy

x2 + y2

∣∣∣∣ ≤ ∣∣∣∣x · x2 + y2

x2 + y2

∣∣∣∣ = |x|
Then as lim(x,y)→(0,0) |x| = 0, we must have lim(x,y)→(0,0) f (x, y) = 0. Therefore, f (x, y)
is continuous at (0, 0).
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(b) We have

fx(0, 0) = lim
h→0

f (0 + h, 0)− f (0, 0)
h

= lim
h→0

0− 0
h

= 0

fy(0, 0) = lim
h→0

f (0, 0 + h)− f (0, 0)
h

= lim
h→0

0− 0
h

= 0

(c) If f (x, y) were differentiable at (0, 0), then the following limit exists and is 0:

lim
(x,y)→(0,0)

f (x, y)−
[

f (0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y− 0)
]√

x2 + y2

But this is precisely

lim
(x,y)→(0,0)

x2y
(x2 + y2)3/2

Taking x = y = 1/n for n ∈N, we have

lim
(x,y)→(0,0)

x2y
(x2 + y2)3/2 = lim

n→∞

(1/n)2(1/n)
(1/n2 + 1/n2)3/2 = lim

n→∞

1√
8
6= 0

a contradiction so that the limit does not exist and therefore f (x, y) is not differentiable
at the origin.

OR

Let u = (u1, u2) be a unit vector, i.e. u2
1 + u2

2 = 1. Suppose f were differentiable at
(0, 0). Then Du f (0, 0) = ∇ f (0) · u. But

Du f (0, 0) = lim
t→0

f ((0, 0) + tu)− f (0, 0)
t

= lim
t→0

f (tu1, tu2)

t
=

t3u2
1u2

t2(u2
1 + u2

2)

t
=

u2
1u2

u2
1 + u2

2
= u2

1u2.

Now ∇ f (0, 0) = (0, 0) · (u1, u2) = 0. But if neither u1, u2 are zero, then u2
1u2 6= 0, a

contradiction. Therefore, f is not differentiable at (0, 0).

2. Suppose f : R→ R is a continuous function satisfying the equation

| f (x)− f (y)| ≥ |x− y| for all x, y ∈ R

Prove that f (R) = R.
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Solution: Suppose that f (x) = f (y). Then | f (x)− f (y)| ≥ |x − y| so that 0 ≥ |x − y|,
implying |x − y| = 0. But then x = y so that f is necessarily injective. Suppose that
there exists x < y < z such that f (x) < f (y) and f (y) > f (z). Since x 6= z, it must be
that f (x) 6= f (z) since that f is injective. Without loss of generality, f (x) < f (z). But
then f (x) < f (z) and f (z) < f (y). Since f is continuous, there exists a ∈ (x, y) such
that f (a) = f (z) by the Intermediate Value Theorem. But since f is injective, a = z, a
contradiction as z /∈ (x, y). Similarly, it cannot be possible f (x) > f (y) and f (y) < f (z).
This shows that f is strictly monotone. But then f monotonic and injective so that f is a
bijection ( f is then surjective). Let x ∈ R, then x = f (y) for some y ∈ R as f is surjective.
Therefore, R ⊆ f (R). Clearly, f (R) ⊆ so that we must have f (R) = R.

3. Suppose the boundary of a set in R2 is a graph of a bounded function. Prove that the
function is continuous.

Solution: Let E ⊆ R2 and f : R → R be bounded, i.e. | f (x)| ≤ M for all x ∈ R. Let G
be the graph of f . Then G is the boundary of E by assumption, i.e. G = E \ E◦ = E ∩ EC.
Then G is closed as G = E ∩ EC is the intersection of closed sets. Let {xn} be a sequence
in R such that xn → x. We show that f (xn) → f (x). Then we have (xn, f (xn)) be a
sequence in G. Now (xn, f (xn)) ∈ K := ({xn} ∪ {x}) × [−M, M]. Now {xn} ∪ {x} is
compact (it is the union of compact sets) and [−M, M] is compact. Therefore, K is compact.
Therefore for any subsequence {(xnk , f (xnk))} of {(xn, f (xn)}, there exists a convergent
subsequence {(xnkl

, f (xnkl
))} so that (xnkl

, f (xnkl
)) → (x, y) for some x, y with xn → x.

Now as G is closed, we must have (x, y) ∈ G. But then (x, y) = (x, f (x)) for some x. Then
(xnkl

, f (xnkl
)) → (x, f (x)) so that (xn, f (xn)) → (x, f (x)). This proves that f (xn) → f (x).

Therefore, f (x) is continuous.

4. Prove or give a counterexample: Let f : (0, 1)→ R and g : (0, 1)→ R be continuously
differentiable; that is, f , g ∈ C1(0, 1). Suppose that

lim
x→0+

f (x) = lim
x→0+

g(x) = 0

and g and g′ never vanish on (0, 1). If

lim
x→0+

f (x)
g(x)

= c for some c ∈ R,

then

lim
x→0+

f ′(x)
g′(x)

= c.31

31This is essentially l’Hôpital’s Rule. The little remembered condition is that if one has a limit which results
in an indeterminate form, limx→0

f (x)
g(x) = limx→0

f ′(x)
g′(x) assuming that limx→0

f ′(x)
g′(x) exists.
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Solution: Take f , g : (0, 1) → R be given by f (x) = x2 sin
( 1

x

)
and g(x) = x. Then

f ′(x) = 2x sin
( 1

x

)
− cos

( 1
x

)
and g′(x) = 1. It is then clear that f , g ∈ C′(0, 1). We have

−x2 ≤
∣∣∣∣x2 sin

(
1
x

)∣∣∣∣ ≤ x2

so that limx→0 f (x) = 0 by Squeeze Theorem. It is clear that limx→0 g(x) = 0. Now g, g′

never vanish on (0, 1). We have

lim
x→0

f (x)
g(x)

= lim
x→0

x sin
(

1
x

)
and

−x ≤
∣∣∣∣x sin

(
1
x

)∣∣∣∣ ≤ x

so that limx→0
f (x)
g(x)

= 0 by the Squeeze Theorem. [Note that to this point, the limits existed

so that in particular the right and left limits exist and are equal to the limit value.] But

lim
x→0+

f ′(x)
g′(x)

= lim
x→0+

2x sin
(

1
x

)
− cos

(
1
x

)
,

If this limit existed, as

lim
x→0+

−|2x| ≤ lim
x→0+

∣∣∣∣2x sin
(

1
x

)∣∣∣∣ ≤ lim
x→0+

|2x| = 0,

this would imply

lim
x→0+

2x sin
(

1
x

)
− lim

x→0+

f ′(x)
g′(x)

= lim
x→0+

cos
(

1
x

)

exists, a clear contradiction. Therefore, limx→0+
f ′(x)
g′(x)

= 0 does not exist.

5. Let {ϕn}∞
n=1 be a sequence of non-negative Riemann integrable functions on [0, 1] such

that

lim
n→∞

∫ 1

0
xk ϕn(x) dx

exists for k = 0, 1, 2, . . .. Show that the limit

lim
n→∞

∫ 1

0
f (x)ϕn(x) dx

exists for every continuous function f on [0, 1].
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Solution: Let f be a continuous function on [0, 1]. By Weierstrass’ Theorem, there exists a
sequence {pm} of polynomials such that {pm} converges uniformly to f on [0, 1]. Then

lim
n→∞

∫ 1

0
f (x)φn(x) dt = lim

n→∞

∫ 1

0
lim

m→∞
pm(x)φn(x) dt = lim

n→∞
lim

m→∞

∫ 1

0
pm(x)φn(x) dx,

where we have made use of uniform convergence to exchange the limit and the integral. We
show that

∫ 1
0 pm(x)φn(x) dx converges uniformly to

∫ 1
0 f (x)φn(x) dx as m→ ∞. Now for

all n ∈N, we have φn(x) ∈ R so that {φn(x)} is pointwise bounded, i.e. |φn(x)| ≤ |φ(x)|
for some φ(x). Since {pm} converges uniformly to f , there exists a M such that for m ≥ M,
|pm − f | < ξ := ε∫ 1

0 |φ(x)| dx
. Then for m > M

∣∣∣∣∫ 1

0
pm(x)φn(x) dt−

∫ 1

0
f (x)φn(x) dt

∣∣∣∣ ≤ ∫ 1

0
|pm(x)− f (x)| |φn(x)| dx

≤
∫ 1

0
ξ|φ(x)| dx

= ξ
∫ 1

0
|φ(x)| dx

=
ε∫ 1

0 |φ(x)| dx
·
∫ 1

0
|φ(x)| dx

= ε.

Then
∫ 1

0 pm(x)φn(x) dx converges uniformly to
∫ 1

0 f (x)φn(x) dx as m → ∞. Now show
limn→∞

∫ 1
0 pm(x)φn(x) dx exists. Therefore,

lim
n→∞

∫ 1

0
pm(x)φn(x) dx = lim

n→∞

∫ 1

0
(amxm + · · ·+ a0)φn(x) dx

= lim
n→∞

∫ 1

0
amxmφn(x) dx + · · ·+ lim

n→∞

∫ 1

0
a0φn(x) dx

exists. But then

lim
n→∞

∫ 1

0
f (x)φn(x) dx = lim

n→∞
lim

m→∞

∫ 1

0
pm(x)φn(x) dx = lim

m→∞
lim
n→∞

∫ 1

0
pm(x)φn(x) dx

exists.

6. For n = 1, 2, 3, . . ., let

fn(x) =

{
1, if x ∈ {1, 1

2 , . . . , 1
n}

0, otherwise
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(a) Does the sequence { fn}∞
n=1 converge uniformly on R? Justify your answer.

(b) Assume that α : R → R is an increasing continuous function, prove or disprove the
following identity

lim
n→∞

∫ 1

−1
fn(x) dα(x) =

∫ 1

−1
lim
n→∞

fn(x) dα(x).

Solution:

(a)

(b)
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January 2009

1. Let C be the standard Cantor set on the interval [0, 1] and let A = Cc be its complement
on the real line. Identify the set of all limit points A′ of A, explaining your answer.32

Solution: Since C is closed, A = Cc is open. Then A is the union of disjoint open intervals
removed from [0, 1] to form the Cantor Set. Note that the endpoints of those intervals
are the same endpoints as the nonexcluded intervals in the Cantor Set. Call this set of
endpoints B. Let x ∈ C. Then x ∈ In for some n, where In a interval in the nth stage of
the construction of the Cantor Set. The length of In is 3−n. Let y ∈ B ∩ In so that y is
an endpoint of In. Without loss of generality, assume y 6= x. Then d(x, y) < 3−n so that
y ∈ B3−n(x) ∩ B and y 6= x. But then x ∈ B′ so that x ∈ A′. Therefore, C ⊆ A′. Now
suppose x ∈ A′. Suppose x /∈ C. Then x ∈ B so that x ∈ C′. But this is a contradiction
since C is closed and hence must contain all its limit points. But then x ∈ C. Therefore,
C = A′.

2.

(a) Prove
n

∑
k=1

k =
n(n + 1)

2

(b) Let {an} be a sequence with limit L. Define a sequence

bn =
1
n2

n

∑
k=1

kak

Prove limn→∞ bn = L/2.

Solution:

(a) We proceed by induction. First, we check the first few cases by hand

n = 1 :
1

∑
i=1

i = 1;
1(1 + 1)

2
=

2
2
= 1

n = 2 :
2

∑
i=1

i = 1 + 2 = 3;
2(2 + 1)

2
=

6
2
= 3

n = 3 :
3

∑
i=1

i = 1 + 2 + 3 = 6;
3(3 + 1)

2
=

12
2

= 6

32The solution will assume that the complement is meant to be taken in [0, 1] not the whole real line.
Otherwise since C ⊆ [0, 1], (∞, 0) ∪ (1, ∞) ⊆ A and clearly every point in these intervals is a limit point. Then
in the given solution, we must have A′ = C ∪ (∞, 0) ∪ (1, ∞).
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Now assume the result is true for n = 1, 2, 3, . . . , k. We need to show that the formula
holds for n = k + 1.
k+1

∑
i=1

i = (k + 1) +
k

∑
i=1

i ∗= (k + 1) +
k(k + 1)

2
=

2(k + 1)
2

+
k(k + 1)

2
=

2k + 2
2

+
k2 + k

2

=
2k + k2 + k + 2

2
=

k2 + 3k + 2
2

=
(k + 1)(k + 2)

2
=

(k + 1) ((k + 1) + 1)
2

where the starred equality follows from the induction hypothesis: ∑k
i=1 i = k(k+1)

2 . But
then ∑n

i=1 i = n(n+1)
2 follows by induction.

OR

Write out the sum in ‘increasing’ order and again directly beneath it in ‘decreasing’
order.

1 + 2 + 3 + · · · + n
n + (n− 1) + (n− 2) + · · · + 1

Adding these two rows yields

1 + 2 + 3 + · · · + n
n + (n− 1) + (n− 2) + · · · + 1

(n + 1) + (n + 1) + (n + 1) + · · · + (n + 1)

This result is the n-fold sum of (n+ 1)’s. But then we have 2(1+ 2+ · · ·+ n) = n(n+ 1)
so that ∑n

i=1 i = 1 + 2 + · · ·+ n = n(n+1)
2 .

OR

We want to find 1 + 2 + · · ·+ n = ∑n
i=1 i. Observe this is the same as finding n + (n−

1) + · · ·+ 2 + 1 = ∑n
i=1 n− i + 1, the sum written in reverse. But then we have

2
n

∑
i=1

i =
n

∑
i=1

i +
n

∑
i=1

n− i + 1

=
n

∑
i=1

i + (n− i + 1)

=
n

∑
i=1

n + 1

= n(n + 1)

But then we have ∑n
i=1 i = n(n+1)

2 .

299



OR

Let S(n) := ∑n
i=0 i. Observe that S(n)− S(n− 1) = n for n = 1, 2, · · · . But then S(n) is

a polynomial of degree two.33 Suppose that S(n) = an2 + bn + c. We must have c = 0
as S(0) = 0. Furthermore, S(n)− S(n− 1) = n and

n = S(n)− S(n− 1) = (an2 + bn)− (a(n− 1)2 + b(n− 1)) = (2a)n + (b− a)

Relating the polynomials in n on the far left and right, we have 2a = 1 and b− a =

0. But then a = 1/2 and b = a. Therefore, S(n) = ∑n
i=1 i = 1

2 n2 + 1
2 n = n(n+1)

2 .
Alternatively, once one knows that S(n) is a polynomial of degree two, we could use
the points (0, 0), (1, 1), and (2, 3) (coming from the fact that S(0) = 0, S(1) = 1, and
S(2) = 3) and use Lagrange Interpolation to find that

S(n) = 0 · (n− 1)(n− 2)
(1− 0)(2− 0)

+ 1 · (n− 0)(n− 2)
(1− 0)(1− 2)

+ 3 · (n− 0)(n− 1)
(2− 0)(2− 1)

=
n(n + 1)

2

OR

Let S denote the n-element set {1, 2, . . . , n}. We count the number of ways to choose
a two–element subset from S. First, we can choose the first element in n ways and
the second element in (n− 1) ways. However, choosing i and then j produces the
same two–element subset as choosing j then i. So the number of ways of choosing a
two–element subset from S is n(n−1)

2 .

Alternatively, suppose the larger of the two numbers chosen is i. Then for i = 2, 3, . . . , n,
there are i − 1 choices for the second number j. That is for i = 2, 3, . . . , n, there are
1, 2, · · · , n− 1 possible two–element subsets of S. Then in total there are 1 + 2 + · · ·+
(n − 1) total two–element subsets of S. But then ∑n−1

i=1 i = 1 + 2 + · · · + (n − 1) =
n(n−1)

2 .

OR

First, we prove Pascal’s Identity: (n+1
k ) = (n

k) + ( n
k−1). We count the number of ways to

choose a k–element subset from the set {1, 2, . . . , n + 1} in two different ways. Since

33This actually takes a bit more work to show. Let V be the space of all polynomials defined over N∪ {0}
over a field F of characteristic 0. Define the forward difference operator Dp(n) := p(n + 1)− p(n). If p(n) has
degree d + 1, then Dp(n) has degree at most d. Let Vd denote the subspace of V consisting of polynomials of
degree at most d. Then we have dimF Vd = d + 1. Choosing the standard basis, observe that matrix for the
forward difference operator is upper triangular and defines an operator D : Vd+1 → Vd. Then the result is
clear.
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they count the same thing, they must be equal. First, we do this ‘directly’. The
number of k–element subsets one can choose from this set is exactly (n+1

k ). Second,
each k–element subset either contains n + 1 or does not. The number of k–element
subsets containing n + 1 is ( n

k−1) while the number of k–element subsets not containing
n + 1 is (n

k). But then the number of k–element subsets is (n
k) + ( n

k−1). Therefore,
(n+1

k ) = (n
k) + ( n

k−1). We will need this identity for the starred equality below.

Now we show ∑n
i=1 i = (n+1

2 ) using induction. The case where n = 1 is simple:
∑1

i=1 i = 1 and (2
2) = 1. Assume the result is true for n = 1, 2, . . . , k− 1. Then

k

∑
i=1

i = k +
k−1

∑
i=1

i

=

(
k
1

)
+

(
k
2

)
∗
=

(
k + 1

2

)
=

k(k + 1)
2

Then ∑n
i=1 i = (n+1

2 ) = n(n+1)
2 follows by induction.

OR

Consider the complete graph Kn. Label the vertices v1, v2, . . . , vn. Associate to vertex
v1 the (n− 1)-edges connecting it to all the other vertices in Kn. Associate to vertex v2
the (n− 2)-edges connecting it to all the other vertices in Kn except for v1. Continue
this process for v3, v4, . . . , vn. Notice that for each i, the association for vi+1 contributes
no new edges and this process never duplicates an edge. Let |vi| denote the number of
edges associated with vi. Then the number of edges in Kn is. . .

# of edges =
n

∑
i=1
|vi| = |v1|+ |v2|+ · · ·+ |vn−1|+ |vn| = (n− 1)+ (n− 2)+ · · ·+ 2+ 1

But then we have ∑n
i=1 |vi| = ∑n−1

i=1 i. The result will follow if we can show that the
number of edges, ∑n

i=1 |vi|, is n(n−1)
2 . But every edge in Kn connects two vertices. The

number of edges must then be the number of ways one can select two vertices to
connect. But this is precisely (n

2) =
n(n−1)

2 . Therefore, we have

n−1

∑
i=1

i =
n

∑
i=1
|vi| =

(
n
2

)
=

n(n− 1)
2

But this is exactly what was to be shown.

301



OR

We want to show that 1 + 2 + · · ·+ (n− 1) = n(n−1)
2 . Represent the sum 1 + 2 + · · ·+

(n− 1) as a triangular array of yellow circles. Place a row of n blue dots beneath this
array to create larger a triangular array of dots. The case when n = 5 is illustrated
in Figure 3. Observe that if one chooses any two distinct blue dots, there is a unique

Figure 3: An illustration for the triangular array for n = 5.

yellow dot in the upper portion of the triangular array ‘associated’ to the pair of dots
as illustrated in Figure 3. Vise versa for each yellow dot, there is a unique pair of blue
dots associated to it. That is, there is a one-to-one correspondence between yellow dots
and pairs of blue dots. But then the number of yellow dots, 1 + 2 + · · ·+ (n− 1), must
be the same as the number of ways of choosing two distinct blue dots, (n

2). Then we
must have

n−1

∑
i=1

i = 1 + 2 + · · ·+ (n− 1) =
(

n
2

)
=

n(n− 1)
2

But this was exactly what was to be shown.34

OR

Observe that (i + 1)2 − i2 = (i2 + 2i + 1)− i2 = 2i + 1. The series

n

∑
i=1

(i + 1)2 − i2 = (22 − 12) + (32 − 22) + (42 − 32) + · · ·+ ((n + 1)2 − n2)

= −12 + (n + 1)2

= −1 + (n2 + 2n + 1)

= n2 + 2n

34L. Larson. A Discrete Look at 1 + 2 + · · ·+ n. College Mathematics Journal, 16:369–382, 1985.
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Take note also that ∑n
i=1 1 = n. We also have. . .

n

∑
i=1

(2i + 1) =
n

∑
i=1

2i +
n

∑
i=1

1 = 2
n

∑
i=1

i +
n

∑
i=1

1 = n + 2
n

∑
i=1

i

so that 2 ∑n
i=1 i = −n + ∑n

i=1(2i + 1). Putting these results together, we have. . .

2
n

∑
i=1

i = −n +
n

∑
i=1

2i + 1

= −n +
n

∑
i=1

(i + 1)2 − i2

= −n + (n2 + 2n)

= n2 + n
= n(n + 1)

Therefore, ∑n
i=1 i = n(n+1)

2 .

