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Chapter 1 The Real and Complex Number Systems

Definitions

Empty Set/ Nonempty If A is any set (whose elements may be numbers or any other
objects), we write z € A to indicate that z is a member (or an element) of A. If z is
not a member of A, we write: = ¢ A. The set which contains no elements will be called
the empty set. If a set has at least one element, it is called nonempty

Proper If A and B are sets, and if every element of A is an element of B, we say that A is
a subset of B, and we write A < B, or B o A. If, in addition, there is an element of
B which is not in A, then A is said to be a proper subset of B. Notc that A < A for
every set A. If Ac B and B < A, we write A = B.

Order Let S be a set. An order on S is a relation, denoted by <, with the following two
properties:

a) If z € S and y € S then one and only one of the statements:
I<y zIT=y I>Y
is true.
by If z,y,z€ S,ifz <y,y <z, thenz < z.
Ordered Set An ordered set is a set S in which an order is defined.

Bounded Suppose S is an ordered set, and E < S. IF there exists a 8 € S such that z <
for every z € E, we say that E is bounded above, and call 8 an upper bound of E.

Lower bounds are defined in the same way.

Least Upper Bound/ Greatest Lower Bound Suppose S is an ordered set £ c S, and
F is bounded above. Suppose there exists an a € S with the following properties:

a) a is an upper bound of E
b) If ¥ < @, then + is not an upper bound of £

Then « is called the least upper bound of E or the supremum of E, and we write
a=supkE.

The greatest lower bound, or infimum, of a set F which is bounded below is defined in

the same manner: The statement
a=infF

means that « is a lower bound of E and that no 8 with # > « is a lower bound of E.

Least-Upper-Bound Property An ordered set S is said to have the least-upper-bound
property if the following is true:

If E< S, E is not empty, and E is bounded above, then sup F exists in S.
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Field A field is a set F with two operations, called addition and multiplication, which satisfy
the following so-called "field axioms”:
1. Axioms for Addition

(a) Ifze Fandye F,thenz +ye F.

(b) Addition is commutative: r+y =y +x forall 7,y e F.

(c) Addition is associative: (z+y) +z2=xz+ (y+z2)forallz,y,ze F

(d) F contains an clement 0 such that 0 + z = z for every z € F.

(¢) To every z € F' corresponds an clement —z € F such that z + (~z) = 0
2. Axioms for Multiplication

(a) f ze Fand y € F, then zy € F.

(b) Multiplication is commutative: zy = yx for all z,y € F.

(c) Multiplication is associative: (zy)z = x(yz) for all 7,y,2 € F

(d) F contains an element 1 # 0 such that 1z = z for every z € F.

(¢) If z € F and z # 0 then there exists and element 1/z € F such that z(1/z) =
1.

3. The Distributive Law: z(y + z) = zy + zz for all z,y,z € F.
Ordered Field An ordered field is a ficld F' which is also an ordered set, such that

a)z+y<zc+zifz,yze Fandy <z
b) zy > 0if z,y € F and z.y > 0.

If z > 0 we call z positive; if z < 0 we call = negative.

Extended Real Numbers The extended real number system consists of the real field R
and two symbols +00, —o0. We preserve the original order in R and define

—0<r<+P

for every z € R.

Complex Number A complezr number is an ordered pair (a,b) of real numbers. “Ordered”
means that (a, b) and (b, @) arc regarded as distinct if @ # b. Let z = (a,b) andy = (c,d)
be two complex numbers. We write z = y if and only if @ = ¢,b = d. We define:

z+y=(a+cb+d) zy = {(ac — bd, ad + bc)

1i=(0,1)eC

Conjugate If a,b € R and z = a + bi, the the complex number Z = a — bi is called
the conjugate of z. The numbers a and b are the real part and imaginary part of z

respectively. Note these as
a=R(z) b=9(2)



Absolute Value If z € C, its absolute value |z| is the non-negative square root of z€; that
is |z| = (z€)1/2.

Coordinates For each positive integer k, let R* be the set of all ordered k-tuples
X = (21,272, v ,:Ck)

where 71, T9,...,T; € R, called the coordinates of x. The elements of R* are called
points, or vectors, especially when & > 1. We shall denote vectors by boldfaced letters.
Ify = (1,2, ---,¥), and if @ € R, then addition and multiplication are defined:

X+y=(z1+y,%2+Y2..., Tk + 1) €R ax = (az;, azy, . .., ax;) € R

These operations make R¥ into a vector space over the real field. The inner product is
defined by:

k
Xy =) L
=1

and the norm of x by:

iml
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Theorems

Theorem 1.11 Suppose S is an ordered set with the least-upper-bound property, B < S,
B is not empty, and B is bounded below. Let L be the set of all lower bound of B.
Then

a=supL

exists in S and a = inf B. In particular, inf B exists in S.

Proposition 1.14 The axioms for addition imply the following statements.

a) fz+y=xz+z2theny =12
by fz+y=ztheny=0
c) fz+y=0,theny = -z
d) ~(-2) =z
Proposition 1.15 The axioms for multiplication imply the following statements.

a) fz#0zy=zxztheny =2
b) fz#0zy=ztheny=1
c) fz#0zxzy=1,theny=1/z
d) fz#£01/(1/z)==z



Proposition 1.16 The field axioms imply the following statements, for any z,y,z € F
a) 0z=0
b) fr#0andy #0thenzy# 0
c) (—z)y = —(zy) = =(~y)
d) (-z)(-y) = zy
Proposition 1.18 The following statements are true in every ordered field.
a) If £ > 0 then —z < 0 and vice versa
b) If z > 0 and y < z then 2y < z2
c) If r <0and y < 2 then zy > 2

d) If z # 0 then z* > 0. In particular, 1 > 0
e) f0<r<ythen0<1lfy<l/z

Theorem 1.19 Tlere exists an ordered field R which has the least-upper-bound property.
Morcover R contains Q as a subfield.

Theorem 1.20  a (Archimedean Property) If z € R, y € R, and z > 0, then there is a
positive integer n such that nz > y.

b (Q is dense in R) If z,y € R and z < y, then there exists a p € Q such that
z < p < y. In other words, between and two real numbers there is a rational one.

Theorem 1.21 For cvery real z > 0 and every integer n > 0 therc is onc and only onc
positive real y such that y* = z. This number is written /z.

Corollary If a and b are positive real numbers and n is a positive integer, then (ab)'/" =
al/nbl/n’

Theorem 1.25 These definitions of addition and multiplication turn the set of all complex
numbers into a field with (0,0) and (1,0 in the role of 0 and 1.

Theorem 1.26 For any real numbers a,b € R we have
(a,0) + (b,0) = (a + b,0) (a,0)(b,0) = (ab,0)
Theorem 1.28 i2 = —1

Theorem 1.29 If ¢ and b are real, then (a,b) = a + b

Theorem 1.31 If 2 and w are complex, then

ZH+W=Z4+W

w
c z+€=2R(z), z — € = 213(z2)



d ze is real and positive (except when 2 = 0.)

Theorem 1.33 Let z and w are complex. then

a|z| >0
b |e] = |z
¢ |ew| = |z]|w]
d |R(z)| < |z
e |z +w| < |z + |w].
Theorem 1.35 (Schwarz Inequality) If a;,...,a, and by,...b, are complex numbers,
then
n _ 2 n n
el < Y las* Y 15l
j=1 j=1 =1

Theorem 1.37 Suppose X,y,z € R2* and a € R. Then
a |x| = 0;
b |x| =0if and only if x =0
¢ |ax| = |af|x|
d [x-y| < |x|ly|
e |x+y| < x|+ |yl
flx—z|<|x-y|+|y—2



Chapter 2 Basic Topology

Definitions

Function Consider two sets A and B, whose elements may be any objects whatsoever, and
suppose that with each element z of A there is associated, in some manner, an element
of B, which we denote by f(x). Then f is said to be a function from A to B (or a
mapping of A into B). The set A is called the domain of f (we also say f is defined
on A), and the clements f(z) are called the values of f. The set of all values of f is
called the range of f.