OR

Consider the finite geometric series

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r

Differentiating both sides of the equality yields

d
dr
(
1 + r + r2 + · · ·+ rn) = 1 + 2r + 3r2 + · · ·+ nrn−1

d
dr

(
1− rn+1

1− r

)
=
−(1− r)(n + 1)rn − (−1)(1− rn+1)

(1− r)2 =
nrn+1 − (n + 1)rn + 1

(1− r)2

We obtain the sum 1 + 2 + · · ·+ n by taking the limit as r tends to 1:

lim
r→1

nrn+1 − (n + 1)rn + 1
(1− r)2

L.H.
= lim

r→1

n(n + 1)(r− 1)rn−1

2(1− r)

L.H.
= − lim

r→1

n(n + 1)(n(r− 1) + 1)rn−2

2

=
n(n + 1)

2

where L.H.
= denotes that the equality follows by application of l’Hôpital’s Rule. But it

then follows that ∑n
i=1 i = n(n+1)

2 .
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(b) Note that ∣∣∣∣bn −
∑n

k=1 k
n2 L

∣∣∣∣ =
∣∣∣∣∣ 1
n2

n

∑
k=1

kak −
1
n2

n

∑
k=1

kL

∣∣∣∣∣ ≤ 1
n2

n

∑
k=1

k|ak − L|.

Moreover, ∣∣∣∣bn −
∑n

k=1 k
n2 L

∣∣∣∣ =
∣∣∣∣∣bn −

n(n+1)
2

n2 L

∣∣∣∣∣ =
∣∣∣∣bn −

n + 1
2n

L
∣∣∣∣ .

Now since an → L, given ε > 0, there exists N ∈ N such that for n > N, |an − L| <
ε. Furthermore ak is convergent, the sequence {ak} is bounded. But then so too is
{|ak − L|} bounded. Suppose |ak − L| < M for all k. Now given m ∈ N, there exists
P ∈ N such that 4Mm(m+1)

2P2 = 2Mm(m+1)
P2 , i.e. Mm(m+1)

2P2 < ε
4 . Notice also that for n ≥ 2,

1 + 1
n ≤ 1 + 1

2 = 3
2 .

We are now in a position to prove limn→∞ bn = L/2. Let ε > 0 be given. As above,
find N ∈ N so n > N, |an − L| < ε. Find as above P ∈ N so that MN(N+1)

2P2 < ε
4 . Let

M = max{2, N, P}. Then for n > M, we have∣∣∣∣bn −
∑n

k=1 k
n2 L

∣∣∣∣ = ∣∣∣∣bn −
n + 1

2n
L
∣∣∣∣

≤ 1
n2

n

∑
k=1

k|ak − L|

=
1
n2

N−1

∑
k=1

k|ak − L|+ 1
n2

n

∑
k=N

k|ak − L|

<
1
n2

N−1

∑
k=1

kM +
1
n2

n

∑
k=N

kε

=
M
n2

N−1

∑
k=1

k +
ε

n2

n

∑
k=N

k

<
M
n2

N

∑
k=1

k +
ε

n2

n

∑
k=1

k

=
M
n2 ·

N(N + 1)
2

+
ε

n2 ·
n(n + 1)

2

=
MN(N + 1)

2n2 +
n + 1

n
· ε

2

=
MN(N + 1)

2n2 +

(
1 +

1
n

)
· ε

2

<
ε

4
+

3
2
· ε

2
= ε
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Therefore, bn → L/2.

3. Let f be a continuous real valued function on [a, b] and differentiable on (a, b). Prove

max
a≤x≤b

| f (x)| ≤ 1
b− a

∫ b

a
| f (x)| dx + (b− a) sup

a<x<b
| f ′(x)|

Solution: Since f is continuous on [a, b], f is integrable so that the Mean Value Theorem
for Integrals applies. Then there exists ξ ∈ (a, b) so that

f (ξ) =
1

b− a

∫ b

a
f (x) dx.

But then we must have

| f (ξ)| =
∣∣∣∣ 1
b− a

∫ b

a
f (x) dx

∣∣∣∣ ≤ 1
b− a

∫ b

a
| f (x)| dx.

Let | f (y)| = max
a≤x≤b

| f (x)|. But then for some c ∈ (ξ, y)

| f (y)| − | f (ξ)| ≤ | f (y)− f (ξ)|
= | f ′(c)| |y− ξ|
≤ | f ′(c)| |b− a|
≤ (b− a) sup

a<x<b
| f ′(x)|

Therefore, we have

| f (y)| ≤ | f (ξ)|+ (b− a) sup
a<x<b

| f ′(x)|

=
1

b− a

∫ b

a
| f (x)| dx + (b− a) sup

a<x<b
| f ′(x)|

Therefore, max
a≤x≤b

| f (x)| ≤ 1
b− a

∫ b

a
| f (x)| dx + (b− a) sup

a<x<b
| f ′(x)|.

4. Suppose f (x + 1) = f (x) for all real x, f is real valued, f is Riemann integrable on every
compact interval, and

∫ 1
0 f (x) dx = 0.

(a) Prove there exists x0 such that F(x) =
∫ x

x0
f (t) dt ≥ 0 for all x.

(b) Show by example that F′(x0) = 0 need not be true.
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Solution:

(a) Note that since
∫ 1

0 f (x) dx = 0, that
∫ x

0 f (t) dt +
∫ 1

x f (t) dt = 0. This implies

∫ x

0
f (t) dt = −

∫ 1

x
f (t) dt

for all x ∈ R. But ∫ 1

0
f (t) dt =

∫ 1

0
f (t + 1) dt =

∫ 2

1
f (t) dt = · · ·

so that
∫ bxc+1
bxc f (t) dt =

∫ 1
0 f (t) dt = 0 for all x ∈ R. Then for all y ∈ R, there exists

x ∈ [0, 1] such that ∫ y

byc
f (t) dt =

∫ x

0
f (t) dt∫ byc+1

y
f (t) dt =

∫ 1

x
f (t) dt

Define G(x) : [0, 1]→ R by G(x) =
∫ x

0 f (t) dt. Note taht G is well-defined since f ∈ R
and that G is continuous by the Fundamental Theorem of Calculus.

Since G is continuous on [0, 1], there exists x0 ∈ [0, 1] such that G(x) ≥ G(x0) for all
x ∈ [0, 1]. Let y ∈ R and let F(x) =

∫ x
x0

f (t) dt. If y < 0, then

F(y) =
∫ y

x0

f (t) dt

= −
∫ x0

y
f (t) dt

= −
[∫ byc+1

y
f (t) dt +

∫ byc+2

byc+1
f (t) dt + · · ·+

∫ x0

0
f (t) dt

]
= −

[∫ byc+1

y
f (t) dt +

∫ x0

0
f (t) dt

]
= −

[∫ 1

x
f (t) dt +

∫ x0

0
f (t) dt

]
= −

[∫ x0

0
f (t) dt−

∫ x

0
f (t) dt

]
= −(G(x0)− G(x))
= G(x)− G(x0) ≥ 0
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This shows that F(y) ≥ 0 for all y < 0. If y ≥ 0, we have

F(y) =
∫ y

x0

f (t) dt

=
∫ 1

x0

f (t) dt +
∫ 2

1
f (t) dt + · · ·+

∫ y

byc
f (t) dt

=
∫ 1

x0

f (t) dt +
∫ y

byc
f (t) dt

=
∫ 1

x0

f (t) dt +
∫ x

0
f (t) dt

=
∫ x

0
f (t) dt−

∫ x0

0
f (t) dt

= G(x)− G(x0) ≥ 0

This shows that F(y) ≥ 0 for all y ≥ 0. But then we must have F(y) ≥ 0 for all y ∈ R.

(b) Let f : R→ R be given by

f (x) =


−1, x ∈ [0, 1/4]
1, x ∈ (1/4, 3/4]
−1, x ∈ (3/4, 1]

Extend f (x) to R as follows: for x ∈ R, let n ∈ Z be the largest element of Z such
that n ≤ x. Then x − n ∈ [0, 1). Define f (x) := f (x − n). By construction, it is
clear that f (x + 1) = f (x) for all x ∈ R. On any compact interval f (x) is bounded
(since it is bounded on [0, 1]) and has only finitely many discontinuities. Therefore,
f ∈ R and

∫ 1
0 f (x) dx = 1. Then G(x) =

∫ x
0 f (t) dt has a minimum at x0 = 1

4 . Now
F(x) =

∫ x
1/4 f (t) dt ≥ 0 for all x ≥ 1/4. But F′(1/4) 6= 0 because F is not differentiable

at 1/4 since f is not continuous there.

5. Let fn(x) = n(ex2/n − 1) for all real x.

(a) Prove limn→∞ fn(x) = x2 for each x.

(b) Prove { fn} is equicontinuous on [0, M] for all positive M.

(c) Prove that limn→∞
∫ 1

0 ( fn(x))1/3 dx exists and equals 3
5 .

Solution:
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(a) Using l’Hôpital’s Rule (with 0
0 ), we have

lim
n→∞

fn(x) = lim
n→∞

n(ex2/n − 1) = lim
n→∞

ex2/n − 1
1
n

L.H.
= lim

n→∞

− x2

n2 e
x2

n2

− 1
n2

= lim
n→∞

x2e
x2

n2 = x2

Therefore for all x ∈ R, we have limn→∞ fn(x) = x2.

(b) Observe [0, 1] is a compact metric space and f ′n(x) = 2xe
x2
n . Clearly, f ′n(x) is continuous

for all x and f ′n(x) = 0 if and only if x = 0 for all n. [In fact, f ′n converges uniformly to
f ′ = 2x on [0, M], giving another approach to the proof of equicontinuity below.] Now
f ′n(x) > 0 on the interval [0, M] for all n. Each fn is continuous on [0, 1], monotone
(increasing) on the compact metric space [0, M], and fn(x) converges pointwise to
f (x) := x2 for all x ∈ [0, M]. Finally, observe fn(0) = 0 for all n and f ′n(x) = 2xex2/n so
that

f ′n+1(x) = 2xex2/(n+1) ≤ 2xex2/n = f ′n(x)

for x ∈ [0, M] and all n. Therefore, fn+1(x) ≤ fn(x) for all x ∈ [0, 1] and n ∈ N.
Therefore by Dini’s Theorem, fn → f uniformly on [0, M].35 Now [0, 1] is a compact
metric space, fn ∈ C([0, 1]) for all n, and { fn} converges pointwise to f on [0, 1] by (a).
Therefore, { fn} is equicontinuous on [0, 1].

(c) By the work in (a) and (b), fn → f uniformly on [0, 1]. Since f , fn ∈ R([0, 1]), using the
continuity of 3

√
x and uniform convergence, we have

lim
n→∞

∫ 1

0
( fn(x))1/3 dx =

∫ 1

0
lim
n→∞

( fn(x))1/3 dx

=
∫ 1

0
( lim

n→∞
fn(x))1/3 dx

=
∫ 1

0
(x2)1/3 dx

=
∫ 1

0
x2/3 dx =

x5/3

5/3

∣∣∣∣1
0
=

3
5

35Dini’s Theorem: if X is a compact metric space, { fn} is a monotone sequence of continuous functions on
X which converges pointwise to a continuous function f , then the convergence is uniform. Proof. Let ε > 0
and define gn = f − fn. Without loss of generality, assume { fn} is monotone increasing, i.e. fn(x) ≤ fn+1(x).
Let En = {x ∈ X : gn(x) < ε}. Each gn is continuous and hence En is open (En is the preimage of an open
set under gn). Since { fn} is monotone increasing, {gn} is monotone decreasing, we have En ⊆ En+1 for all n.
Since fn converges pointwise to f , {En} is an open covering of X. By compactness, there is a finite subcovering
{En}n=1,...,N . But as En ⊆ En+1, we must have EN = X. Then if n > N and x ∈ X, then | fn(x)− f (x)| < ε.
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6. The map (x, y) 7→ (ex sin x− x2y, y cos x− ex + 1) maps the origin to the origin. Show
that the inverse map G exists in a neighborhood of the origin and compute

d
dt

∣∣∣∣
t=0

f ◦ G(−t, t2) and
d
dt

∣∣∣∣
t=0

f ◦ G(−t, t)

when f (x, y) = x + 2y.

Solution: Let F(x, y) = ( f1, f2), where f1(x, y) = ex sin x − x2y and f2(x, y) = y cos x −
ex + 1. Now

J f (0, 0) =
∣∣∣∣ex cos x + ex sin x− 2xy −x2

−y sin x− ex cos x

∣∣∣∣ ∣∣∣∣
(0,0)

=

∣∣∣∣ 1 0
−1 1

∣∣∣∣ = 1

Therefore, the Inverse Function Theorem applies to F(x, y) at (0, 0). Then G := F−1 exists
in a neighborhood of (0, 0). Now

DG = DF−1 =
1

J f (x, y)

(
cos x x2

4 sin x + ex ex cos x + ex sin x− 2xy

)

Let g : R→ R2 be given by g(t) = (−t, t2). So g′(t) =
(
−1
2t

)
. Therefore, f ◦ G(−t, t2) =

f ◦ G ◦ g. Note that

f ′(G(g(0))) = f ′(G(0, 0)) = f ′(0, 0) =
(
1 2

) ∣∣∣∣
(0,0)

=
(
1 2

)
Furthermore, G′(g(0)) = G′(0, 0) =

(
1 0
1 1

)
and g′(0) =

(
−1
0

)
. Finally,

d
dt

( f ◦ G ◦ g)
∣∣∣∣
t=0

=
(
1 2

) (1 0
1 1

)(
−1
0

)
= −3.

Now let g : R → R2 be given by g(t) = (−t, t) so that g′(t) =

(
−1
1

)
. Then as above,

using the fact that g′(t) =
(
−1
1

)
,

d
dt

( f ◦ G ◦ g)
∣∣∣∣
t=0

=
(
1 2

) (1 0
1 1

)(
−1
1

)
= −1.
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August 2009

1. If F1 and F2 are closed subsets of R1 and dist(F1, F2) = 0 then F1 ∩ F2 6= ∅. Prove or give
a counterexample.36

Solution: Let F1 = N and F2 = {n + 1
n : n ∈ N}. We have FC

1 = ∪∞
n=1B1/2(n/2) is open

since each B1/2(n/2) is open. Therefore, F1 is open. We know also

FC
2 =

∞⋃
n=1

Bd

(
n + 1

2n + n + 1 + 1
2(n+1)

2

)
,

where d = lcm(2n,2n+2)−1
lcm(2n,2n+2) . This is clearly open being the union of open sets. Therefore, F2 is

closed. Now

dist(F1, F2) = inf{d( f1, f2) : f1 ∈ F1, f2 ∈ F2} = inf
{

1
2n

: n ∈N

}
= 0

Therefore, dist(F1, F2) = 0. However, F1 ∩ F2 = ∅.

2. Newton’s method for finding zeroes of a function f : R1 → R1 is based on the recursion
formula

xn+1 = xn −
f (xn)

f ′(xn)
, n ≥ 1.

Show that if f ∈ C1, f (a) = 0 and f ′(a) 6= 0, then there exists a δ > 0 such that if
|x1 − a| < δ then xn → a. (Suggestion: Use the Mean Value Theorem.)

Solution:
3. Let f : [0, ∞)→ [0, ∞) and for h > 0 and k ≥ 1 set

Mk(h) = sup
(k−1)h≤x<kh

f (x), mk(h) = inf
(k−1)h≤x<kh

f (x).

Let

U(h) =
∞

∑
k=1

Mk(h) h, L(h) =
∞

∑
k=1

mk(h)h.

We say that f is directly Riemann integrable if U(h) < ∞ for all h > 0 and

lim
h↓0

(U(h)− L(h)) = 0.

36The statement is true if one of F1, F2 is compact. To shows this, use contradiction. We know there are
sequences xn, yn so that d(xn, yn)→ 0 (using the fact that d(F1, F2) = 0. But then xn → x ∈ F1. Use the triangle
inequality to show that d(x, F2) = 0 so x ∈ F2 and x ∈ F1.
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Recall f is improperly Riemann integrable on [0, ∞) if f is Riemann integrable on [0, a] for
every a > 0, and

lim
a→∞

∫ a

0
f (t) dt < ∞

(a) Show that if f is continuous and nonincreasing, then f is directly Riemann integrable
whenever f is improperly Riemann integral on [0, ∞).37

(b) Give an example of a continuous function f which is improperly Riemann integrable
on [0, ∞) but not directly Riemann integrable.

Solution:

(a) If f is improperly Riemann integrable, then given ε > 0, there is an A > 0 such

that lim
a→∞

∫ a

A
f (t) dt <

ε

2
. Now partition [0, A] into intervals [xi−1, xi] for i = 1, . . . , n.

Since f is nonincreasing, Mi = f (xi−1) and mi = f (xi) for each i. Furthermore
since f is continuous, there exists δ1 > 0 such that for |xi − xi−1| < δ1, we have
| f (xi)− f (xi−1)| < ε. Let δ = min{δ1, 1/(2A)}. Then for |xi − xi−1| < δ,

∞

∑
i=1

(Mi −mi)∆xi <
n

∑
i=1

(Mi −mi)∆xi +
ε

2

=
n

∑
i=1

( f (xi−1)− f (xi))∆xi +
ε

2

<
n

∑
i=1

( f (xi−1)− f (xi))δ +
ε

2

<
n

∑
i=1

( f (xi−1 − f (xi))
1

2A
+

ε

2

=
ε

2
+

ε

2
= ε

Therefore, limh→0(U(h)− L(h)) = 0 so that f is directly integrable.

(b) Let f (x) be the function given by

f (x) =


∞

∑
n=1

1, x ∈
[

n− 1
2n2 , n +

1
2n2

]
0, otherwise

37This notion appears in Renewal Theory.
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4. Suppose f : [0, ∞) → [0, ∞) is such that for any sequence an of nonnegative terms we
have

∞

∑
n=1

an < ∞ −→
∞

∑
n=1

f (an) < ∞

Prove that

lim sup
x→0+

f (x)
x

< ∞

Solution: Suppose lim
x→0+

sup
f (x)

x
= ∞, then lim

δ→0

(
sup

0<x<δ

f (x)
x

)
= ∞. Therefore for all

n ∈ N, there exists xn < 1
n2 such that f (xn)

xn
> n. But then f (xn) > nxn, implying

that f (xn) > n · 1
n2 = 1

n . But as ∑ 1
n diverges, by the Comparison Test ∑ f (xn) di-

verges. But this contradicts the fact taht ∑ xn < ∑ 1
n2 , since ∑ 1

n2 converges. Therefore,

lim
x→0+

sup
f (x)

x
< ∞.

5. Let f be continuous real valued function defined on the unit square and for each
0 ≤ x ≤ 1 let fx be function on the unit interval defined by fx(y) = f (x, y). Prove that for
any sequence xn in [0, 1] there is a subsequence nk such that fxnk

converges uniformly on
[0, 1].

Solution: Note that f is continuous on the set [0, 1] × [0, 1], which is compact, so that
f is bounded. But then it must be that { f (xn)} is pointwise bounded. Let ε > 0 be
given. Since f is continuous, there exists δx > 0 such that for |y1 − y2| < δx, we have
| f (x, y1)− f (x, y2)| < ε. Choose δ = minn{δxn}. [Note only finitely many are required
since [0, 1] is compact.] Then

|y1 − y2| < δ⇒ | fxn(y1)− fxn(y2)| = f (xn, y1)− f (xn, y2)| < ε

for all n ∈N. But then { fxn} is equicontinuous. But since [0, 1] is compact, by the Arzelá-
Ascoli Theorem, there exists a uniformly convergent subsequence of { fxn}.

6. If c is a real parameter prove that x7 + x + c = 0 has a unique real root and that this root
is a differentiable function of c.

Solution: The function x7 + x + c is odd so it has at least one real root by the Intermediate
Value Theorem. Note also that d

dx (x7 + x + c) = 7x6 + 1 > 0, implying x7 + x + c is
increasing. But then this root must be unique. Define

F(x) = [ x︸︷︷︸
A

, x7 + x + c︸ ︷︷ ︸
B

]
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We have det A = 1 > 0, det B = 7x6 + 1 > 0 so that det A, det B are invertible. Therefore
by the Implicit Function Theorem, we can solve for x in terms of c, i.e. we can find g ∈ C1

with F = [g(c), c]. Therefore, x7 + x + c has a unique real root which is a differentiable
function of c.
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January 2010

1. Let X be a connected metric space. Given two points p, q ∈ X and a number ε > 0, prove
that there exist an integer n ≥ 0 and points a0, a1, . . . , an ∈ X such that a0 = p, an = q, and

d(aj, aj−1) < ε for all j = 1, 2, . . . , n.

Solution: Since X is a connected metric space, the only set which is both open and closed
in X is X itself. Let Ca,ε denote the set of elements x ∈ X such that there is an n ∈N∪ {0}
and a sequence {pn} such that p0 = a, pn = x, and d(pi, pi−1) < ε for i = 1, 2, . . . , n. Let
ε > 0 be given and choose a ∈ X. We show that Ca,ε is nonempty: a ∈ Ca,ε as choosing
n = 1 and p0 = a and p1 = a certainly satisfies the condition. We need only show that Ca,ε
is clopen so that X = Ca,ε.