One-to-One, Onto Let A and B be two sets and let f be a mapping of A into B. If E < A,
f(E) is defined to be the set of all elements f(z) for z € E. We call f(E) the image
of E under f. In this notation, f(A) is the range of f. It is clear that f(A) < B.
If f(A) = B, we say that f maps onto B. If E « B, f~'(E) denotes the set of all
z € A such that f(z) € E. We call f~'(E) the inverse image of E under f. If y € B,
F~(y) is the set of all z € A such that f(z) = y. If, for each y € B, f~'(y) consists
of at most one element of A, then f is said to be a one-to-one mapping of A into B.
This may also be expressed as follows: f is a 1-1 mapping of A into B provided that
f(z1) # f(z2) whenever z; # z, T), 72 € A.

Correspondence/ Equivalent If there exists a 1-1 mapping of A onto B, we say that
A and B can be put in 1-1 correspondence, or that A and B have the same cardinal
number, or, briefly, that A and B are equivalent, and we write A ~ B. This relation
has the following properties:

a) It is reflexive: A ~ A
b) It is symmetric: If A ~ B, then B ~ A,
c) It is transitive: If A ~ B and B ~ C, then A~ C.

Any rclation with these three properties is called an equivalence relation.

Finite For any positive integer n, let J, be the set whose elements are the integers 1,2, ..., n;
let J be the set consisting of all positive integers. For any set A,

a) we say A is finitc if A ~ J, for some n (the cmpty set is also considered to be
finite).
b) A is infinite if A is not finite
c) Ais countable if A ~J
d) A is uncountable if A is neither finite nor countable
e) A is at most countable if A is finite or countable
Sequence A sequence is a function f defined on the set J of all positive integers. If f(n) =
T, for n € J, it is customary to denote the sequence f by the symbol {z.}. The values

of f are called the terms of the sequence. If A is a set and if 2, € A for all n € J, then
{z,} is said to be a sequence in A, or a sequence of clements of A.
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Subsets/ Family of Sets Let A and Q be sets, and suppose that with each element o of
A there is associated a subset of §2 which we denote by E,. The set whose elements
are set E, will be denoted by {E,}. We shall call these a collection of sets or family
of sets.

Union (From above) The union of the sets E, is defined to be the set S such that z € S if
and only if z € E, for at least one o € A. We use notation

S=UE,,

acA
If A consists of integers, we write one of the two following:
S=UE; or S=FBuvEu---VE,
i=1

If A is the sct of all positive integers, the usual notation is:

Intersection The intersection of the sets E, is defined to be the set P such that z € P if
and only if x € E, for every o € A. We use notation:

n (= o]
P=()E« o0 P=(\Ei=ExnExn...E, or P=()E;
acA i=1 i=1
If An B # & the we say that A and B intersect; otherwise they are disjoint.

Metric Space A set X, whose elements we shall call points, is said to be a metric space if
with any two points p and g of X there is associated a real number d(p, gq) called the
distance from p to ¢, such that:

a) d(p,q) > 0if p # q; d(p,p) = 0.
b) d(p,q) = d(q,p)
c) d(p,q) < d(p,7) +d(r,q) for any r € X.

Segment By the segment (a,b) we mean the set of all real numbers z such that a < z < b.
Interval By the interval [a,b] we mean the set of all real numbers z such that a < z < b.

K-Cell If a; < b; for i = 1,...,k, the set of all points x = (z;,...,7x) in R*¥ whose
coordinates satisfy the inequalities a; < z; < b;, (1 < i < k) is called a k-cell.

Ball Ifx € R* and r > 0, the open (or closed) ball B with center at x and radius 7 is defined
to be the set of all y € R* such that |y — x| <7 (or |y — x| < 7).