To see that Ca,ε is open, we need find a ε′ > 0 such that B(t, ε′) ⊂ Ca,ε. In fact, we show
that the same ε as assumed above suffices. That is for any y ∈ B(t, ε), we need show that
y ∈ Ca,ε. As t ∈ Ca,ε, there is a sequence {pn} such that p0 = a, pn = t, and d(pi, pi−1) < ε
for i = 1, 2, · · · , n. But then the sequence {a, p1, p2, . . . , pn = t, y} is a sequence meeting
the condition so that y ∈ Ca,ε. Therefore, Ca,ε is open.

To see that Ca,ε is closed, let t be a limit point of Ca,ε. Then for each ε > 0, there is
a c ∈ Ca,ε such that d(c, t) < ε. As c ∈ Ca,ε, there is a sequence {pn} such that p0 = a,
pn = c, and d(pi, pi−1) < ε for i = 1, 2, · · · , n. Then it is immediate that the sequence
{a, p1, p2, . . . , pn = c, t} is a sequence “connecting" a and t satisfying the condition. This
shows that t ∈ Ca,ε.

Therefore, Ca,ε is clopen so that Ca,ε = X. This holds for all a ∈ X so there is a path
satisfying the condition of problem statement for any two points x, y ∈ X.

2. Suppose that f : (0, 1]→ R is a bounded continuous function such that for every t ∈ R

the set {x ∈ (0, 1] : f (x) = t} is finite. Prove that f is uniformly continuous on (0, 1].

Solution: We show that limx↘0 f (x) = l < ∞ for some l. Suppose that limx↘0 f (x) does
not exist. Since f is bounded, there exist sequences {xn}, {yn}, tending to 0, such that
f (xn)→ α and f (yn)→ β with α 6= β. Without loss of generality, assume that α < β. There
exists ε > 0 such that | f (yn)− α| ≥ ε as yn → 0. Since between any two real numbers,
there is another real number, we know there is a t such that α < t < β. So there is a
N ∈ N such that for n > N, f (xn) < t < f (yn). By the Intermediate Value Theorem,
for each n ≥ N, there exists wn such that f (wn) = t. Using this, define a sequence {wn}
such that f (wi) = t. But this is a contradiction since {x ∈ (0, 1] : f (x) = t} is finite. Then
limx↘0 f (x) = l < ∞ for some l. Define

g(x) =

{
f (x), x ∈ (0, 1]
l, x = 0
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By the work above, g(x) is continuous on [0, 1]. However as g(x) is continuous on the
compact set [0, 1], it must be that g(x) is uniformly continuous. But then f (x) is uniformly
continuous on (0, 1].

3. Prove or disprove the following: if a function f : (−1, 1)→ R is differentiable on (−1, 1)
and f ′(0) = 0, then for every δ > 0 there exists ε > 0 such that∣∣∣∣ f (t)− f (s)

t− s

∣∣∣∣ < δ whenever − ε < s < t < ε.

Solution: Define

f (x) =

x2 sin
(

1
x

)
, x 6= 0

0, x = 0

We have

f ′(0) := lim
x→0

f (x)− f (0)
x− 0

= lim
x→0

x2 sin(1/x)
x

= lim
x→0

x · sin x
x

= 0 · 1 = 0

[For the last limit, either use the fact that limx→0
sin x

x = 1 and limx→0 x = 0, or prove
directly using the Squeeze Theorem: since | sin x| ≤ 1, −x ≤ x sin(1/x) ≤ x which gives

lim
x→0

(−x) ≤ lim
x→0

x sin(1/x) ≤ lim
x→0

x

which gives the required limit.]
This shows f ′(0) = 0. For nonzero x, we can compute this directly. Putting this together

gives

f ′(x) =

2x sin
(

1
x

)
− cos

(
1
x

)
, x 6= 0

0, x = 0

Then f is differentiable and f ′(0) = 0.
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Now define δ = 1/2, tn =
1

2πn + 1
n

, and sn =
1

2πn
. We then have

∣∣∣∣ f (t)− f (s)
t− s

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

(
1

2πn + 1
n

)2

sin
(
2πn + 1

n

)
−
(

1
2πn

)2

sin (2πn)

1
2πn + 1

n

− 1
2πn

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
sin
(

1
n

)
(
2πn + 1

n

)2 ·
−1
n(

2πn + 1
n

)
2πn

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
sin
(

1
n

)
1
n

· 2πn
2πn + 1

n

∣∣∣∣∣∣∣∣ =
∣∣∣∣sin(1/n)

1/n
· 2πn2

2πn2 + 1

∣∣∣∣
which converges to 1 as n tends to infinity. [The left limit is equivalent to limx→0

sin x
x = 1

and the right limit is a rational function in n whose limit as n→ ∞ is obvious.] But then

for large enough n, −ε < s < t < ε, but
∣∣∣∣ f (t)− f (s)

t− s

∣∣∣∣ > δ = 1/2.

4. Let f be a bounded real-valued function on [a, b] with a discontinuity at c ∈ (a, b). Let
α(x) be monotonically increasing on [a, b] with α(c−) < α(c) < α(c+). Prove that f is not
Riemann-Stieltjes integrable with respect to α on [a, b].

Solution: Suppose f ∈ R(α). Then given ε > 0, there exists a partition P such that
U(P , f , α)− L(P , f , α) < ε. Let P∗ = P ∪ {c}, a refinement of P by adding the value
c. Since this is a refinement, U(P∗, f , α) − L(P∗, f , α) < ε. Since f is discontinuous
at c, choose ε f > 0 such that for all δ f > 0, there is a x f such that |x f − c| < δF but
| f (x f ) − f (c)| ≥ √ε f . As α(c−) < α(c) < α(c+), we know α is discontinuous at c.
Using discontinuity again, choose εα > 0 such that for all δα > 0, there is xα such that
|xα − c| < δα but |α(xα)− α(c)| ≥ √εα. Since a < c < b, there exist k ∈ {1, 2, . . . , n} such
that xk−1 < c < xk. Choose ε = min{ε f , εα}. Then for δ∗ = min{xn − c, c− xn−1}, there
exists x∗ such that |x∗ − c| < δ∗ and so | f (x∗) − f (c)| ≥

√
ε and |α(x∗) − α(c)| ≥

√
ε.

Therefore,

U(P∗, f , α)− L(P∗, f , α) =
n

∑
i=1

(Mi−mi)∆αi ≥ Mk∆αk−mk∆αk = (Mk−mk)∆αk ≥
√

ε
√

ε = ε,

a contradiction. Therefore, f /∈ R(α) on [a, b].
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5. Give examples of sequences of functions { fn} and {gn} on R such that { fn} converges
uniformly, {gn} converges uniformly but { fngn} does not converge uniformly on R.

Solution: Let fn(x) = gn(x) = x + 1
n . Clearly, { fn(x)} converges uniformly to the function

f (x) = x: given ε > 0, choose N > 1/ε and then for n ≥ N,

| fn(x)− f (x)| = 1
n
< ε

for all x ∈ R. Then {gn(x)} converges uniformly to g(x) = x as well. Now { fngn} = {(x +
1/n)2}. If this were to converge uniformly, it must necessarily converge to f (x)g(x) = x2.
But take ε = 1 and x = n. Then

| fn(x)gn(x)− f (x)g(x)| =
∣∣∣∣x2 +

2x
n

+
1
n2 − x2

∣∣∣∣ = ∣∣∣∣2n2 + 1
n2

∣∣∣∣ > 1,

so that { fngn} cannot converge uniformly to f g.

6. Let φ, ψ : R3 → R be continuously differentiable functions and define F : R3 → R3 by

F(x, y, z) = (φ(x, y, z), ψ(x, y, z), φ2(x, y, z) + ψ2(x, y, z))

(a) Check whether or not the Inverse Function Theorem applies to F at any point (x0, y0, z0),
i.e., check if F satisfies the hypothesis of the Inverse Function Theorem at any point
(x0, y0, z0).

(b) Suppose that F(~a) =~b for some points~a,~b ∈ R3. Explain geometrically why F does
not have an inverse function from an open set V ⊂ R3 containing~b to an open set
U ⊂ R3 containing~a.

Solution:

(a) Cleary, F ∈ C1(R3) since φ, ψ are continuously differentiable. We have

JF(x, y, z) = det

 φx φy φz
ψx ψy ψz

2(φφx + ψψx) 2(φφy + ψψy) 2(φφz + ψψz)


= 2φxψyφφz + 2φψyψψz + 2φyψzφφx + 2φyψzψψx + 2φzψxφφy

+ 2φzψxψψy − 2φzψyφφx − 2φzφyψψx − 2φxψzφφy

− 2φxψzψψy − 2φYψxφφz − 2φyψxψψz

= 0

Then JF(x, y, z) = 0 for all (x, y, z) ∈ R3. But the the Inverse Function Theorem does
not apply to F at any point in R3.
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(b) The Inverse Function Theorem requires that for a sufficiently small neighborhood U of
~a ∈ R3, F(U) is an open ball about F(~a) =~b. Suppose ~x ∈ im F with ~x = (x, y, g(x, y)).
For (x, y) ∈ R2, there is at most one z with (x, y, z) ∈ im F because z = g(x, y). But
then for ε > 0, (x, y, z + ε/2) ∈ Bε(~x) but is not in im F. But then F contains no open
ball, contrary to the Inverse Function Theorem.
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August 2010

1. Suppose that f : R → R is a function such that f ( f (x)) = x for all x ∈ R. Prove that
there exists an irrational number such t that f (t) is also irrational.

Solution: Suppose that f (x) = f (y). Then as f is a function we know

x = f ( f (x)) = f ( f (y)) = y

so that x = y and f is an injective function. Suppose f (x) were never irrational, then f is
an injection from R (uncountable) to a countable set Q (countable), a contradiction.

OR

As f ( f (x)) = x, we know that f (x) is invertible; in fact, f (x) is its own inverse. So
f (x) is a bijection. If f never took an irrational value, then there is a bijection from R

(uncountable) to a countable set Q, a clear contradiction.

2. Find three subsets A, B, C of the real line R such that A ∩ B = A ∩ C = B ∩ C = ∅ and
A = B = C = R. Prove that your sets satisfy these properties.38

Solution: We use a lemma: If p, q are distinct primes, then
√

pq is irrational. Suppose it
were rational, then there are m, n ∈ Z with n 6= 0 and (m, n) = 1 such that

√
pq =

m
n

But then pq = m2

n2 . This occurs if and only if n2 pq = m2. As p | n2 pq then p | m2 so that
p | m. But then p | m2. Now as p2 | n2 pq it must be that p | n2q so as p - q, we know p | n2

so that p | n, a contradiction as (m, n) = 1. Now let

A = {a +√p | a ∈ Q}
B = {b +√q | b ∈ Q}
C = {c +

√
r | c ∈ Q}

for distinct primes p, q, r. It suffices to show that A, B are disjoint. Suppose they were non
disjoint, then there are a, b ∈ Q such that a +

√
p = b +

√
q. But then

a +
√

p = b +
√

q
a− b =

√
q−√p

(a− b)2 = q + p− 2
√

pq

− (a− b)2 − q + p
2

=
√

pq

38You can even be more ‘extreme’. For example, it is possible to partition [0, 1] into uncountably many,
uncountable sets.
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But then
√

pq would be rational, a contradiction. Therefore, the sets are pairwise disjoint.
We need see that these sets are dense in R. This is obvious as they are an invertible linear
transformation on Q given by q 7→ q +

√
p, q +

√
q, q +

√
r, respectively, and Q is dense

in R. Another way of seeing this fact is to note that there is a rational sequence in R, sn,
converging to the point x0 −

√
p for all x0 ∈ R. But then sn +

√
p ∈ A and this sequence

converges to (x0 −
√

p) +
√

p = x0 ∈ R. But then every point of R is a limit point of A so
that A = R. The density follows mutatis mutandis for B and C.

3. Let X and Y be metric spaces. Suppose that f : X → Y has the following property: for
any continuous function g : Y → R the composition g ◦ f is a continuous function from X
to R. Prove that f is continuous.

Solution: We show f is continuous by showing the preimage of closed sets are closed, i.e.
find a continuous function g such that f−1(E) = (g ◦ f )−1(0) (which is closed since g ◦ f is
continuous and {0} is closed), where E ⊆ Y is a closed set. Let E ⊆ Y be closed. We want
f−1(E) = (g ◦ f )−1(0), i.e. f−1(E) = ( f−1 ◦ g−1)(0). This is exactly f−1(E) = f−1(g−1(0)),
i.e. g−1(0) = E. Define g(y) := inf{d(z, y) : z ∈ E}. Then g(y) = 0 if and only if y ∈ E = E.
[Either y ∈ E and hence g(y) = 0, or y is a limit point of E so that y ∈ E′ ⊆ E and g(y) = 0.
In either case, y ∈ E.] But E is closed so that E = E. Therefore, g(E) = 0 so that g−1(0) = E
and g is continuous. But then f−1(E) = (g ◦ f )−1(0) is closed so that f is continuous.

OR

Let g : Y → R be the function given by g(y) = d(y, f (x)), where x ∈ X and d is the
metric on Y. We need show that g is continuous. Let ε > 0 and y ∈ Y. Choose δ = ε/2 so
that for |y− a| < δ, we have

|g(y)− g(a)| = |d(y, f (x))− d(a, f (x))| ≤ d(y, a) < ε

But then g is continuous on Y.
By assumption, we know that g ◦ f is continuous. Let ε > 0, then we get a δ0 > 0 such

that |g f (y)− g f (x)| < ε for y ∈ Bδ0(x). But

|g f (y)− g f (x)| = |d( f (y), f (x))− d( f (x), f (x))| = |d( f (y), f (x))|

Taking δ = min(ε, δ0), we know d( f (y), f (x)) < ε. But then f (x) is continuous at x. But
the choice of x ∈ X was arbitrary so that f (x) is continuous on all of X.

4. Suppose that f : R → R is a function such that f ′(x) exists for all x ∈ R and
f ′(−x) = − f ′(x) for all x ∈ R. Prove that f (−x) = f (x) for all x ∈ R.

Solution: Let g(x) = f (x) − f (−x). Then g is differentiable since f is. Furthermore,
g′(x) = f ′(x) + f ′(−x) = 0 since f ′(−x) = − f ′(x) for all x ∈ R. But then g is constant.
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Now g(0) = f (0)− f (0) = 0. Then g(x) ≡ 0 for all x ∈ R. But g(x) := f (x)− f (−x) so
that f (x) = f (−x) for all x ∈ R.

5. Give an example of a bounded function f : [0, 1]→ R such that

• f is not Riemann integrable on [0, 1]

• The function g defined by g(x) = sin f (x) is Riemann integrable on [0, 1]

Prove your claims using the definition of the Riemann integral.

Solution: Define the function

f (x) =


1
x

, x ∈ (0, 1]

0, x = 0

Then g(x) = sin f (x) is

g(x) = sin f (x) =

sin
(

1
x

)
, x ∈ (0, 1]

0, x = 0

Clearly, f /∈ R on [0, 1] since f is not bounded. We show that g ∈ R on [0, 1]. Let ε > 0.
Now g(x) is continuous on [ε, 1], so there exists a partition, say P1, of [ε, 1] such that
U(P1, g)− L(P1, g) < ε. Let P2 be any partition of [0, ε. We know U(P2, g)− L(P2, g) =
∑(Mi −mi)∆xi < 2ε since |g(x)| ≤ 1 and the length of the interval is ε. Now P = P1 ∪P2
is a partition of [0, 1]. But we have U(P , g)− L(P , g) < ε + 2ε = 3ε. Then g ∈ R[0, 1].

6. Let f : R3 → R3 be a mapping defined by

y1 = x1 + x2

y2 = x2 − x1

y3 = x5
3

(a) Determine all points a ∈ R3 at which f satisfies the assumptions of the Inverse
Function Theorem.

(b) Is f an open mapping? Prove or disprove.

Reminder: A mapping f : R3 → R3 is open if f (W) is an open subset of R3 for every open set
W ⊂ R3.

Solution:
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(a) Clearly, f ∈ C1(R3) since all partials exist and are continuous. We have

J f (x1, x2, x3) = det

 1 1 0
−1 1 0
0 0 5x4

3

 = 5x4
3 · det

(
1 1
−1 1

)
= 10x4

3

Therefore, the Inverse Function Theorem applies for all (x1, x2, x3) ∈ R3 such that
x3 6= 0.

(b) The map f is an open mapping. Set x1 + x2 = y1. Then we have

x1 + x2 = y1

x1 = y1 − x2

x1 = y1 − y2 − x1

x1 =
y1 − y2

2

Repeating this process for x2 − x1 = y2 gives x2 =
y2 + y1

2
. We know also that

x5
3 = y3 so that x3 = y1/5

3 . But then f (x1, x2, x3) = (y1, y2, y3) has a unique solution
(x1, x2, x3) = f−1(y1, y2, y3). This shows that f has a continuous inverse f−1. Since f−1

is continuous, f (U) is open in R3 whenever U is open in R3. But then f is an open
map.
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January 2011

1. Let X, Y be metric spaces and f : X → Y be a function. Prove that f is continuous on X
if and only if f−1(E) ⊂ f−1(E) for every E ⊂ Y.

Solution: Assume that f is continuous on X. Let x ∈ f−1(E) = f−1(E) ∪ ( f−1(E))′, where
( f−1(E))′ denotes the set of limit points of f−1(E). If x ∈ f−1(E), then x ∈ ( f−1(E))′ so
that f−1(E) ⊆ f−1(E) ⊆ f−1(E) as E ⊆ E. But then f−1(E) ⊆ f−1(E). If x /∈ f−1(E),
then x ∈ ( f−1(E))′. Then for each r > 0, there exists y ∈ Br(x) ∩ f−1(E) such that y 6= x.
Since f is continuous, for every ε > 0, there exists δ > 0 such that if d(z, w) < δ, then
d( f (z), f (w)) < ε. Then there is y ∈ Bδ(x) ∩ f−1(E) such that y 6= x and d(x, y) < δ. But it
must then be that d( f (x), f (y)) < ε. Then f (x) ∈ Bε( f (x)) ∩ E with f (y) 6= f (x) (since f
is a function). But this shows that f (y) ∈ E′ ⊆ E implying f−1(E) ⊆ f−1(E).

Now assume that f−1(E) ⊆ f−1(E) for all E ⊆ Y. To show f is continuous, we show
that the preimage of closed sets are closed. Let C ⊆ Y be closed. Note that f−1(E) ⊆
f−1(C) = f−1(C) (C = C since C is closed). But then f−1(C) ⊆ f−1(C) so that f−1(C) =
f−1(C). But then f−1(C) is closed so that f must be continuous.

OR

Suppose that f is continuous. Let x ∈ f−1(E), i.e. x ∈ f−1(E) or x ∈ f−1(E)′. If
x ∈ f−1(E) then observe f (x) ∈ E so f (x) ∈ E ⊂ E. Therefore, f−1(E) ⊂ f−1(E). Now
suppose that x ∈ f−1(E)′. Then all neighborhoods of x intersect f−1(E) at a point y distinct
from x. But f−1(E) ⊂ f−1(E) so that all neighborhoods of x intersect f−1(E) at a point
distinct from x so that x ∈ f−1(E)′. But as f is continuous and E is closed, f−1(E) is closed.
Hence, f−1(E) contains all of its limit points. Therefore, x ∈ f−1(E). This shows that
f−1(E) ⊂ f−1(E). Note that we are in a metric space so one could produce a sequence
yn → x as x is a limit point. Then lim

n→∞
f (yn) = f ( lim

n→∞
yn) = f (x) (here we have used the

continuity of f ) so that x ∈ f−1(E).
Now suppose f−1(E) ⊂ f−1(E) for all E ⊂ Y. Let E ⊂ Y be closed. Then E = E. We

want to show that f is continuous, which we do by showing the preimage of closed is
closed. But f−1(E) ⊂ f−1(E) ⊂ f−1(E) = f−1(E) so f−1(E) = f−1(E).

OR

Assume that f is continuous and U ⊆ X. We need only show that if x ∈ U, then
f (x) ∈ f (U). Let V be a neighborhood of f (x). Then f−1(V) is an open neighborhood of
X containing x. Then f−1(V) must intersect U at some point y. But then V intersects f (U)

at f (y) so that f (x) ∈ f (U).
Now assume that for all V ⊆ Y, we have f−1(V) ⊆ f−1(V). We show the preimage of

closed sets are closed. Let V ⊆ Y be closed. Now f−1(V) ⊂ f−1(V) ⊂ f−1(V) = f−1(V)
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so f−1(V) = f−1(V). Therefore, f is continuous.

2. Prove that the sequence xn = n sin(2πen!), n ≥ 1, is convergent and find its limit. Hint:

Use the fact that e = ∑n
k=0

1
k!

+ rn, where rn <
1

n · n!
, n ≥ 1.

Solution: We have e = ∑∞
n=0

1
n! . Then

e =
∞

∑
n=0

1
n!

= 1+ 1+
1
2!

+
1
3!

+ · · ·+ 1
n!

+ · · · < 1+ 1+
1
2!

+
1
3!

+ · · ·+ 1
n!

+
1

n!(n + 1)
+

1
n!(n + 1)2 + · · ·

We also have

∞

∑
m=0

1
n!

(
1

n + 1

)m+1

=

1
n!(n+1)

1− 1
n+1

=
1

n!(n + 1)
n + 1

n
=

1
n!n

so we can write e = ∑n
k=0

1
k! + rn, where rn < 1

nn! for n ≥ 1 and rn → 0 as n→ ∞. Therefore,

n sin(2πn!en) = n sin

(
2πn!

n

∑
k=0

1
k!

+ rn

)

= n sin

(
2π

n

∑
k=0

n!
k!

+ 2πn!rn

)

= n sin

(
2π

n

∑
k=0

n!
k!

)
cos(2πn!rn) + n cos

(
2π

n

∑
k=0

n!
k!

)
sin(2πn!rn)

Now as ∑n
k=0

n!
k! is an integer for each value of k, the sum is an integer. Using the fact that

sin(2πm) = 0 and cos(2πm) = 1, we know that the above sum is simply n sin(2πn!rn).
We know that sin is increasing on

[
0, 2π

n

]
for n > 2. Now

n sin
(

2π

n + 1

)
< n sin(2πn!rn) < n sin

(
2π

n

)
and then

sin
( 2π

n+1

)
1

n+1

<
sin
( 2π

n+1

)
1
n

<
sin(2πn!rn)

1
n

<
sin
( 2π

n

)
1
n

Then taking the limit as n→ 0 and using the fact that limx→0
sin x

x = 1, the Squeeze Theo-
rem says that the limit must be 2π.

3. Let f : R → R be a differentiable function such that | f ′(x)| ≥ 1 for all x ∈ R. Prove
that f is one-to-one and onto R, and that the inverse function f−1 : R→ R is differentiable.
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Solution: Suppose f ′(a) < 0 < f ′(b) for some a, b ∈ R. Then by the Intermediate Value
Theorem for Derivatives, there exists x ∈ (a, b) such that f ′(x) = 0, a contradiction as
| f ′(x)| > 1 for all x ∈ R. Then | f ′(x)| 6= 0 for all all x ∈ R. Since we can replace f ′(x) by
− f ′(x), without loss of generality, assume that f ′(x) > 0 for all x ∈ R. Then f must be
strictly increasing. Then f is a bijection, i.e. f has an inverse f−1 : R→ R.

lim
t→x

f−1(t)− f−1(x)
t− x

= lim
t→x

f−1(t)− f−1(x)
f ( f−1(t))− f ( f−1(x))

= lim
u→y

u− y
f (y)− f (y)

=
1

limu→y
f (u)− f (y)

u− y

=
1

f ′(y)
,

which is well defined as f ′(y) 6= 0. [Note, u := f−1(y) and y := f−1(x).] Therefore, f−1 is
differentiable.

4. Suppose f : R→ R is continuous. Show that∫ 1

0
f (x)x2 dx =

1
3

f (ξ)

for some ξ ∈ [0, 1].

Solution: We use the following lemma: If f (x), g(x) are continuous functions on [a, b] and
g(x) ≥ 0 on (a, b) then there is a ξ ∈ (a, b) such that∫ b

a
f (x)g(x) dx = f (ξ)

∫ b

a
g(x) dx

To see this, using the continuity of f (x), g(x) on [a, b], we know that f (x)g(x) is continuous
on [a, b]. Then f (x)g(x) is integrable on [a, b]. As f (x) is continuous on [a, b] (which is a
bounded interval), then f (x) is bounded on [a, b]. Suppose m ≤ f (x) ≤ M for all x ∈ [a, b].
So as g(x) ≥ 0, we know

mg(x) ≤ f (x)g(x) ≤ Mg(x)

So that

m
∫ b

a
g(x) dx ≤

∫ b

a
f (x)g(x) dx ≤ M

∫ b

a
g(x) dx

If
∫ b

a g(x) dx = 0, as g(x) ≥ 0 and is continuous, the result is trivial. Suppose that the
integral is nonzero, then

m ≤
∫ b

a f (x)g(x) dx∫ n
a g(x) dx

≤ M

The continuity of f (x) gives ξ ∈ [a, b] such that

f (ξ) =

∫ b
a f (x)g(x) dx∫ n

a g(x) dx
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But then this immediately implies that
∫ b

a f (x)g(x) dx = f (ξ)
∫ b

a g(x) dx.
To obtain the desired result, simply take g(x) = x2, we have ξ ∈ [0, 1] such that∫ 1

0
f (x)x2 = f (ξ)

∫ 1

0
x2 dx

= f (ξ)
x3

3

∣∣∣∣1
0

=
1
3

f (ξ)

OR

Observe f is continuous on [0, 1], a compact set. By the Extreme Value Theorem, there
exists ξ1, ξ2 ∈ [0, 1] such that f (ξ1) ≤ f (x) ≤ f (ξ2) for all x ∈ [0, 1]. Say m = f (ξ1) and
f (ξ2) = M, so that m ≤ f (x) ≤ M for all x ∈ [0, 1]. Then

m
3

=
∫ 1

0
mx2 dx ≤

∫ 1

0
f (x)x2 dx ≤

∫ 1

0
Mx2 dx

so that m ≤ 3
∫ 1

0 x2 f (x) dx ≤ M. By the Intermediate Value Theorem, there exists ξ ∈ (0, 1)
so that f (ξ) = 3

∫ 1
0 x2 f (x) dx. But then

1
3

f (ξ) =
∫ 1

0
x2 f (x) dx.

5. Let f1 : [0, 1]→ R be a continuous function. Consider the sequence of functions defined
on the interval [0, 1] as follows: for n = 1, 2, . . .,

fn+1(x) = cos fn(x).

Prove that { fn} contains a uniformly convergent subsequence.

Solution: The set [0, 1] is compact. The function cos x is continuous on R, the function
f (x) is continuous on [0, 1], therefore the composition cos f (x) is continuous on [0, 1]
(hence uniformly so). Hence each fn+1(x) is uniformly continuous. Furthermore as f1(x)
is continuous on [0, 1], there is a M ∈ R such that | f (x)| ≤ M for all x ∈ [0, 1]. As cos x
is bounded, this shows that | fn(x)| ≤ max{M, 1} for all x ∈ [0, 1]. Then the sequence
{ fn(x)} is uniformly bounded. We need only show that { fn(x)} is equicontinuous to see
that the sequence contains a uniformly convergent subsequence. However via the Mean
Value Theorem for any [x, y] ⊂ R, we have

| cos x− cos y| = |g′(c)| |x− y| ≤ |x− y|
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for some c ∈ [a, b]. However, g(x) = cos x so that |g′(x)| = | − sin x| = | sin x| ≤ 1 for all
x ∈ R. Let ε > 0. As f1(x) is continuous on [0, 1], it is uniformly continuous. So there is a
δ > 0 such that | f1(x)− f1(y)| < ε for |x− y| < δ. But then observe that via induction

| fn(x)− fn(y)| ≤ | fn−1(x)− fn−1(y)| ≤ · · · ≤ | f1(x)− f1(y)| < ε

for all x, y ∈ [0, 1] such that |x− y| < δ. Therefore, we know that { fn} is equicontinuous
and pointwise bounded on the compact interval [0, 1]. By the Arzelà-Ascoli Theorem, { fn}
contains a uniformly convergent subsequence.

6. Let f : R→ R and g : R2 → R be continuously differentiable. Suppose that none of the
derivatives f ′, D1g, D2g attains the value 0. Define h = (h1, h2) by

h1(x, y, z) = f (x) + g(y, z)
h2(x, y, z) = f (y)− g(x, z)

Prove that h(W) is an open subset of R2 for every open set W ⊂ R3.

Solution: Notice that h ∈ C1(R3) since f , g are continuously differentiable.

h′ =

(
f ′(x) D1g(y, z) D2g(y, z)

−D1g(x, z) f ′(y) −D2g(x, z)

)
Let ĥ = (h1, h2, z) : R3 → R3. Then

Jĥ(x, y, z) = det

 f ′(x) D1g(y, z) D2g(y, z)
−D1g(x, z) f ′(y) −D2g(x, z)

0 0 1


= det

(
f ′(x) D1g(y, z)

−D1g(x, z) f ′(y)

)
= f ′(x) f ′(y) + D1g(x, z)D1g(y, z)

Since f1, D1g, D2 are never zero, they are always positive or always negative. [If they
switched sign they would have to vanish at some point as they are continuous.] If Jĥ were
to vanish, then it must be that f ′(x) f ′(y) = −D1g(x, z)D1g(y, z). But since f ′(x) and f ′(y)
have the same sign, f ′(x) f ′(y) > 0. This holds mutatis mutandis for Dg(x, z) and D1g(y, z).
But then then f ′(x) f ′(y) and−D1g(x, z)D1g(x, z) have opposite signs and cannot be equal.
Thus, Jĥ never vanishes. In fact, Jĥ > 0 as f ′(x) f ′(y), D1g(x, y)D1(x, z) > 0. The Inverse
Function Theorem then applies to ĥ for all (x, y, z) ∈ R3. Therefore, ĥ is an open mapping.
Then it must be that h is open (for if it were not then neither could ĥ be open). Then h(W)
is open for all W ⊆ R3 open subsets.
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August 2011

1. Suppose A is an infinite bounded subset of the real line R. Prove that there exists a set
B ⊂ A which is neither open nor closed in R.

Solution: Since A is infinite and bounded, by Weierstrass Theorem, A has a limit point
x ∈ R. Choose a sequence {sn} of elements of A such that sn → x. Define B := {sn}.
Clearly, B ⊆ A. Now B cannot be closed since x /∈ B and x is a limit point of B. But B
cannot be open since it consists solely of singletons.

2. Let X be a metric space. Suppose that f : [0, 1] → X is continuous. prove that there
exists an integer n such that for any choice of the partition 0 = t0 < t1 < · · · < tn = 1 we
have

min
1≤i≤n

diam f ([ti−1, ti]) ≤ 1

Reminder: diam E = sup{d(a, b) : a, b ∈ E}.

Solution: Note that f (x) is uniformly continuous since it is continuous on a compact set.
Then for ε = 1, there exists δ > 0 such that for all x, y ∈ [0, 1] with |x− y| < δ, we have
d( f (x), f (y)) < 1. Choose n ∈N such that 1/n < δ. We have ∑n

i=1(ti − ti−1) = 1− 0 = 1
(note this series telescopes). Then there exists a i such that ti − ti−1 ≤ 1/n < δ. Therefore
if x, y ∈ [ti−1, ti], we have d( f (x), f (y)) < 1. This shows that min1≤i≤n diam f ([ti−1, ti]) ≤
1.

3. Let f : [1, e]→ R be a continuous function. Prove that(∫ e

1
f (x) dx

)2

≤
∫ e

1
x f (x)2 dx

Solution: Observe∣∣∣∣∫ e

1
f (x) dx

∣∣∣∣ ≤ (∫ e

1

∣∣∣∣ 1√
x

∣∣∣∣ dx
)1/2 (∫ e

1

∣∣√x f (x)
∣∣2 dx

)1/2

=

(∫ e

1

dx
x

)1/2 (∫ e

1
x f (x)2 dx

)2

= (log e− log 1)1/2
(∫ e

1
x f (x)2 dx

)1/2

=

(∫ e

1
x f (x)2 dx

)1/2

where the first inequality is Hölder’s Inequality. Taking squares yields the result.
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OR

Define 〈 f , g〉 :=
∫ e

1 f (x)g(x) dx. For r ∈ R, we have

〈r f , g〉 =
∫ e

1
r f (x)g(x) dx = r

∫ e

1
f (x)g(x) dx = r〈 f , g〉

〈 f , g〉 =
∫ e

1
f (x)g(x) dx =

∫ e

1
g(x) f (x) dx = 〈g, f 〉

〈 f + h, g〉 =
∫ e

1
( f (x) + h(x))g(x) dx =

∫ e

1
f (x)g(x) dx +

∫ e

1
h(x)g(x) dx = 〈 f , g〉+ 〈h, g〉

〈 f , f 〉 =
∫ e

1
f (x)2 dx ≥ 0

Since f (x) is continuous on [1, e], so too is f (x)2 continuous on [1, e]. Then 〈 f , f 〉 = 0 if and
only if f 2(x) = 0 if and only if f (x) = 0 on [1, e]. Therefore, 〈·, ·〉 is an inner product. By
Cauchy-Schwartz, |〈 f , g〉|2 ≤ 〈 f , f 〉 · 〈g, g〉. Now if h(x) is any positive function,(∫ e

1
f (x) dx

)2

= |〈 f /h, h〉|2 ≤ 〈 f /h, f /h〉 · 〈h, h〉 =
∫ e

1

f (x)2

h(x)2 dx ·
∫ e

1
h(x)2 dx

=
∫ e

1

[∫ e
1 h(y)2 dy

h(x)2

]
f (x)2 dx.

Taking h(x) = 1√
x , we have

∫ e
1 h(y)2 dy

h(x)2 =

∫ e
1

dy
y

1/x
= x · (log y)

∣∣∣∣e
0
= x

The result then follows.

4. Let { fn} be a sequence of Riemann integrable (with respect to dx) real-valued functions
defined on [0, 1]. Suppose that the functions gn(x) =

√
x fn(x) form a uniformly convergent

sequence. Prove that the limit

lim
n→∞

∫ 1

0
fn(x) dx

exists.

Solution: We show that
{∫ 1

0 fn(x) dx
}

is Cauchy. Since {gn} is uniformly convergent, for
all ε > 0, there exists N ∈N such that for n, m > N< |gn(x)− gm(x)| < ε/2, i.e.∣∣√x( fn(x)− fm(y))

∣∣ < ε

2
.

329



Then ∣∣∣∣∫ 1

0
fn(x) dx−

∫ 1

0
fm(x) dx

∣∣∣∣ = ∣∣∣∣∫ 1

0
( fn(x)− fm(x)) dx

∣∣∣∣
=

∣∣∣∣∫ 1

0

√
x( fn(x)− fm(x))√

x
dx
∣∣∣∣

<

∣∣∣∣∫ 1

0

ε

2
√

x
dx
∣∣∣∣

=
∣∣∣ε (√x

∣∣1
0

)∣∣∣ = ε

Therefore,
{∫ 1

0 fn(x) dx
}

is Cauchy in R. But this shows that limn→∞
∫ 1

0 fn(x) dx ex-
ists.

5. Let f : (0, ∞) → R be everywhere differentiable with | f ′(x)| ≤ 1
x2 , 0 < x < ∞. Prove

that the improper integrals∫ ∞

2y
( f (x)− f (x− y)) dx, 0 < y < ∞

are well defined and in absolute value not greater than 1.

Solution: First, observe∣∣∣∣∫ ∞

2y
f (x)− f (x− y) dx

∣∣∣∣ ≤ ∫ ∞

2y
| f (x)− f (x− y)| dx

But since f is differentiable on (x − y, x) and continuous on [x − y, x], there exists ξ ∈
(x− y, x) such that f (x)− f (x− y) = y f ′(ξ) by the Mean Value Theorem. So∣∣∣∣∫ ∞

2y
f (x)− f (x− y) dx

∣∣∣∣ ≤ ∫ ∞

2y
|y| | f ′(ξ)| dx

≤
∫ ∞

2y
y · 1

ξ2 dx

≤ y
∫ ∞

2y

dx
(x− y)2

y
(
− 1

x− y

) ∣∣∣∣∞
2y

= y · 1
2y− y

= 1
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Therefore,
∣∣∣∫ ∞

2y ( f (x)− f (x− y)) dx
∣∣∣ ≤ 1. We need now show that these are well defined,

i.e. to show that
∫ ∞

2y ( f (x)− f (x− y)) dx are absolutely convergent. Now

| f (x)− f (x− y)| = y | f ′(ξ)| ≤ y
1
ξ2 ≤ y

1
(x− y)2

and
∫ ∞

2y
y

(x−y)2 dx = 1 by the work above. Therefore,
∫ ∞

2y ( f (x)− f (x− y)) dx converges
absolutely so that the integral is well defined.

6. Let g : R→ R be a strictly increasing differentiable function. Define f : R2 → R2 by

f (x1, x2) = (x1 + g(x1 − x2), x2 + sin x2 − g(x1 − x2)).

Does it follow that f satisfies the conditions of the Inverse Function Theorem at every
point of R2? Prove or give a counterexample.

Solution: Take g(x) = x3. Clearly, g(x) is strictly increasing and differentiable. Then

f (x1, x2) = (x1 + (x1 − x2)
3, x2 + sin x2 − (x1 − x2)

3).

Clearly, f ∈ C1(R2) since all the partials exist and are continuous.

J f (x1, x2) = det
[

1 + 3(x1 − x2)2 −3(x1 − x2)2

−3(x1 − x2)2 1 + cos x2 + 3(x1 − x2)2

]
= (1 + 3(x1 − x2)

2)(1 + cos x2 + 3(x1 − x2)
2)− 9(x1 − x2)

4

= 1 + cos x2 + 3(x1 − x2)
2 + 3(x1 − x2)

2 + 3 cos x2(x1 − x2)
2

= 1 + cos x2 + 6(x1 − x2)
2 + 3 cos x2(x1 − x2)

2

Take (x1, x2) = (π, π) ∈ R2. Then J f (π, π) = 0. Therefore, the Inverse Function Theorem
does not apply for all (x1, x2) ∈ R2.
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January 2012

1. Let {cn} be a sequence so that cn > 0 for all n ≥ 1 and lim
n→+∞

cn = 0. Show that there

exists a sequence {an} so that an > 0 for all n ≥ 1,
∞

∑
n=1

an is divergent and ∑∞
n=1 cnan is

convergent.

Solution: Since limn→∞ cn = 0, there is a subsequence {cnk} such that cnk < 1/2k for k ∈N.
Define

an =

1, n = nk for some k
1

n2cn
, n 6= nk for all k.

Clearly, ∑ an diverges since limn→∞ an 6= 0. But

N

∑
n=1

cnan = ∑
nk≤N

cnk ank + ∑
n=1

n 6=nk

cnan ≤ ∑
nk≤N

1
2k + ∑

n=1
n 6=nk

1
n2 < 1 +

π2

6
.

Therefore, ∑ cnan is bounded and cnan > 0. But then it must be that ∑ cnan converges.

2. Let f : R → R be a uniformly continuous function. Show that there exist positive
constants A, B so that | f (x)| ≤ A|x|+ B for every x ∈ R.

Solution: Since f is uniformly continuous, there is a δ > 0 such that for all x, y such that
|x − y| < δ, we have | f (x)− f (y)| ≤ 1. If x ∈ [0, δ], we have | f (x)− f (0)| ≤ 1. Then
| f (x)| ≤ 1 + | f (0)|. If x ∈ [δ, 2δ], then | f (x)− f (δ)| ≤ 1. Therefore, | f (x)| ≤ 1 + | f (δ)| ≤
2 + | f (0)|. Now assume x ∈ [(n− 2)δ, (n− 1)δ]. This implies | f (x)| ≤ n− 1 + | f (0)|. This
shows that for x ∈ [(n − 2)δ, nδ], that | f (x)| ≤ n + | f (0)|. Then for x ∈ [(n − 1)δ, nδ],
| f (x) − f ((n − 1)δ)| ≤ 1 so that | f (x)| ≤ 1 + | f ((n − 1)δ)| ≤ n + | f (0)|. Similarly,
| f (x)| ≤ n + | f (0)| for all x < 0. Therefore, | f (x)| ≤ n + | f (0)| for all x ∈ R for some n.
But then | f (x)| ≤ 1

δ |x|+ 1 + | f (0)|. Define A = 1
δ > 0 and B = 1 + | f (0)| > 0. Then there

exist A, B > 0 such that | f (x)| ≤ A|x|+ B for all x ∈ R.

3. Let f : R→ R be a function which is differentiable at 0 and so that f (0) = 0. Show that
the following limit exists and find it:

lim
x→0

f (x)− sin f (x)
x3 .

Solution: Observe that since f (x) is differentiable at 0, we have

lim
x→0

f (x)
x

= lim
x→0

f (x)− 0
x− 0

= lim
x→0

f (x)− f (0)
x− 0

= f ′(0)
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This shows that

f ′(0)3 = lim
x→0

f (x)
x
· lim

x→0

f (x)
x
· lim

x→0

f (x)
x

= lim
x→0

(
f (x)

x

)3

Now using the Taylor Series for sin x, we have

sin x =
∞

∑
n=0

(−1)n x2n+1

(2n + 1)!

x− sin x =
∞

∑
n=1

(−1)n+1 x2n+1

(2n + 1)!

x− sin x
x3 =

∞

∑
n=0

(−1)n x2(n−1)

(2n + 1)!