Convex We call a set E © R* convez if Ax + (1 = A)y € E whenever x € E, y € E, and
0<A<l.



Neighborhood Let X be a metric space. A neighborhood of p is a set N,(p) consisting of
all ¢ such that d(p, q) < r, for some 7 > 0. The number r is called the radius of N,(p).

Limit Point A point p is a limit point of the set E if every neighborhood of p contains a
point ¢ # p such that ge F.

Isolated Point If p € E and p is not a limit point of E, then p is called an isolated poini
of E.

Closed E is closed if every limit point of £ is a point of E.

Interior A point p is an interior point of E if there is a neighborhood N of p such that
NcE.

Open E is open if every point of E is an interior point of E.

Complement The complement of E (denoted EF) is the set of all points p € X such that
P¢E

Perfect E is perfect if E is closed and if cvery point of E is a limit point of E.

Bounded E is bounded if there is a real number M and a point g € X such that d(p,q) < M
for all pe E.

Dense E is dense in X if every point of X is a limit point of E. or a point of E (or both).

Closure If X is a metric space, if E ¢ X, and if E’ denotes the set of all limit points of £
in X, then the closure of F is theset E = E U E'.

Open Cover By an open cover of a set E in a metric space X we mean a collection {G,}
of open subsets of X such that E < |, Ga.

Compact A subset K of a metric space X is said to be compact if every open cover of K
contains a finite subcover. More explicitly, the requirement is that if {G,}is an open
cover of I, then there are finitely many indices ay, ..., «, such that K € Go, v--- v
Ga,-

Separated Two subsets A and B of a metric space X are said to be separated if both An B
and A n B are empty, i.e. if no point of A lies in the closure of B and no point of B
lics in the closurc of A

Connected A set £ ¢ X is said to be connected if E is not a union of two nonempty
separated sets.
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Theorems

Theorem 2.8 Every infinite subset of a countable set A is countable.

Proof. Suppose E < A, and F is infinite. Arrange the elements z of A in a sequence
{zn} of distinct elements. Construct a sequence {n;} as follows: Let n; be the smallest
positive integer such that z,, € E. Having chosen ny,...,nx; (k= 2,3,4,...), let n
be the smallest integer greater than ni_, such that z,, € E.

Putting f(k) = z,, (kK =1,2,3,...), we obtain a 1-1 correspondence between E and
J, the set of all positive integers. O

Theorem 2.12 Let {F,}, n =1,2,3,..., be a sequence of countable sets, and put

@
S=|JE.
n=1
Then S is countable.
Proof. Let every set E, be arranged in a sequence {z,:}, k = 1,2,3,..., and consider

the infinite array
I T2 T3 T4
T21 T2 Ty I
T3 T3z Taz Ty
Lyl Ly2 L4z Ty

in which the elements of E,, form the ntl row. The array contains all the elements of
S. These elements can be arranged in a sequence going diagonal up and to the right:

T11; ZT21, T12; T31, T22, T13; Ta1, T2, T2z, T4y ...

If any two of the sets E, have elements in common, these will appear more than once
in the sequence above. Hence there is a subset R of the set of all positive integers such
that S ~ T, which show that S is at most countable. Since E; c S, and F, is infinite,
S is infinite, and thus countable. O

Corollary Suppose A is at most countable, and, for cvery a € A, B, is at most countable.

Put
T = U B.

acA

Then T is at most countable.

Theorem 2.13 Let A be a countable set, and let B, be the set of all n-tuples (ay,...,a,),
where a; € A4, (k = 1,2,...,n), and the elements q,....,a, need not be distinct. Then
B,, is countable.
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Proof. That B, is countable is evident, since B; = A. Suppose B,_; is countable .
The elements of B, are of the form (b,a) where b € B,_; and a € A. For every fixed
b, the set of pairs (b, a) is equivalent to A and hence countable. Thus B,, is the union
of a countable set of countable sets. By Theorem 2.12, B, is countable. The theorem
follows by induction. O

Corollary The set of all rational numbers is countable.