The convergence of this series is uniform (a power series converges uniformly to its function
within the interval of convergence). Hence,

lim
x→0

x− sin x
x3 = lim

x→0

∞

∑
n=0

(−1)n x2(n−1)

(2n + 1)!

= lim
x→0

[
1
3!

+
∞

∑
n=1

(−1)n x2(n−1)

(2n + 1)!

]

=
1
3!

+
∞

∑
n=0

lim
x→0

[
(−1)n x2(n−1)

(2n + 1)!

]

=
1
3!

where we have used uniform convergence to exchange limits and summations. But as f (x)
is differentiable at 0, it is continuous at 0. Further as f (x) is differentiable at 0, sin f (x) is
differentiable at 0, hence continuous there. But then x3, f (x), sin f (x) are all continuous at
0. But then using the work from above, this shows

lim
x→0

f (x)− sin f (x)
f (x)3 =

1
3!

=
1
6

.

But then

1
6
· f ′(0)3 = lim

x→0

f (x)− sin f (x)
f (x)3 · lim

x→0

(
f (x)

x

)3

= lim
x→0

[
f (x)− sin f (x)

f (x)3 · f (x)3

x3

]
= lim

x→0

f (x)− sin f (x)
x3
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4. Does the improper integral
∫ ∞

0
cos(x2) dx converge or diverge? Prove your answer.39

Solution: First, note that | cos x| ≤ 1 so that
∫ ∞

0 cos x2 dx ≤
∫ 1

0 dx +
∫ ∞

1 cos x2 dx. So we
need only show that

∫ ∞
1 cos x2 dx coverages.

Make the u-substitution u = x2. Note that this is injective over [1, ∞). Then we have
du = 2x dx so that dx = du

2x = du
2
√

u . This gives us the integral

∫ n

1
cos(x2) dx =

∫ n2

1

cos u√
u

du

Integration by parts with u′ = u−1/2 yields

sin u√
u

∣∣∣∣n2

1
+

1
2

∫ n2

1

sin u√
u3

du =
sin n2

n
− sin 1 +

1
2

∫ n2

1

sin u√
u3

du

Clearly, limn→∞
sin n2

n = 0 by Squeeze Theorem with comparison to the function 1/n
(making use of | sin x| ≤ 1). It then only remains to show that the integral on the right
converges. But observe that∣∣∣∣∣

∫ n2

1

sin u√
u3

du

∣∣∣∣∣ ≤
∫ n2

1

∣∣∣∣sin u√
u3

∣∣∣∣ du ≤
∫ n2

1

du√
u3

,

which clearly converges as n→ ∞.

5. Given that
(1 + t)−1/2 = 1− 1

2
t +

1 · 3
2 · 4 t2 − 1 · 3 · 5

2 · 4 · 6 t3 + · · ·

has a radius of convergence of 1 about t = 0, and that

d
dx

arcsin(x) =
1√

1− x2
for |x| < 1

find the Taylor series expansion for arcsin(x) at 0 and its radius of convergence. Justify
your reasoning.

39This is one of the Fresnel Integrals and has many uses in Applied Mathematics.
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Solution: Note that a power series converges uniformly to its function within the interval
of convergence, so that derivatives may be exchanged with summations. Then we have

d
dx

arcsin(x) =
1√

1− x2
for |x| < 1

d
dx

arcsin(x) = (1− x2)−1/2 = 1 +
1
2

x2 +
1 · 3
2 · 4 x4 +

1 · 3 · 5
2 · 4 · 6 x6 + · · · for | − x2| < 1

d
dx

arcsin(x) = (1− x2)−1/2 = 1 +
1
2

x2 +
1 · 3
2 · 4 x4 +

1 · 3 · 5
2 · 4 · 6 x6 + · · · for |x| < 1

arcsin(x) = (1− x2)−1/2 = x +
1

2 · 3 x3 +
1 · 3

2 · 4 · 5 x5 +
1 · 3 · 5

2 · 4 · 6 · 7 x7 + · · · for |x| < 1

where for the last equality, we have integrated (hence using uniform convergence exchang-
ing integrals and summations) the previous equality to obtain a power series representation
for arcsin x. The radius of convergence is clearly 1.

6. Give the real valued function g(x, y, z) = z− x2 − y2 on R3, find Dg(0). Define the map-
ping F(x, y, z) = (x3, y3, g(x, y, z)) from R3 to R3 with F(0) = 0. What does the Inverse
Function Theorem say about F in a neighborhood of the origin? Does F has a continuous
inverse in a neighborhood of the origin?

Solution: We have
Dg =

(
−2x −2y 1

)
So that

Dg(0) = Dg(0, 0, 0) =
(
0 0 1

)
Observe that the Jacobian of F(x, y, z) is 3x2 0 0

0 3y2 0
−2x −2y 1


Notice that each of these partials is continuous on R3 so that F(x, y, z) is continuously
differentiable. This Jacobian has determinant 9x2y2 so that the Inverse Function Theorem
guarantees a continuously differentiable inverse for any point of R3 such that x 6= 0 and
y 6= 0. The Inverse Function Theorem fails to apply at the origin as then F′(0) is not invert-
ible (in fact, it is the zero matrix). The function F(x, y, z) then fails to have a continuous
inverse in the neighborhood of the origin.

335



August 2012

1. Let X be a metric space. Suppose that An, n = 1, 2, 3, . . . are nonempty compact subsets
of X such that An+2 ⊂ An ∪ An+1 for every n ≥ 1. Prove that there exists a point x ∈ X
such that x ∈ An for infinitely many values of n.

Solution: Define Bn := An ∪ An+1 for n = 1, 2, . . .. Then Bn+1 = An+1 ∪ An+2 ⊆
An+1 ∪ (An ∪ An+1) = Bn so that Bn+1 ⊆ Bn. Note that since each An is nonempty,
each Bn is nonempty for all n ∈ N. Each Bn is compact as each Bn is a finite union of
compact sets. Therefore,

⋂∞
n=1 Bn 6= ∅. Then there is a x ∈ ⋂∞

n=1 Bn; that is, there is a
x0 ∈ Bn for infinitely many n. As Bn = An ∪ An+1, x0 ∈ An for infinitely many n.

2. Suppose that f : R→ R and g : R→ (0, ∞) are continuous functions. For x ∈ R define

h(x) = sup
0<t<g(x)

f (t)

(a) Prove that h : R→ R is continuous.

(b) Give an example in which f is uniformly continuous on R but h is not.

Solution:

(a) Define F(y) = sup0<t<y f (t) = max0<t<y f (t) (the latter equality following from the
fact that f is continuous on a compact set). Clearly F is non-decreasing. Since F is
monotone, F has only discontinuities of the first type. Suppose F is discontinuous
at x. Then F(x−) < F(x) or F(x) < F(x+). Assume that F(x−) < F(x). Then for
all s ∈ (0, x), we have f (s) ≤ F(s) ≤ F(x−) < F(x). Therefore, f (s) < F(x) for
all s ∈ (0, x), a contradiction. Therefore, F is continuous. But then h = F ◦ g is a
composition of continuous functions, hence continuous.

(b) Let f (x) = x and g(x) = x2 + 1. Then h(x) = sup0<t<g(x) f (t) = sup0<t<g(x) t = g(x).
But then h(x) = x2 + 1. Suppose that h is uniformly continuous on R. Then for ε = 1,
there is a δ > 0 such that |x− y| ≤ δ implies |h(x)− h(y)| < 1. Choose y = x + δ for
x > 0. Then

|h(x)− h(y)| = |(x2 + 1)− ((x + δ)2 + 1)| = | − 2xδ− δ2| = 2xδ + δ2

tends to infinity as x → ∞. But then |h(x)− h(y)| > 1, a contradiction. Therefore, h is
not uniformly continuous on R.
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3. Suppose that f : R→ R is a differentiable function such that f ′(x + 1) = f ′(x) for all

x ∈ R. Prove that the limit lim
x→+∞

f (x)
x

exists and is finite.

Solution: Define g(x) = f (x + 1) − f (x). Then g′(x) = f ′(x + 1) − f (x) = 0 since
f ′(x + 1) = f ′(x) for all x ∈ R. But then g′(x) = 0 for all x ∈ R so that g(x) is constant.
Therefore, f (x + 1) = f (x) + c for some c ∈ R. We need show limx→+∞

f (x)
x = c. Note that

f (x) = f (x− 1) + c = f (x− 2) + 2c = · · · = f (x− n) + nc for x ∈ [n, n + 1]. Moreover, f
is differentiable so that f is continuous on [0, 1]. Then f is bounded on [0, 1], i.e. there is
a M such that | f (y)| ≤ M for all y ∈ [0, 1]. But then f (x) = f (x− n) + nc ≤ M + [x]c as
x− n ∈ [0, 1]. Furthermore, f (x) = f (x− n) + nc ≥ −M + [x]c. But then we have

−M
x

+
[x]
x

c ≤ f (x)
x
≤ M

x
+

[x]
x

c

Taking limits yields c ≤ limx→+∞
f (x)

x ≤ c so that limx→+∞
f (x)

x = c.

4. Let fn : R → R, n = 1, 2, . . ., be C1-functions; that is, continuously differentiable
functions such that, for all n,

| f ′n(x)| ≤ 1√
x

(0 < x ≤ 1) and
∫ 1

0
fn(x) dx = 0

Prove that the sequence { fn} has a subsequence that converges uniformly on [0, 1].

Solution: Consider | fn(x)− fn(y)| for x, y ∈ [0, 1] (with x > y). Since f is C1, we have
| fn(x)− fn(y)| = |

∫ x
y f ′n(t) dt| by the Fundamental Theorem of Calculus. But

| fn(x)− fn(y)| =
∣∣∣∣∫ x

y
f ′n(t) dt

∣∣∣∣ ≤ ∫ x

y
| f ′n(t)| dt ≤

∫ x

y

dt√
t
= 2|
√

x−√y| = 2|g(x)− g(y)|

where g(x) =
√

x. Since g is uniformly continuous on [0, 1], given ε > 0, there is δ > 0
such that |g(x)− g(y)| < ε for |x− y| < δ with x, y ∈ [0, 1]. Given ε > 0, there is δ > 0
such that for x, y ∈ [0, 1] with |x − y| < δ, we have | fn(x) − fn(y)| < ε for all n. But
then { fn} is equicontinuous. Since fn is continuous on [0, 1], there is xn ∈ (0, 1) such
that fn(xn) =

∫ 1
0 fn(x) dx = 0 by the Mean Value Theorem for Integrals. Then there is

xn ∈ (0, 1) such that fn(xn) = 0. But then

| fn(x)| = | fn(x)− 0| = | fn(x)− fn(xn)| ≤ 2|
√

x−
√

xn| ≤ 4

for x, y ∈ [0, 1] and n ≥ 1. Then { fn} is pointwise bounded. But as [0, 1] is compact,
{ fn} is equicontinuous and pointwise bounded. By the Ascoli-Arzela Theorem, there is a
uniformly convergent subsequence { fnk} on [0, 1].
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5. Suppose that f : R2 → R2 is a C1-mapping with detf ′(x) > 0 for all x ∈ R2. Assume
that f−1(K) is compact whenever K ⊂ R2 is compact. Prove that f (R2) = R2.

Solution: Since det f ′(x) > 0 for all x ∈ R2 and f ∈ C1, the Inverse Function Theorem
applies for all x ∈ R2. Then f is an open mapping. But then U := f (R2) is open. Suppose
that U 6= R2. Then there is a y ∈ Bd U such that y /∈ U. Then there is a sequence {yn},
where yn = f (xn) ∈ U, such that yn → y for xn ∈ R2. Define K = {yn} ∪ {y}. Now
K is compact in R2 so that f−1(K) is compact. But then xn ∈ f−1(K). Then there is a
subsequence {xnk} such that xnk → x0 as xn ∈ f−1(K) is compact. But f is continuous
so that f (xnk) → f (x0). Then ynk → y showing that y = f (x0) ∈ f (R2) = U. This
contradicts the fact that y ∈ U. Therefore, f (R2) = R2.

6. Let f : R→ R be a C1-function with f ′(x) > 0 for all x ∈ R. Suppose that f takes the
interval [0, 1] onto itself. Prove that there is a sequence of polynomials pn : [0, 1]→ [0, 1]
such that pn → f uniformly on [0, 1] and each pn is a strictly increasing function on [0, 1].

Solution: Since ′ f is continuous on [0, 1] by Weierstrass’ Theorem, there is a sequence
{gn} of polynomials such that the sequence converges uniformly to f ′ on [0, 1]. SO for
ε = c/2, there is a n0 such that for n ≥ n0, |gn(x)− f ′(x)| < c/2. But then for n ≥ n0,
gn(x) ≥ f ′(x) − c/2 ≥ c/2 since f ′(x) ≥ c > 0 ( f is increasing implies f ′ > 0). This
shows for n ≥ n0gn(x) ≥ c/2 > 0. Define hn(x) =

∫ x
0 gn(t) dt. Now hn(x) is a polynomial

such that hn(0) = 0 and h′n(x) = gn(x) > 0. But then hn(x) is increasing on [0, 1]. Now
f (x) =

∫ x
0 f ′(t) dt.

|hn(x)− f (x)| =
∣∣∣∣∫ x

0
gn(t)− f ′(t) dt

∣∣∣∣ ≤ ∫ x

0
|gn(t)− f ′(t)| dt ≤ ‖gn − f ′‖

But then ‖hn(x) − f (x)‖ ≤ ‖gn − f ′‖ → 0 as n → ∞ since {gn} converges uniformly
to f ′. But then {hn} converges uniformly to f on [0, 1]. Since f is increasing and onto,
hn(1) → f (1) = 1. Let Pn(x) = hn(x)

hn(1)
: [0, 1] → [0, 1]. Now Pn(x) is a strictly increasing

function. We have

Pn(x)− f (x) =
hn(x)− f (x)

hn(1)
+

f (x)
hn(1)

− f (x)

Now
∥∥∥ hn− f

hn(1)

∥∥∥ = ‖hn− f ‖
hn(1)

→ 0 as n→ ∞.∥∥∥∥ f
hn(1)

− f
∥∥∥∥ =

∥∥∥∥1− hn(1)
hn(1)

f
∥∥∥∥ =
|1− hn(1)|

hn(1)
‖ f ‖ → 0

since hn(1) → 1. Therefore, ‖Pn(x) − f (x)‖ → 0 as n → ∞. But then {Pn} converges
uniformly to f on [0, 1], is strictly increasing on [0, 1], and such that Pn([0, 1]) = [0, 1].
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January 2013

1. Let fn be a non-negative differentiable functions on [0, 1] such that for every x the
sequence f ′n(x) is non-increasing, and such that fn(0) is also non-increasing. Prove that the
fn converge point-wise on [0, 1].

Solution: Since fn is nonnegative, we have fn is bounded below by 0. We show fn is
decreasing. Define g(x) := fn − fn+1. We have g′(x) = f ′n − f ′n+1 ≥ 0 since { f ′n} is non-
increasing so that g is increasing. Now g(x) ≥ g(0) and g(x) ≥ g(0) = fn(0)− fn+1(0) ≥ 0
as { fn(0)} is non-increasing. But then fn(x) ≥ fn+1(x) for all x ∈ [0, 1]. Therefore, { fn} is
decreasing and bounded below so that { fn} converges pointwise on [0, 1].

2. Let (M, d) be a non-empty compact metric space and f : M→ M a continuous mapping
such that d( f (n)(x), f (n)(y))→ 0 uniformly in x, y, where f (n)(x) denotes n-fold composi-
tion of f with itself (for example, f (3)(x) = f ( f ( f (x)))). Prove that f has a fixed point x,
i.e. there exists an x ∈ M such that f (x) = x.

Solution: First, d( f (n)(x), f (n)(y)) → 0 uniformly implies for all ε > 0, there is a N ∈ N

such that for n > N, d( f (n)(x), f (n)(y)) < ε for all x, y ∈ M. Define x := x0 and
y = f (p)(x0). If n > N, then d( f (n)(x0), f (n+p)(x0)) < ε. Then the sequence { f (n)(x0)} is
Cauchy. However, M is compact so that it is a complete metric space. Therefore, there
exists x ∈ M such that f (n)(x0) → x for some x. As f is continuous, f ( f (n)(x0)) → f (x)
so that f (n+1)(x0) → f (x) and f (n+1)(x0) → x. Therefore, f (x) = x, i.e. f has a fixed
point.

3. Let f be a continuous function such that limx→∞ f (x) = c ∈ R. Prove that for any α > 0
we have

lim
N→∞

α + 1
Nα+1

∫ N

0
xα f (x) dx = c

Solution: First, observe

α + 1
Nα+1

∫ N

0
xαc dx = c

α + 1
Nα+1

[
xα+1

α + 1

]N

0
= c

Therefore, c = α+1
Nα+1

∫ N
0 xαc dx. Furthermore,∣∣∣∣α + 1

Nα+1

∫ N

0
xα f (x) dx− c

∣∣∣∣ = ∣∣∣∣α + 1
Nα+1

∫ N

0
xα f (x) dx− α + 1

Nα+1

∫ N

0
xαc dx

∣∣∣∣
=

∣∣∣∣α + 1
Nα+1

∫ N

0
xα( f (x)− c) dx

∣∣∣∣
≤ α + 1

Nα+1

∫ N

0
xα| f (x)− c| dx
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Now given ε > 0, there is a N0 ∈N such that if x > N0, | f (x)− c| < ε
2 . Then∣∣∣∣α + 1

Nα+1

∫ N

0
xα f (x) dx− c

∣∣∣∣ ≤ α + 1
Nα+1

∫ N

0
xα| f (x)− c| dx

=
α + 1
Nα+1

∫ N0

0
xα| f (x)− c| dx +

α + 1
Nα+1

∫ N

N0

xα| f (x)− c| dx

Now f is continuous on [0, N0], which is compact, f is bounded on [0, N0]. Suppose
| f (x)| < M on [0, N0]. Then∣∣∣∣α + 1

Nα+1

∫ N

0
xα f (x) dx− c

∣∣∣∣ ≤ α + 1
Nα+1

∫ N0

0
xα| f (x)− c| dx +

α + 1
Nα+1

∫ N

N0

xα| f (x)− c| dx

≤ α + 1
Nα+1 (M + |c|)

Nα+1
0

α + 1
+

α + 1
Nα+1

ε

2
Nα+1

α + 1

=
(M + |c|)Nα+1

0
Nα+1 +

ε

2

For N > (M + |c|)1/(α+1)N0, we have∣∣∣∣α + 1
Nα+1

∫ N

0
xα f (x) dx− c

∣∣∣∣ ≤ ε

2
+

(M + |c|) Nα+1
0

Nα+1 <
ε

2
+

ε

2
= ε

Therefore, limN→∞
α + 1
Nα+1

∫ N
0 xα f (x) dx = c.

4. The Dirichlet function D(x) on [0, 1] is the function equal to 1 when x is rational and
0 when x is irrational. Show that D(x) /∈ R(α) for any monotonically increasing non-
constant function α. (Recall that R(α) is the space of functions on [0, 1] integrable with
respect to α in the Riemann sense.)

Solution: Let P = {0 = x0 < · · · < xn = 1} be a partition of [0, 1]. Note that between
any two real numbers there is a rational and irrational number. Every interval of the
partition contains a rational and an irrational number so that Mi = supxi−1≤x≤xi

D(x) = 1
and mi = infxi−1≤x≤xi D(x) = 0 for 1 ≤ i ≤ n. Therefore using the fact that α is nonconstant
and monotonically increasing

U(P, D, α) = ∑ Mi∆αi = ∑ ∆αi = α(1)− α(0) > 0

L(P, D, α) = ∑ mi∆αi = 0

Therefore,
∫

D dα = α(1) − α(0) 6= 0 =
∫

D dα. Then
∫

D dα 6=
∫

D dα. Therefore,
D /∈ R(α) on [0, 1].
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5. Let f be a differentiable function on R and its derivative f ′ is continuous there. Show
that the functions

fn(x) = n
(

f (x +
1
n
)− f (x)

)
converge uniformly to f ′ on any interval [a, b], −∞ < a < b < ∞.

Solution: Observe that f is continuous on [x, x + 1
n ] and differentiable on (x, x + 1

n ). By
the Mean Value Theorem, there is a c ∈ (x, x + 1

n ) such that f (x + 1
n )− f (x) = f ′(c) 1

n .
Then fn(x) = n( f (x + 1

n ) − f (x)) = n f ′(c) 1
n = f ′(c). Therefore, fn(x) = f ′(c). As

f ′ is uniformly continuous on [a, b + 1]; that is, given ε > 0, there is a δ > 0 such
that | f ′(x) − f ′(y)| < ε for |x − y| < δ and x, y ∈ [a, b + 1]. There is N0 such that
1/N0 < δ. For n > N, x ∈ [a, b], c ∈ [a, b + 1], we have |c − x| < 1

n < δ. Then
| fn(x) − f ′(x)| = | f ′(c) − f ′(x)| < ε for all x ∈ [a, b] so that fn converges uniformly
to f ′.

6. Is the function f (x, y) = (x3 + y3)1/3 differentiable at (0, 0)?

Solution: Suppose f is differentiable at (0, 0). Then Du f (0, 0) = ∇ f (0, 0) · u, where u is a
unit vector. Define u = (u1, u2), a unit vector. We have

Du f (0, 0) = lim
t→0

f (tu)− f (0)
t

= lim
t→0

f (tu1, tu2)

t
= lim

t→0

t(u3
1 + u3

2)
1/3

t
= (u3

1 + u3
2)

1/3

Now we have also

∂ f
∂x

(0, 0) =
d

dx
f (x, 0)

∣∣∣∣
x=0

= 1

∂ f
∂y

(0, 0) =
d

dy
f (0, y)

∣∣∣∣
y=0

= 1

But ∇ f (0, 0) · u = fx(0, 0)u1 + fy(0, 0)u2 = u1 + u2. Therefore, Du f (0, 0) 6= ∇ f (0, 0) · u
for all unit vectors u. Therefore, f is not differentiable at (0, 0).
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August 2013

1. Let f be a real valued function on R and suppose that f has three derivatives in an open
interval containing the point a. Show

lim
h→0

f (a + 2h)− 2 f (a + h) + f (a)
h2 = f ′′(a)

and

lim
h→0

f (a + 3h)− 3 f (a + 2h) + 3 f (a + h)− f (a)
h3 = f ′′′(a)

Solution: For notational ease, let fh = f (a + h). Now choose h sufficiently small so that
a + 3h is in a neighborhood of f (a) that f is differentiable. We apply L’Hôpital’s rule.

lim
h→0

f2h − 2 fh + f0

h2
L.H.
= lim

h→0

2 f ′2h − 2 f ′h
2h

= lim
h→0

f ′2h − f ′h
h

L.H.
= lim

h→0
2 f ′′2h − f ′′h

= f ′′0

By the same method,

lim
h→0

f3h − 3 f2h + 3 fh − f0

h3
L.H.
= lim

h→0

3 f ′3h − 6 f ′2h + f ′h
3h2

= lim
h→0

f ′3h − 2 f ′2h + f ′h
h2

L.H.
= lim

h→0

3 f ′′3h − 4 f ′′2h + f ′′h
2h

L.H.
= lim

h→0

9 f ′′3h − 8 f ′′2h + f ′′h
2

=
2 f ′′′0

2
= f ′′′0

2. Let the sequence xn be given by

xn =
n

∏
k=1

(
1− 1

2k

)
=

(
1− 1

2

)(
1− 1

4

)
· · ·
(

1− 1
2n

)
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Prove that the sequence xn converges and that the limit is not 0.

Solution: To see convergence, we know that 0 < 1− 1
2k < 1 for k ∈N, so that 0 < xn < 1

for all n ∈N. This shows that the sequence is bounded. Furthermore, x1 = 1/2, x2 = 3/8,
so x2 < x1. Now assume that the sequence is decreasing for n = 1, 2, 3, · · · , N. Now

xN+1 =
N+1

∏
k=1

1− 1
2k =

(
1− 1

2N+1

) N

∏
k=1

1− 1
2k <

N

∏
k=1

1− 1
2k = xN

as 0 <
(
1− 1

2N+1

)
< 1. Therefore, the sequence xn is decreasing. By the Monotone

Convergence Theorem, the sequence xn converges.
To see the limit is nonzero, consider

ln(xn) = ln

(
n

∏
k=1

1− 1
2k

)
=

n

∑
k=1

ln(1− 1/2k)

note that 1− 1/2k > 0. Now we consider the series ∑∞
k=1 ln(1− 1/2k). The series ∑∞

k=1
−1
2k

converges. Furthermore, ln(1− 1/2k) < 0 for all k as 1− 1/2k < 1 < e. Observe

lim
k→∞

ln(1− 1/2k)
−1
2k

L.H.
= lim

k→∞

ln 2·2−k

1− 1
2k

ln 2 · 2−k = lim
k→∞

1
1− 1

2k

= 1

so by the Limit Comparison Test, ∑∞
k=1 ln(1− 1/2k) converges, say to x. Then we have

lim
n→∞

xn = lim
n→∞

eln(xn) = lim
n→∞

e∑n
k=1 ln(1−1/2k) = elimn→∞ ∑n

k=1 ln(1−1/2k) = ex > 0

for all x ∈ R.

3. Let f be a real valued function on R that satisfies {x : | f (x)| ≥ ε} is compact for all
ε > 0. Prove or provide a counterexample to the statement: f has a limit as |x| → ∞.

Solution: Let Mn = {x | | f (x)| ≥ 1
n}. By assumption, this set is compact for all n ∈ N

with ε = 1/n. As Mn ⊂ R is compact, it is closed and bounded by Heine-Borel. So there
exists a tn ∈ R such that |x| ≤ tn for all x ∈ Mn. But this implies that | f (x)| < 1

n for all
|x| > tn. As this holds for all n ∈N, it must be that lim|x|→∞ f (x) = 0.

4. Let f : [0, 1]→ R be a continuous function. For n = 1, 2, . . .. Let αn(x) = xn. Prove that
the limit

lim
n→∞

∫ 1

0
f dαn
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exists and determine its value.

Solution: Observe for all n, αn is monotonic increasing on [0, 1] and α′n(x) = nxn−1 is
continuous and hence integrable on [0, 1]. As f (x) is continuous on [0, 1], it is bounded.
Furthermore as f (x) is continuous on [0, 1], it is integrable on [0, 1]. Therefore, we know
that for each n ∈N∫ 1

0
f (x) dαn(x) =

∫ 1

0
f (x)α′n(x) dx = n

∫ 1

0
xn−1 f (x) dx

For convenience, we shall work with∫ 1

0
f (x) dαn+1(x) =

∫ 1

0
f (x)α′n+1(x) dx = (n + 1)

∫ 1

0
xn f (x) dx

Let pn(x) be a polynomial, i.e. p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0. Observe that∫ 1

0
xn pn0(x) dx =

∫ 1

0
an0 xn+n0 + an0−1xn+n0−1 + · · ·+ a1xn+1 + a0xn dx

= an0

xn+n0+1

n + n0 + 1
+ an0−1

xn+n0

n + n0
+ · · ·+ a0

xn+1

n + 1

∣∣∣∣∣
1

0

=
an0

n + n0 + 1
+

an0−1

n + n0
+ · · ·+ a0

n + 1

But then this shows that

lim
n→∞

(n + 1)
∫ 1

0
xn f (x) dx = lim

n→∞
(n + 1)

(
an0

n + n0 + 1
+

an0−1

n + n0
+ · · ·+ a0

n + 1

)
= lim

n→∞
an0

n + 1
n + n0 + 1

+ an0−1
n + 1
n + n0

+ · · ·+ a0
n + 1
n + 1

= an0 + an0−1 + · · ·+ a1 + a0

=
n0

∑
i=0

ai

= pn0(1)

So that the result holds for any polynomial. Now as f (x) is continuous on the compact
interval [0, 1], the Stone-Weierstrass Theorem gives a sequence of polynomials {pn(x)}
such that {pn(x)} converges to f (x) on [0, 1] uniformly. Then given ε > 0, there is a
N ∈ N such that |pn(x)− f (x)| < ε for all n > N and x ∈ [0, 1]. But the above shows
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limn→∞(n + 1)
∫ 1

0 xn pn(x) dx = pn(1) for all pn(x) ∈ {pm(x)}. Then∣∣∣∣(n + 1)
∫ 1

0
xn f (x) dx− (n + 1)

∫ 1

0
xn pn0(x) dx

∣∣∣∣ = ∣∣∣∣(n + 1)
∫ 1

0
xn( f (x)− pn0(x)) dx

∣∣∣∣
<

∣∣∣∣(n + 1)
∫ 1

0
xnε dx

∣∣∣∣
=

∣∣∣∣ε(n + 1)
∫ 1

0
xn dx

∣∣∣∣
=

∣∣∣∣ε n + 1
n + 1

∣∣∣∣
= ε

for all n0 > N. But then limn→∞(n + 1)
∫ 1

0 xn f (x) dx = limn→∞(n + 1)
∫ 1

0 xn pn0(x) dx.
However, we have shown this converges to pn(1) for all n. But we know also that
limn→∞ pn(x) = f (x). Then limn→∞ pn(1) = f (1), as desired. This shows that

lim
n→∞

∫ 1

0
f dαn = f (1)

5. Let f : [1, ∞)→ R be a continuous function such that limx→∞ f (x) = 0. Prove that for
every ε > 0 there exists an integer n and real numbers c0, . . . , cn such that∣∣∣∣∣ f (x)−

n

∑
k=0

cke−kx

∣∣∣∣∣ < ε for all x ∈ [1, ∞)

Solution: Let t = e−x for x ≥ 1. Observe t ∈ (0, 1
e ]. Now x = − log t. Define

g(t) =

 f (− log t), 0 < t ≤ 1
e

0, t = 0

Clearly, g is continuous on [0, 1/e] since f is continuous, − log t is continuous, and
limt↓0 g(t) = limx→+∞ f (x) = 0 = g(0). Therefore by Weierstrass’ Theorem, there is
a sequence {pn(t)} is a sequence of polynomials converging uniformly to g(t). That is,
there are ck such that ∣∣∣∣∣g(t)− n

∑
k=0

cktk

∣∣∣∣∣ < ε

for all t ∈ [0, 1/e]. But then ∣∣∣∣∣ f (x)−
n

∑
k=0

cke−kx

∣∣∣∣∣ < ε
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for all x ∈ [1, ∞).

6. Consider the mapping f = ( f1, f2, f3) of R3 into R3 given by

f1(x1, x2, x3) = x1

f2(x1, x2, x3) = x2
1 + x2

f3(x1, x2, x3) = x1 + x2
2 + x3

3

(a) Is f continuously differentiable? Why or why not?

(b) Find all points at which f satisfies the assumptions of the Inverse Function Theorem.

(c) Is f injective?

Solution:

(a) The function f (x1, x2, x3) has Jacobian 1 0 0
2x1 1 0
1 2x2 3x2

3


each of the partials of f are continuously on all of R3 as they are given by polynomials.
Therefore, f (x1, x2, x3) is continuously differentiable.

(b) The above Jacobian has determinant 3x2
3 which is zero only when x3 = 0. Therefore,

the above determinant above is invertible for all (x1, x2, x3) for which x3 6= 0.

(c) Suppose that f (a, b, c) = f (x, y, z). Then the first coordinate gives a = x. Using this in
the second coordinate, we have a2 + b = a2 + y so that b = y. Using a = x and b = y
in the third coordinate yields a + b2 + c3 = a + b2 + z3 so that c3 = z3 which implies
c = z. Therefore, f must be an injective function.
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January 2014

1. Show that the following limit exists and find it:

lim
n→+∞

(
(3n)!
(n!)3

)1/n

.

Solution: Let cn = (3n)!
(n!)3 . It is clear that cn > 0. We know that

lim inf
cn+1

cn
≤ lim inf n

√
cn

lim sup n
√

cn ≤ lim sup
cn+1

cn

But

lim
n→∞

cn+1

cn
= lim

n→∞

(3n + 3)!
((n + 1)!)3 ·

(n!)3

(3n)!

= lim
n→∞

(3n + 3)(3n + 2)(3n + 1)
(n + 1)3

= 27

But then lim inf cn+1
cn

= 27 and lim sup cn+1
cn

= 27. But then

27 = lim inf
cn+1

cn
≤ lim inf c1/n

n ≤
(
(3n)!
(n!)3

)1/n

≤ lim sup c1/n
n ≤ lim sup

cn+1

cn
= 27

OR

We know from Stirling’s formula

lim
n→∞

ln(an)!
n ln n

= 1

so that

lim
n→∞

ln(3n)!
3n ln n

= 1

Then (
(3n)!
(n!)3

)1/n

e
ln
(

(3n)!
(n!)3

)1/n

e
1
n

(
(3n)!
(n!)3

)
e

1
n (ln(3n)!−ln(n!)3)

e
ln(3n)!

n − ln(n!)3
n
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Then from the continuity of ex, we know

lim
n→∞

(
(3n)!
(n!)3

)1/n

= lim
n→∞

e
ln(3n)!

n − ln(n!)3
n

= elimn→∞
ln(3n)!

n − ln(n!)3
n

= e3 ln(3n)−3 ln 3

= e3(ln 3n−ln n)

= e3 ln 3n
n

= e3 ln 3

= eln 27

= 27

2. Let f : X → Y be a continuous function, where X, Y are metric spaces and X is compact.
Assume that y0 ∈ Y is a point which has a unique preimage x0 ∈ X, i.e. f−1(y0) = {x0}.
Prove that for every open neighborhood U of x0 in X there exists an open neighborhood V
of y0 in Y such that f−1(V) ⊂ U. Give an example to show that this conclusion is false if X
is not compact.

Solution: Suppose there is a U ⊆ X is open with x0 ∈ U such that for all V ⊆ Y with
y0 ∈ V, we have f−1(V) 6⊆ U. Take V = B1/n(y0). Since f−1(V) 6⊆ U, there is a sequence
{xn} such that xn /∈ U for all n. Since xn ∈ f−1(V), f (xn) ∈ V = B1/n(y0). Therefore,
f (xn) → y0. Now xn ∈ X \U and X \U is closed since U is open. But X \U is compact
since it is a closed subset of the compact set X. But {xn} ∈ X \U is compact so that there
is a subsequence {xnk} such that xnk → z ∈ X \U. Then f (xnk) → f (z) = y0 since f is
continuous. Therefore, xnk → f−1(y0) = x0. But then xnk → x0 ∈ U, a contradiction as
xnk → z ∈ Z \U. Then for all U ⊆ X such that x0 ∈ U, there is a V ⊆ Y with y0 ∈ V with
f−1(V) ⊆ U. To see this is false if X is not compact, consider the following:
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3. Let f : R → R be a differentiable function such that lim
x→+∞

f ′(x) = 1, and let a ∈ R.

Prove that the following limit exist and find it:

lim
x→+∞

e f (x+a)

e f (x)

Solution: If a = 0, the limit is trivially 1. Assume a 6= 0.

e f (x+a)

e f (x)
= e f (x+a)− f (x)

=
(

e f (x+a)− f (x)
)a/a

=
(

e
f (x+a)− f (x)

a

)a

Then using the continuity of ex, we know

lim
x→∞

e f (x+a)

e f (x)
= lim

x→∞

(
e

f (x+a)− f (x)
a

)a
=
(

elimx→∞
f (x+a)− f (x)

a

)a

Let L = limx→∞ f ′(x). Then for any ε > 0, there is an N ∈ N such that for x ≥ N,
| f ′(x)− L| < ε. Then for x > N,∣∣∣∣ f (x + a)− f (x)

a
− L

∣∣∣∣ = ∣∣∣∣1a
∫ x+a

x
f ′(t)− L dt

∣∣∣∣
≤ 1

a

∫ x+a

x
| f ′(t)− L| dt

≤ 1
a

∫ x+a

x
ε = ε
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So limx→∞
f (x+a)− f (x)

a = L (in our case L = 1). Then

lim
x→∞

e f (x+a)

e f (x)
=
(

elimx→∞
f (x+a)− f (x)

a

)a
= ea limx→∞ f ′(x) = eaL = ea

OR

By the Mean Value Theorem on [x, x + a], there is a ca ∈ (x, x + a) such that f (x +

a) − f (x) = a f ′(ca). But then f ′(ca) = f (x+a)− f (x)
a . But then L = limx→∞ f ′(ca) =

limx→∞
f (x+a)− f (x)

a . Therefore, aL = limx→∞ f (x + a)− f (x). Therefore by the continuity

of ex, we have limx→+∞
e f (x+a)

e f (x)
= eaL.

OR

As f is continuous on [x, x + a] and differentiable on (x, x + a) by the Mean Value
Theorem, there is a cx ∈ (x, x + a) such that f (x + a)− f (x) = a f ′(cx). As cx → +∞ as
x → +∞,

lim
x→+∞

e f (x+a)

e f (x)
= lim

cx→+∞
ea f ′(cx) = ea

as limx→+∞ f ′(x) = 1. Therefore, limx→+∞
e f (x+a)

e f (x)
= ea exists.

4. For each s ∈ [0, 1] there is a function fs(x) defined for x ∈ [a, b] and fs ∈ R(α) on [a, b],
where α is a monotonically increasing function on [a, b]. Suppose that

fsj → f 1
2

uniformly on [a, b] as j→ ∞

for any sequence {sj}∞
j=1 from [0, 1] that converges to 1

2 . Show that

lim
s→ 1

2

∫ b

a
fs(x) dα(x) =

∫ b

a
f 1

2
(x) dα(x).

Solution: Define F(s) =
∫ b

a fs(x) dα(x), s ∈ [0, 1]. We need show that lims→1/2 F(s) =

F( 1
2 ). Suppose that lims→1/2 F(s) 6= F( 1

2 ). Then there is sj ∈ [0, 1] \ { 1
2} such that sj → 1

2

but F(sj) 6→ F( 1
2 ). But as fsj → f1/2 and fsj ∈ R(α), we have limj→∞

∫ b
a fsj dα =∫ b

a f1/2 dα, i.e. F(sj) → F(1/2), a contradiction. Therefore, lims→1/2 F(s) = F(1/2).

Then lims→1/2
∫ b

a fs(x) dα(x) =
∫ b

a f1/2(x) dα(x).

5. Let f be a real valued continuous function on [0, 1], with ‖ f ‖ ≤ 1 (sup norm less than or
equal 1) and f (0) = 0. Show that the sequence of powers of f , { f n}∞

n=1 is equicontinuous
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if and only if ‖ f ‖ < 1.

Solution:
⇐=: Assume ‖ f ‖ < 1. We need show { f n} is equicontinuous. Now ‖ f ‖ < 1 so that
supx∈[0,1]{| f (x)|} < 1 so that | f (x)| ≤ A < 1 for some A. Therefore, | f n(x)| ≤ An → 0
as A ∈ [0, 1). But then f n(x) converges to 0 on [0, 1] (a compact interval). Now as f is
continuous, f n is continuous. But then { f n} is equicontinuous.

=⇒: Assume { f n} is equicontinuous. We need show ‖ f ‖ < 1. Suppose that ‖ f ‖ = 1.
Then supx∈[0,1]{| f (x)|} = 1. So there exists x0 ∈ [0, 1] such that | f (x0)| = 1. Moreover,
| f n(x)| ≤ 1 for all x ∈ [0, 1] and for all n. Since { f n} is uniformly bounded (hence
pointwise bounded), [0, 1] is compact, and { f n} is equicontinuous, by the Ascoli-Arzela
Theorem, there exists a subsequence f nk converging to g for some function g(x) on [0, 1].
But as f nk are continuous and f n → g, g is continuous. Now | f nk | → |g| and

|g| =
{

0, | f (x)| < 1
1, | f (x)| = 1

But then |g| is not continuous, a contradiction. Therefore, ‖ f ‖ < 1.

6. Let f = ( f1, f2) from R2 to R2 be given by f1(x, y) = 2x + |x| − |x + 1|, f2(x, y) =
(y− 1)3.

(a) At which points (x, y) does the Inverse Function Theorem provide the existence of a
C1 inverse in a neighborhood? Check the conditions of the theorem!

(b) At which points is f not invertible?

Solution:

(a) If x ≤ −1, f1(x, y) = 2x − x + x + 1 = 2x + 1. If −1 < x ≤ 0, then f1(x, y) =
2x− x− (x + 1) = −1. If x > 0, f1(x, y) = 2x + x− (x = 1) = 2x− 1. Therefore,

f1(x, y) =


2x + 1, x ≤ −1
−1, −1 < x ≤ 0
2x− 1, x > 0

Then f1 is continuous but clearly not differentiable at x = −1, 0. Furthermore, f2 ∈ C1

for all x. Then f ∈ C′(U), where u ∈ R2 \ {(x, y) : x = −1, 0}. We have

J f (x, y) = det


∂ f1

∂x
∂ f1

∂y
∂ f2

∂x
∂ f2

∂y

 = det

∂ f1

∂x
0

0 3(y− 1)2

 = 3(y− 1)2 ∂ f1

∂x
=


6(y− 1)2, x ≤ −1
0, −1 < x ≤ 0
6(y− 1)2, x > 0
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Therefore, the Inverse Function Theorem applies for all (x, y) with x < −1 or x > 0,
and y 6= 1.

(b) f is not invertible at (x, y) ∈ R2 such that −1 ≤ x ≤ 0 or y = 1.
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1. Suppose f is positive, twice differentiable, and log-concave, i.e., the graph of the
composite function ln( f ) is everywhere concave down. Prove that the function

g(x) = f (x)
(

1
f (x)

)′
is non-decreasing.

Solution: As f (x) > 0 is differentiable, we know 1
f (x) is differentiable.(

1
f (x)

)′
=
− f ′(x)
f (x)2

So

g(x) = f (x)
(

1
f (x)

)′
=
− f ′(x)

f (x)

As f (x) > 0 and f (x) is twice-differentiable, since the quotient of differentiable functions
is differentiable, g(x) is differentiable. It suffices to show that g′(x) > 0.

g′(x) =
(
− f ′(x)

f (x)

)′
=
− f ′′(x) f (x) + f ′(x)2

f (x)2

As f (x)2 > 0, it suffices to show − f ′′(x) f (x) + f ′(x)2 > 0. We know ln f is concave down
as f (x) is log concave. So

(ln f (x))′ =
f ′(x)
f (x)

(ln f (x))′′ =
(

f ′(x)
f (x)

)′
=

f ′′(x) f (x)− f (x)2

f (x)2 < 0

so f ′′(x) f (x)− f ′(x)2 < 0 so f ′(x)2 − f ′′(x) f (x) > 0.

2. Let X be a compact metric space with metric d, and let x0 ∈ X. Prove that K =
{d(x0, x) : x ∈ X} is a closed subset of the real numbers.

Solution: First, we prove a lemma.

Lemma: If d : X× X → R is a metric then d is continuous.
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Proof: Let (a, b) be an open set in R. Let (x, y) ∈ d−1((a, b)) (if this is empty it is trivial
but this cannot be so for a metric). Then a < d(x, y) < b. Choose ε > 0 such that
B2ε(d(x, y)) ⊂ (a, b). We look at Bε(x)× Bε(y). Suppose (x, y) ∈ Bε(x)× Bε(y). Then

d(x, y) ≤ d(x, x) + d(x, y) + d(y, y) < d(x, y) + 2ε

d(x, y) ≤ d(x, x) + d(x, y) + d(y, y) < d(x, y) + 2ε

So

d(x, y) < d(x, y) + 2ε

d(x, y) < d(x, y) + 2ε

But then the choice of ε shows

a < d(x, y)− 2ε < d(x, y) < d(x, y) + 2ε < b

So Bε(x)× Bε(y) ⊂ d−1((a, b)), so d is continuous.
Now X×X is compact, as it is the finite product of compact spaces. Indeed, {x0}×X is

compact as it is the finite product of compact spaces. But then K is the image of a compact
set under a continuous map, hence compact. But then K is a compact set in a Hausdorff
space. Therefore, K is closed.

3. Let A be a subset of the natural numbers whose elements have been arranged into a
sequence a1, a2, . . .. Call the set petite if it is finite, or if it is infinite and

∞

∑
j=1

1
aj

< ∞.

A set which is not petite is called husky. Prove that the complement of a petite set is husky,
but that the complement of a husky set is not necessarily petite.

Solution: Note that as an ∈ N for all n, then an > 0. So if ∑ an converges it does so
absolutely and any arrangement of its terms converges. Note also that ∑ 1

n diverges and
that this also implies that ∑n≥m

1
n diverges for all m ∈N. If A is finite, let n0 ∈N such that

an < n0 for all n ∈ N. Then AC is infinite for it must contain all n ∈ N such that n > n0.
We know

∑
a∈A

1
a
+ ∑

a∈AC

1
a
=

∞

∑
n=1

1
n

Now as ∑a∈A
1
a converges (being a finite sum), it must be that ∑a∈AC

1
a diverges for other-

wise the above equality would then show that the harmonic series converges. Therefore,
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AC is husky. Now suppose that A is infinite and petite. Suppose AC were finite, then
∑a∈AC

1
a converges as it is a finite sum but then once again

∑
a∈A

1
a
+ ∑

a∈AC

1
a
=

∞

∑
n=1

1
n

show that the harmonic series converges, impossible. Therefore, it must be that AC is
infinite. Assume to the contrary that ∑a∈AC

1
a converges. But then yet again,

∑
a∈A

1
a
+ ∑

a∈AC

1
a
=

∞

∑
n=1

1
n

yields a contradiction for the same reason. Therefore, AC is husky. To see that the comple-
ment of a husky set need not be petite, take A = {2, 4, 6, · · · }. We know that A is infinite
and ∑a∈A

1
a diverges as

∑
a∈A

1
a
=

1
2

∞

∑
n=1

1
n

However, AC = {1, 3, 5, · · · } and

∑
a∈AC

1
a
=

1
1
+

1
3
+

1
5
+ · · · = 1

1
+

1
2(1) + 1

+
1

2(2) + 1
+ · · · > 1

2
+

1
4
+

1
6
+ · · · = ∑

a∈A

1
a

so that ∑a∈AC
1
a diverges. Therefore, AC is not petite.

4. Suppose that { fn}, n = 1, 2, . . ., are continuous functions defined on the interval [0, 1],
and

lim
n→∞

∫ 1

0
fn(x) dx = 0

Suppose also that for each n, the function fn is increasing, and fn(0) = 0. Prove that fn
converges to 0 uniformly on the interval [0, 1/2].

Solution: We need show that given ε > 0, there is a N ∈ N such that | fn(x) − 0| =
| fn(x)| < ε for all x ∈ [0, 1/2] and n > N. As fn(0) = 0 and fn is increasing, we know
fn ≥ 0 on the interval [0, 1] for all n. Moreover, fn(1/2) ≥ fn(x) for all x ∈ [0, 1/2] and
fn(1/2) ≤ f (x) for all x ∈ [1/2, 1]. Now

∫
fn dx ≥ 0 for all n as fn ≥ 0 for all n. We have

also ∫ 1

0
fn(x) dx =

∫ 1/2

0
fn(x) dx +

∫ 1

1/2
fn(x) dx ≥

∫ 1

1/2
fn(x) dx ≥ 0

Now as
∫ 1

0 fn dx → 0, this implies
∫ 1

1/2 fn dx → 0. But we have∫ 1

1/2
fn(x) dx ≥ fn(1/2)

(
1− 1

2

)
=

fn(1/2)
2

≥ 0
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for all n. This implies that lim fn(1/2) = 0; that is, given ε > 0, there is a N ∈N such that
| fn(1/2)| < ε. However, | fn(x)| ≤ | fn(1/2)| < ε for n > N and all x ∈ [0, 1/2].

5. Let f : [0, 1] → R be a continuous function. Prove that there exists a sequence of
polynomials, {pn} such that pn → f uniformly on [0, 1], and pn(x) > pn+1(x) for every
x ∈ [0, 1]. and every n = 1, 2, . . ..

Solution: Let xn be any nonconstant nonzero increasing sequence converging to 0. It is
then clear that xn < 0. Take An = xn−1+xn

2 and Bn = xn−xn−1
2 . Observe that An < 0, Bn > 0,

and both An → 0, Bn → 0 as n→ ∞. Furthermore, An + Bn = xn−1 and An − Bn = xn. As
f (x) is continuous, so too is f (x)− An continuous on the compact interval [0, 1]. By Stone-
Weierstrass, there is a polynomial pn(t) such that |pn(x)− ( f (x)− An)| < Bn. Therefore,
f (x)− xn = f (x)− An − Bn < pn(x) < f (x)− An + Bn = f (x)− xn. In particular, f (x)−
xn+1 < pn(x) < f (x)− xn. Now as |pn(x)− f (x)| ≤ |pn(x)− ( f (x)− An)|+ |An| → 0,
we have pn(x) converges to f (x) uniformly on [0, 1].

6. Let f : R → R be a continuously differentiable nondecreasing function. Define
g : R2 → R2 by

g (x1, x2) = (x2 + f (2x1 + x2), 2x1 + f (2x1 + x2))

Show that g satisfies the conditions of the Inverse Function Theorem at every point of R2.

Solution: The function g(x1, x2) has Jacobian(
2 f ′(2x1 + x2) 1 + f ′(2x1 + x2)

2 + 2 f ′(2x1 + x2) f ′(2x1 + x2)

)
Notice that each of these partials are continuous as f is a continuously differentiable
function (meaning that f ′ is continuous). Therefore, we know that g(x1, x2) is C′ on R2.
Observe that the above has determinant

2 f ′2(2x1 + x2)− (1 + f ′(2x1 + x2))(2 + 2 f ′(2x1 + x2)) = −2− 4 f ′(2x1 + x2)

So that the determinant is only zero when−2− 4 f ′(2x1 + x2) = 0 so that f ′(2x1 + x2) =
−1
2 .

However as f is a nondecreasing function, f ′(x) ≥ 0 so that this is impossible. But then g′

is invertible for all (x1, x2) ∈ R2. Therefore, g(x1, x2) satisfies the conditions of the Inverse
Function Theorem everywhere on R2.
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1.

(i) If x > 0 and y > 0 show that x +
1

y2x
≥ 2

y
.

(ii) Suppose that the series
∞

∑
n=1

an converges and an > 0 for all n ≥ 1. Show that the series

∞

∑
n=1

1
n2an

diverges.

Solution:

(i) This follows from

(xy− 1)2 ≥ 0

x2y2 − 2xy + 1 ≥ 0

x2y2 + 1 ≥ 2xy

x +
1

y2x
≥ 2

y

where in the last line we divided by xy2, using the fact that xy2 6= 0 as x, y > 0.

(ii) We know that an > 0 and n > 0 for n ∈N. By the previous part, we know that

∞

∑
n=1

(
an +

1
n2an

)
≥

∞

∑
n=1

2
n

Suppose that ∑∞
n=1

1
n2an

converges. Then the left side can be split as

∞

∑
n=1

an +
∞

∑
n=1

1
n2an

≥ 2
∞

∑
n=1

1
n

But then the left side is a sum of convergent series, hence convergent, greater than a
divergent series, a contradiction. Therefore, it must be that ∑∞

n=1
1

n2an
converges.

2. Let f : [0,+∞)→ R be a continuous function such that limx→+∞( f (x)− x) = 0. Prove
or provide a counterexample to the statement: f is uniformly continuous on [0,+∞).
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Solution: We know from limx→∞( f (x) − x) = 0, given ε > 0 there is an N ∈ N such
that | f (x)− x| < ε for x > N. As f (x) is continuous on [0, ∞), it is continuous on [0, N].
But then f (x) is uniformly continuous on [0, N]. Given ε > 0, there is a δ1 > 0 such that
| f (x)− f (y)| < ε for |x− y| < δ1, where x, y ∈ [0, N]. Now given ε > 0, choose δ2 = ε/3.
For x, y ∈ (N, ∞) with |x− y| = |y− x| < δ2, we have

| f (x)− f (y)| = | f (x)− x + x− f (y)| ≤ | f (x)− x|+ | f (y)− x|
= | f (x)− x|+ | f (y)− x + y− y| ≤ | f (x)− x|+ | f (y)− y|+ |y− x|

<
ε

3
+

ε

3
+

ε

3
= ε

But then given ε > 0, taking δ = min{δ1, δ2}, we have | f (x)− f (y)| < ε for x, y ∈ [0, ∞)
with |x− y| < δ so that f (x) is uniformly continuous on [0, ∞).

3. Let f , g : R→ R be functions such that f is differentiable and for every x, h ∈ R one has
f (x + h)− f (x− h) = 2hg(x). Prove that f is a polynomial of degree at most 2.

Solution: As f (x) is differentiable with respect to x and 2hg(x) = f (x + h)− f (x− h), we
know that g(x) is differentiable with respect to x. Moreover, we have

2hg(x) = f (x + h)− f (x− h)
2hg(x) = f (x + h)− f (x) + f (x)− f (x− h)

2g(x) =
f (x + h)− f (x)

h
− f (x− h)− f (x)

h

so that as h→ 0,

2g(x) = lim
h→0

f (x + h)− f (x)
h

− f (x− h)− f (x)
h

= f ′(x)− (− f ′(x)) = 2 f ′(x).

This shows that g(x) = f ′(x). As g(x) is differentiable, this shows that f (x) is twice
differentiable and that g′(x) = f ′′(x). All that remains is to show that f ′′(x) = g′(x)
is constant. Differentiating f (x + h)− f (x − h) = 2hg(x) twice with respect to h yields
f ′′(x + h)− f ′′(x − h) = 0. But this is true for all x, h so that f ′′ is constant. Therefore,
f ′′(x) must be a polynomial of at most degree 2.

4.

(a) Give an example of a differentiable function f : R → R whose derivative f ′ is not
continuous. Prove that your example works.

(b) Let f be as in Part (a). If f ′(0) < 2 < f ′(1), prove that f ′(x) = 2 for some x ∈ [0, 1].
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Solution:

(a) Let f (x) be given by

f (x) =

{
x2 sin

( 1
x

)
, x 6= 0

0, x = 0

It is clear this function is continuous as x2 sin(1/x) is continuous at all nonzero points
and |x2 sin(1/x)| ≤ |x2| forces limx→0 x2 sin(1/x) to have limit 0 at the origin by
the Squeeze Theorem. But then f (x) is continuous. Furthermore, f (x) is clearly
differentiable at all nonzero values. In addition,

lim
h→0

f (0 + h)− f (0)
h

= lim
h→0

h2 sin
( 1

h

)
− 0

h
= lim

h→0
h sin(1/h) = 0

where the last equality follow from the Sequence Theorem with |h sin(1/h)| ≤ |h|.
Then f (x) is differentiable at 0 - hence everywhere on R - with f ′(x) = 0. The derivative
of f (x) is given by

f (x) =

{
2x sin

( 1
x

)
− cos

( 1
x

)
x 6= 0

0, x = 0

We have shown f ′(0) = 0. But note that
∣∣2x sin

( 1
x

)∣∣ ≤ |2x| has limit 0 as x → 0 by
Squeeze Theorem. But then

lim
|x|→0

f (x) = lim
|x|→0

2x sin
(

1
x

)
− cos

(
1
x

)
= − lim

|x|→0
cos

(
1
x

)
Now f ′(0) = 0 but taking xn = 1

2πn and the above calculation shows that limn→∞ f ′(xn) =
1. But then f ′(x) is not continuous at x = 0. In fact, we can produce a differentiable
function whose derivative is discontinuous at x = x0, x1, · · · , xn via

f (x) =


(

∏n
i=0(x− xi)

2
)

sin
(

1
∏n

i=0(x−xi)

)
, x /∈ {x0, x1, . . . , xn}

0, otherwise

(b) Let a = f ′(0) and b = f ′(1). By assumption, a < 2 < b. Let g(t) = f (t) − 2t.
Observe that g(t) is differentiable and g′(t) = f ′(t)− 2. As g(t) is differentiable on
[0, 1], g(t) is continuous on [0, 1]. Observe that g′(0) = f ′(0)− 2 = a− 2 < 0 while
g′(1) = f ′(1) − 2 = b − 2 > 0. But then clearly g(t) has a minimum on [0, 1] at
some value t0 ∈ [0, 1]. But at t0, it must be the case that g′(t0) = 0. However, this is
0 = g′(t0) = f ′(t0)− 2 so that f ′(t0) = 2, as desired.
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5. Let f : R→ R be a continuous function. Show that

lim
n→∞

(n + 1)
∫ 1

0
xn f (x) dx = f (1)

Solution: Let pn(x) be a polynomial, i.e. p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0. Observe
that ∫ 1

0
xn pn0(x) dx =

∫ 1

0
an0 xn+n0 + an0−1xn+n0−1 + · · ·+ a1xn+1 + a0xn dx

= an0

xn+n0+1

n + n0 + 1
+ an0−1

xn+n0

n + n0
+ · · ·+ a0

xn+1

n + 1

∣∣∣∣∣
1

0

=
an0

n + n0 + 1
+

an0−1

n + n0
+ · · ·+ a0

n + 1

But then this shows that

lim
n→∞

(n + 1)
∫ 1

0
xn f (x) dx = lim

n→∞
(n + 1)

(
an0

n + n0 + 1
+

an0−1

n + n0
+ · · ·+ a0

n + 1

)
= lim

n→∞
an0

n + 1
n + n0 + 1

+ an0−1
n + 1
n + n0

+ · · ·+ a0
n + 1
n + 1

= an0 + an0−1 + · · ·+ a1 + a0

=
n0

∑
i=0

ai

= pn0(1)

So that the result holds for any polynomial. Now as f (x) is continuous on the compact
interval [0, 1], the Stone-Weierstrass Theorem gives a sequence of polynomials {pn(x)}
such that {pn(x)} converges to f (x) on [0, 1] uniformly. Then given ε > 0, there is a
N ∈ N such that |pn(x)− f (x)| < ε for all n > N and x ∈ [0, 1]. But the above shows
limn→∞(n + 1)

∫ 1
0 xn pn(x) dx = pn(1) for all pn(x) ∈ {pm(x)}. Then∣∣∣∣(n + 1)

∫ 1

0
xn f (x) dx− (n + 1)

∫ 1

0
xn pn0(x) dx

∣∣∣∣ = ∣∣∣∣(n + 1)
∫ 1

0
xn( f (x)− pn0(x)) dx

∣∣∣∣
<

∣∣∣∣(n + 1)
∫ 1

0
xnε dx

∣∣∣∣
=

∣∣∣∣ε(n + 1)
∫ 1

0
xn dx

∣∣∣∣
=

∣∣∣∣ε n + 1
n + 1

∣∣∣∣
= ε
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for all n0 > N. But then limn→∞(n + 1)
∫ 1

0 xn f (x) dx = limn→∞(n + 1)
∫ 1

0 xn pn0(x) dx.
However, we have shown this converges to pn(1) for all n. But we know also that
limn→∞ pn(x) = f (x). Then limn→∞ pn(1) = f (1), as desired.

6. The Arzelá-Ascoli Theorem asserts that a sequence { fn} of continuous real valued
functions on a metric space Ω is precompact (i.e. has a uniformly convergent subsequence)
if

(i) Ω is compact.

(ii) sup{| fn(x)| : x ∈ Ω and n ∈N} < ∞,

(iii) the sequence is equicontinuous.

Give examples of sequences which are not precompact such that: (i) and (ii) holds but (iii)
fails; (i) and (iii) hold but (ii) fails; (ii) and (iii) hold but (i) fails. Take Ω to be a subset of the
real line.

Solution:

(i),(ii) 6→ (iii) Let Ω = [0, 1] and take fn(x) = xn. It is clear that supΩ fn(x) = 1 for all n and that
Ω is compact. However, the sequence of functions { fn(x)} is not equicontinuous. If
the sequence were equicontinuous, there would be a δ > 0 such that 0 < δ < 1 and
|xn − yn| < 1

2 for all n ∈N and x, y ∈ (1− δ, 1]. As tn → 0 as n→ ∞ if 0 < t < 1, we
can choose n sufficiently large so that

(
1− δ

2

)n
< 1

2 . Choose x = 1 and y = 1− δ
2 .

But then

|xn − yn| =
∣∣∣∣1−(1− δ

2

)n∣∣∣∣ > 1− 1
2
>

1
2

But this contradicts the equicontinuity of the sequence. Therefore, { fn} is not equicon-
tinuous.

(i),(iii) 6→ (ii) Take Ω = [0, 1] and fn(x) = n for all x ∈ [0, 1]. The series of functions { fn} is clearly
equicontinuous but sup{| fn(x)| | x ∈ Ω ∧ n ∈N} is clearly infinite.

(ii),(iii) 6→ (i) Take Ω = R and choose

fn(x) =


0, x ≤ n
x− n, n < x ≤ n + 1
1, x > n + 1

Observe that sup fn(x) = 1 for all x ∈ R and n ∈ N. Furthermore, the sequence of
functions { fn(x)} is equicontinuous as ‖ fn(x)− fm(y)‖ = 1 for n, m ∈ N, n 6= m,
and x, y ∈ R.
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1. Assume fn is a sequence of functions mapping R into [0, 1]. Prove there is a subsequence
nk along which fnk(q) converges for all rational q.

Solution: The collection { fn(q)} is a sequence in a compact metric space [0, 1]. Then
there is a convergent subsequence of this sequence which converges, nk. But then fnk(q)
converges for all q ∈ Q.

2. Prove that

lim
n→∞

(
n

∑
k=1

1
k
− ln n

)
exists.

Solution: Let sn = ∑n
k=1

1
k − ln n. The sequence sn is decreasing as

sn − sn−1 =
1
n
+ ln(n− 1)− ln(n) =

1
n
− ln

(
1− 1

n

)
However, d

dx ln(1− x) = 1
1−x < 0 for x ∈N so that ln(1− x) is concave. But then ln(1− x)

lies below its tangent at x = 0, which is −x. Taking x = 1/n gives ln(1− 1/n) ≤ −1
n . But

then sn − sn−1 < 0 for all n ∈N. But sn is bounded below by 0 as

n

∑
k=1

1
k
>
∫ n+1

1

dx
x

dx = ln(n + 1) > ln n

as ln n is increasing and ln n ≥ 0 for n ∈ N. But then the sequence sn converges by the
Monotone Convergence Theorem.

3. Is ∫ ∞

1

sin x
x

dx

a convergent integral?

Solution: Integration by parts yields

∫ ∞

1

sin x
x

dx =
− cos x

x

∣∣∣∣∞
1
−
∫ ∞

1

cos x
x2 dx = cos 1−

∫ ∞

1

cos x
x2

But observe that ∣∣∣∣∫ ∞

1

cos x
x2 dx

∣∣∣∣ < ∫ ∞

1

∣∣∣cos x
x2

∣∣∣ < ∫ ∞

1

dx
x2 < ∞
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so that the integral
∫ ∞

1

cos x
x

dx converges. But then the original integral converges.

4. If pk ≥ 0 and ∑∞
k=1 pk = 1, show that(

∞

∑
k=1

kpk

)2

≤
∞

∑
k=1

k2 pk.

Let ak = k
√

pk and bk =
√

pk. By the Cauchy-Schwartz Inequality (in the case where the
sequences are entirely real), ∣∣∣∣∣ n

∑
k=1

akbk

∣∣∣∣∣
2

≤
n

∑
k=1
|ak|2

n

∑
k=1
|bk|2

But using the fact these sequences are nonnegative and , this is precisely(
n

∑
k=1

kpk

)2

≤
n

∑
k=1

k2 pk

n

∑
k=1

pk

Then taking the limit as n→ ∞ and using the fact that ∑∞
k=1 pk = 1, we have(

∞

∑
k=1

kpk

)2

≤
∞

∑
k=1

k2 pk

∞

∑
k=1

pk =
∞

∑
k=1

k2 pk

5. Let { fn} be equicontinuous on the compact set K. Assume that { fn} converges pointwise.
Prove that { fn} converges uniformly on K.

Solution: Suppose that fn → f pointwise on K. As the set { fn} is equicontinuous, given
ε1 > 0, there is a δ > 0 such that | fn(x)− fn(y)| < ε1/3 for all x, y ∈ K with |x− y| < δ
and all fk ∈ { fn}. The set {B(x, δ)}, where δ > 0, is an open covering of K. Therefore,
there is a finite cover of this covering. That is, there are x1, x2, . . . , xn such that {B(xi, δ)} is
an open covering of K. As fn converges to f pointwise, given ε2 > 0 and x ∈ K, there is a
N ∈N such that | fn(x)− f (x)| < ε2/3 for all n > N. In particular, | fn(xi)− f (xi)| < ε2/3
for all n > N. But then given ε > 0, choose ε′ = min{ε, ε1, ε2}. Then let δ be as given as
above. Note that | fn(x)− f (x)| = | fn(x)− f (x) + f (xi)− f (xi)| so that

| fn(x)− f (x)| ≤ | fn(x)− fn(xi)|+ | fn(xi)− f (xi)|+ | f (xi)− f (x)| < ε

3
+

ε

3
+

ε

3
= ε

for all x ∈ B(xi, δ). But each x ∈ K is in some B(xi, δ) for some i so that { fn} converges
uniformly to f on K.
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6. Let

f (x) =

{
x + 2x2 sin(1/x), x 6= 0
0, x = 0

with f : R→ R.

(a) Show that f ′(0) = 1. Show that f ′ is not continuous at x = 0.

(b) Write y = f (x), what does the Inverse Function Theorem say or not say about the
inverse of f in a neighborhood of y = 0? Explain.

(c) Show that f is not 1-1 in any neighborhood of x = 0.

Solution:

(a)
f (0 + h)− f (0)
(0 + h)− 0

=
f (h)− f (0)

h
=

h + 2h2 sin(1/h)− 0
h

= 1 + 2h sin(1/h)

But we have

lim
h→0

h sin(1/h) = lim
h→0

sin(1/h)
1
h

= lim
h→∞

sin h
h

= 0

Therefore,

lim
h→0

f (0 + h)− f (0)
(0 + h)− 0

= lim
h→0

1 + 2h sin(1/h) = 1

However for x 6= 0, f ′(x) = 1 + 4x sin(1/x)− 2 cos(1/x). Taken xn = 1
2nπ , observe

that xn → 0 as n→ ∞ and we have

f ′(xn) = 1 +
2 sin(2nπ)

nπ
− 2 cos(2nπ) = −1

But as f ′(0) = 1, f ′(x) is not continuous at x = 0.

(b) The Inverse Function Theorem fails to give any statement about an inverse of f (x)
for any open set containing the origin as f need be a C′ mapping but f ′(x) is not
continuous about the origin, despite the fact that f ′(0) 6= 0. However for any open
set not containing the origin, f ′(x) = 1 + 4x sin(1/x) − 2 cos(1/x) is continuous.
Therefore for any other open interval, E, containing an x0 such that f (x0) = 0 and
f ′(x0) 6= 0, the Inverse Function Theorem gives an inverse g(x) ∈ C′(E).
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(c) In any neighborhood of the origin, E, xn = 1
2nπ and xm = 1

(2m+1)π are in E for some
n, m ∈N. However, observe that

f ′(xn) = 1 +
2 sin(2nπ)

nπ
− 2 cos(2nπ) = −1 < 0

f ′ () = 1 +
2 sin((2m + 1)π)

(2m + 1)π
− 2 cos((2m + 1)π) = 3 > 0

so that f (x) cannot be one-to-one on any neighborhood of the origin.
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1. Let E ⊂ R be a nonempty set.

(a) What does it mean to say that E has an upper bound?

(b) When E has an upper bound define sup E, the supremum of E.

(c) Give an example of a bounded set E such that sup E /∈ E.

(d) If E has an upper bound prove that there is a sequence {xn}, xn ∈ E, such that
limn→∞ xn = sup E.

Solution:

(a) E has an upper bound if there exists a x ∈ R such that e ≤ x for all e ∈ E. If y ∈ R is
such a number such that e ≤ y for all e ∈ E, we say that y is an upper bound for E.

(b) Suppose E is bounded above. If s ∈ R is an upper bound of E such that if x < s then x
is not an upper bound of E, we say that s is the supremum of E and denote it sup E.

(c) Consider E = (0, 1) ⊂ R. Clearly, e ≤ 1 for all e ∈ E so that 1 is an upper bound of E.
Clearly, no s ∈ R with s < 0 is an upper bound for E. If 0 < s < 1, then s < s+1

2 < 1 is
an element of E and therefore s is not an upper bound of E. Then sup E = 1 /∈ E.

(d) Since E ⊂ R has an upper bound, sup E exists. Define s = sup E. Now consider
Kn := E ∩ [s− 1/n, s] for n ∈ N. If Kn = E ∩ [s− 1/n, s] = ∅, then s− 1/n < s is an
upper bound for E, contradicting the fact that s = sup E. Therefore, there is a en ∈ Kn
for every n ∈N. The sequence {en}n∈N converges to s = sup E as |en − s| ≤ 1

n → 0 as
n→ ∞.

2. Let f be a real valued function defined on a metric space X with distance d(x, y), x, y ∈ X.
Prove or disprove the following assertions.

(a) If f is uniformly continuous on X and if {xn}, xn ∈ X, is a Cauchy sequence, then
{ f (xn)} is Cauchy.

(b) If f is continuous on X and if {xn}, xn ∈ X, is a Cauchy sequence, then { f (xn)} is
Cauchy.

Solution:
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(a) The statement is true. Let ε > 0 be given. Using the uniform continuity of f , choose
δ > 0 such that | f (x)− f (y)| < |x− y| for all |x− y| < δ. Using the fact that {xn} is
Cauchy, choose N ∈N such that |xn − xm| < δ for n, m > N. Then choosing δ = ε, we
have | f (xn)− f (xm)| < |xn − xm| < ε for n, m > N. Therefore, { f (xn)} is Cauchy.

(b) The statement is false. Let X = (0, 1) with the usual metric topology on R and
f (x) = 1

x . Clearly, f is continuous on X. Consider the sequence
{ 1

n

}
n∈N

. Since 1
n → 0

is convergent, the sequence is Cauchy. However, | f (1/n)− f (1/m)| = |n−m| ≥ 1 for
all n 6= m, where n, m ∈N. But then { f (xn)} cannot be a Cauchy sequence.

3. Let f be a real valued continuous function on the interval [0, 1].

(a) If 0 < p < 1 and f (x) = xp sin(x1−p), x ∈ (0, 1], compute (the one-sided derivative)
f ′(0).

(b) Give an example of an f with f ′(x) uniformly bounded on (0, 1] such that f ′(0) does
not exist.

(c) Suppose f ′(x) is uniformly bounded and nondecreasing for x ∈ (0, 1]. Prove f ′(0) =
limx→0 f ′(x).

Solution:

(a) First, observe f (0) = 0. Recall limx→0
sin x

x = 1 so that both the left and right hand
limits at 0 exist. Now

f ′(0) := lim
h→0+

f (0 + h)− f (0)
(0 + h)− h

= lim
h→0+

hp sin(h1−p)

h
= lim

h→0+
hp−1 sin(h1−p) = lim

h→0+

sin(h1−p)

h1−p = 1

(b)

4. Suppose a non-negative function f has maximum equal to 1 and vanishes on a dense set
of points in [0, 1]. Let β be a nondecreasing continuous function such that β(0) = 0 and
β(1) = 1. Show that any number 0 < α < 1 can be obtained as the value of some Riemann
sum for the integral

∫ 1
0 f dβ.

5. Let F be an equicontinuous family of non-negative continuous functions on a metric
(M, d). Let S be dense in M and suppose that for each x ∈ S we have f (x) = 0 for some
f ∈ F . Prove that for any y ∈ M we have inf{ f (y) : f ∈ F} = 0.
6. Let f and g be C1 real-valued functions such that f (0) = g(0) = 0 and f ′(0) = g′(0) = 1.
Show that for any ε > 0 there are numbers x, y such that |x|+ |y| < ε and f (x) = g(y) > 0.
Hint: Consider the mapping F(x, y) = ( f (x), g(y)).
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May 2016

1.

(i) Give an example of a sequence of real numbers {an}n≥1 such that the series
∞

∑
n=1

an

converges, but the series
∞

∑
n=1

a2
n diverges.

(ii) If an ≥ 0 for all n ≥ 1 and the series ∑∞
n=1 an converges show that the series

∞

∑
n=1

a2
n

must converge.

Solution:

(i) Consider the sequence
{
(−1)n
√

n

}
n∈N

. The series ∑∞
n=1

(−1)n
√

n converges by the Alter-

nating Series Test: limn→∞
1√
n = 0 and the sequence {1/

√
n} is decreasing (

√
x is an

increasing function so
√

n <
√

n + 1 so that 1√
n+1

<
√

n). However,
(
(−1)n
√

n

)2
= 1

n for

all n ∈N and the series ∑∞
n=1

1
n diverges.

(ii) Suppose ∑∞
n=1 an converges and denote the sum L. Then L2 = L · L = (∑∞

n=1 an) (∑∞
n=1 an) =

(∑∞
n=1 an)

2. Moreover, it follows immediately by induction that

0
N

∑
n=1

a2
n ≤

(
N

∑
n=1

an

)2

for all N ≥ 1 (the left inequality follows from the fact an ≥ 0). Therefore,

0 lim
N→∞

N

∑
n=1

a2
n ≤ lim

N→∞

(
N

∑
n=1

an

)2

= L2

Therefore, {∑N
n=1 a2

n}N∈N is an increasing sequence which is bounded above. There-
fore, ∑∞

n=1 a2
n converges.

2. Let X, Y be metric spaces and f : X → Y be a continuous function such that for every
compact K ⊂ Y, f−1(K) is a compact subset of X. If F ⊂ X is closed, prove that f (F) is
closed in Y.
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Solution:
3. Let f , g : R → (0,+∞) be differentiable functions such that g′(x) > 0 for all x,

lim
x→+∞

g(x) = +∞, and lim
x→+∞

f ′(x)
g′(x)

= L for some number L > 0. Show that lim
x→+∞

log f (x)
log g(x)

=

1.
4. Let f : [0, 1]→ R be an integrable function. Prove that there exists a ∈ (0, 1) such that∫ a

0 | f (x)| dx ≤
∫ 1

a | f (x)| dx.
5. Let K be a compact subset of a metric space X. Given a bounded sequence {xn} in X,
define fn(x) = d(x, xn)− d(x, x1) for n = 1, 2, . . .. Prove that there exists a subsequence
{ fnk} that converges uniformly on K.
6. Suppose f : R → R is a continuously differentiable function such that f (0) = 0 and
f (1) = 1. Prove that there exists a point in R2 where the map

F (x1, x2) = (x1 + x3
2, f (x1) + x2)

does not satisfy the assumptions of the Inverse Function Theorem.
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August 2016

1. Consider the following proposition: Every bounded continuous real-valued function f on R

attains its maximum. The following argument which attempts to prove this has an error. (a)
Find where the error occurs and (b) provide a counterexample, with details, to show that
the argument indeed fails at that point:

Let M = sup{ f (x) : x ∈ R}, and let x∗, xn ∈ R such that xn → x∗ and f (xn) → M.
Since f is continuous, f (xn) → f (x∗), which implies f (x∗) = M. Hence, x∗ is where f
attains its maximum.
2. Prove: there exists c > 0 and continuous functions f , g on (−c, c) such that f (0) =
g(0) = 0 and

sin( f (z)) + cos(g(z)) = z2 + 1, and

( f (z))2 + 2e2g(z) = 2 cos z

3. Let f be continuously differentiable, and suppose that f (0) < −1, f (1) > 0, and
f (2) < 0. Prove that for each c ∈ [0, 1] there exists xc ∈ (0, 2) such that f ′(xc) = c,
4. Let (X, d) be a metric space. Prove or provide a counterexample:

(a) The intersection of finitely many dense subsets of X is dense.

(b) The intersection of finitely many open dense subsets of X is open and dense.

5. Let f , g be continuous functions on R such that f is differentiable everywhere and let
f (1) = 0. Prove that f g is differentiable at 1.

Solution: Since f (x) is differentiable at 1, we know that

lim
h→0

f (1 + h)− f (1)
h

= f ′(1)

Moreover since g(x) is continuous at 1, limh→0 g(1 + h) = g(1 + limh→0 h) = g(1). Then
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we have

( f g)′(1) := lim
h→0

f (1 + h)g(1 + h)− f (1)g(1)
h

= lim
h→0

f (1 + h)g(1 + h)− 0 · g(1)
h

= lim
h→0

f (1 + h)g(1 + h)
h

= lim
h→0

f (1 + h)g(1 + h)− hg(1 + h) + hg(1 + h)
h

= lim
h→0

[
f (1 + h)g(1 + h)− hg(1 + h)

h
+

hg(1 + h)
h

]
= lim

h→0

[
g(1 + h)

f (1 + h)− h
h

+ g(1 + h)
]

= lim
h→0

[
g(1 + h)

f (1 + h)− 0
h

− h
h
+ g(1 + h)

]
= lim

h→0

[
g(1 + h)

f (1 + h)− f (1)
h

− 1 + g(1 + h)
]

= g(1) f ′(1) + g(1)− 1

= g(1)
(

f ′(1) + 1
)
− 1

6. Let ( fn) be a sequence of functions on [0, 1] with continuous first and second derivatives,
such that for all n ≥ 1,

1 ≤ fn(0) ≤ 2, 3 ≤ f ′n(0) ≤ 4, sup
0≤x≤1

| f ′′n (x)| ≤ 12

Prove that ( fn) has a subsequence which converges uniformly on [0, 1].
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May 2017

1. Let f : Q→ R where Q is the set of all rational numbers.

(a) If f is uniformly continuous prove it has an extension to a continuous function F :
R→ R, i.e. there exists a continuous function F : R→ R such that f (q) = F(q) for all
q ∈ Q.

(b) Give an example of a continuous f : Q→ R that has no continuous extension F : R→
R.

2. Let X denote the collection of all bounded functions f : R→ R. For f , g ∈ X define

d( f , g) = sup{| f (x)− g(x)| : x ∈ R}

Then (X, d) is a metric space. Let

E = { f ∈ X : there exists K such that f (x) = 0 for all x > K}.

Find the closure of E in X.
3. For p ≥ 0, find

lim
n→∞

n−(p+1)
n

∑
k=1

kp

4. Assume f : R2 → R and
∂ f
∂x

: R2 → R are both continuous. Let

g(x) =
∫ 1

0
f (x, t) dt.

Prove g is differentiable and that

g′(x) =
∫ 1

0

∂ f
∂x

(x, t) dt.

5. Suppose that
∞

∑
n=0

anxn converges for all x ∈ R. Let f : R → R be an indefinitely

differentiable function such that

| f (n)(x)| ≤ n!|an|

for all n and all x ∈ R. Prove that the Taylor series about x = 0 for f converges uniformly
to f on every closed and bounded interval [−M, M].
6. Let f : R → R be a strictly increasing continuous function such that f (0) = 0. Let
g : [0, 1]→ R be a continuous function such that∫ 1

0
f n(x)g(x) dx, n = 0, 1, 2, . . .

Prove that g is identically zero.
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August 2017

1. Let X be a metric space. Consider a family of subsets of X, denoted {Ei : i ∈ A} where
A is an uncountable index set. Suppose that for every finite or countable set B ⊂ A the
intersection ⋂

i∈B

Ei

is open. Prove that the set
E =

⋂
i∈A

Ei

is also open.
2. Suppose that f : R→ R is a function such that for every compact set K ⊂ R the inverse
image f−1(K) is also compact. Prove that

lim
x→+∞

| f (x)| = +∞

3. Suppose that f : R → R has derivatives of all orders and satisfies f (0) = f ′(0) =
f ′′(0) = 0. Prove that the function g(x) = f (x)1/3 is differentiable at 0.
4. Let f and g be Riemann-Stieltjes integrable on [a, b] with respect to a non-decreasing
function α. Suppose that given any partition P of [a, b] there exists a partition Q of [a, b]
such that

L( f , P, α) ≤ L(g, Q, α) and L(g, P, α) ≤ L( f , Q, α)

Prove that ∫ b

a
f dα =

∫ b

a
g dα

5. Determine all positive continuous functions f on [1, ∞) such that

ln
(

1 +
∫ θ

0
f (ex) dx

)
= θ

for all real numbers θ > 0.
6. Prove that the image of any open set containing the unit disk {(x, y) : x2 + y2 ≤ 1}
under the mapping f (x, y) = (x4 + y4, 2xy) is not a subset of the unit disk.
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May 2018

1. Let {an} be the sequence with terms {1, 2, 2 1
2 , 3, 3 1

3 , 3 2
3 , 4, 1

4 , 4 2
4 , 4 3

4 , 5, . . .}. Prove that for
any positive integer p

lim
n→∞

an+p − an = 0

Is the sequence Cauchy? Explain.

2. Give an example of two disjoint nonempty closed sets A and B from R so that the
distance between them is 0, i.e. inf{|a − b| : a ∈ A and b ∈ B} = 0. Show that your
example does in fact work.

Solution: Let F1 = N and F2 = {n + 1
n : n ∈ N}. We have FC

1 = ∪∞
n=1B1/2(n/2) is open

since each B1/2(n/2) is open. Therefore, F1 is open. We know also

FC
2 =

∞⋃
n=1

Bd

(
n + 1

2n + n + 1 + 1
2(n+1)

2

)
,

where d = lcm(2n,2n+2)−1
lcm(2n,2n+2) . This is clearly open being the union of open sets. Therefore, F2 is

closed. Note that F1 ∩ F2 = ∅. Now

dist(F1, F2) = inf{d( f1, f2) : f1 ∈ F1, f2 ∈ F2} = inf
{

1
2n

: n ∈N

}
= 0

Therefore, dist(F1, F2) = 0.

3. Consider the equation x4 − y2 = 0. This equation determines y as a function of x, for all
x ∈ R, in many ways. Here are five such examples, y = x2, y = −x2, y = x|x|, y = −x|x|

or even y =

{
x2, x ∈ Q

−x2, x /∈ Q
.

(a) What does the Implicit Function Theorem say (or not say) about y as a function of x at
the point ( 1

4 , 1
16 )?

(b) What does the Implicit Function Theorem say (or not say) about y as a function of x at
the point (0, 0)?

4. Show that ∑n−1
k=2

1
log k −

∫ n
2

1
log x dx converges as n → ∞ to a positive number no larger

than log 2.

5. Let f be a Riemann integrable function on [0, 1] and suppose that∫ 1

0
f (x)xn dx = 0 for n = 0, 1, 2, . . .
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Prove that if f is continuous. at a point x0 ∈ [0, 1] then f (x0) = 0.

6. Let { f1, f2, . . .} be a sequence of continuous nonnegative functions on [0, 1] such that
fk(x) ≤ fk+1(x) for all k ≥ 1 and all x ∈ [0, 1], and fk → f uniformly on [0, 1] as k→ ∞ for
a function f . Prove that

lim
n→∞

∫ 1

0

(
n

∑
k=1

f n
k (x)

)n

dx =
∫ 1

0
f (x) dx
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