Theorem 2.14 Let A be the set of all sequences whose elements are the digits 0 and 1.
This set A is uncountable.

Proof. Let E be a countable subset of A, and let E consist of the sequences sy, 52, 53, . . ...
We construct a sequence s as follows. If the nth digit in s, is 1, we let the nth digit
of s be 0, and vice versa. Then the sequence s differs from every member of E in at
least one place; hence s ¢ E . But clearly s € A, so E is a proper subset of A. Thus,
every countable subset of A is a proper subset of A. It follows that A is uncountable
(otherwise A would be a proper subsect of itself). O

Theorem 2.19 Every neighborhood is an open sct.

Proof. Consider a neighborhood E = N, (p), and let ¢ be any point of E. Then there is
a positive real number A such that d(p, q) = r—h. For all points s such that d(q, s) < h,
we have then

d(p,s) < d(p,q) +d(gq,s) <r—h+h=r

so that s € N.(p). Thus ¢ is an interior point of £. O

Theorem 2.20 If p is a limit point of a set E, then every neighborhood of p contains
infinitely many points of E.

Proof. Suppose, to the contrary, there is a neighborhood N of p which contains only
a finite number of points of E. Let qi,...,¢, be those points of N n E, which are
distinct from p, and put

r= min d(p, Gm)

The minimum of a finite set of positive numbers is clearly positive, so that 7 > 0. The
neighborhood N,.(p) contains no points g of E such that ¢ # p, so that p is not a limit
point of E. Thus, by contradiction, every neighborhood of a limit point p contains
infinitely many points of E. O

Corollary A finite point sct has no limit points.

Theorem 2.22 Let {E,} be a (finite or infinite) collection of sets E,. Then
(U E) =[\(E2)
o [ 4

12



Proof. Let A = (|J, Ea)® and B = [ (EZ). If z € A, then = ¢ |, Ea, hence z ¢ E,
for any «, hence z € ES for every o, so that z € (), ES. Thus A < B.

Conversely, if z € B, then z € E,cfor every a, hence z ¢ E, for any a, hence z ¢ | J, Ea,
so that z € (|, Ea.)°. Thus B < A.

It follows that A = B. O
Theorem 2.23 A set E is open if and only if its complement is closed.

Proof. First, suppose E° is closed. Choose x € E. Then z ¢ E°, and z is not a limit
point of E¢. Hence there cxists a ncighborhood N of z such that E° n N is cmpty,
that is N = E. Thus z is an interior point of E, and F is open.

Next suppose E is open. Let = be a limit point of E*, so that z is not an interior point
of E. Since E is open, this means that z € E. It follows that E° is closed. O

Corollary A sct F is closed if and only if its complement is open.

Theorem 2.24 a) For any collection {G,} of open sets, | J, G4 is open.
b) For any collection {F,} of closed sets, [, F, is closed.
¢) For any finite collection Gy, ..., G, of open sets, ()., G; is open.

d) For any finite collection F,..., F, of closed sets, U?=1 F; is closed.

Proof. Put G = |J, Ga. If 1 € G, then x € G, for some . Since x is an interior point
of G,, « is also an interior point of G, and G is open, proving (a).

By Theorem 2.22 (|, Fa) = (), (F<), and F¢ is open, by Theorem 2.23. Hence (a)
implies that (|, F,)° is open, so | J, £, is closed.

Next put H = ()i, Gi. For any z € H, there exist neighborhoods N; of z, with
radii r;, such that N; < G; (i = 1,...,n). Put r = min(ry,...,7,), and let N be the
neighborhood of x of radius r. Then N c G; fori=1,...,n,sothat Nc H, and H

is open. By taking complements, (d) follows from (c). (UL, Fa)® = N, (F2) O

Theorem 2.27 If X is a metric space and F < X, then

a) E is closed,
b) E = E if an only if E is closed
¢) E < F for every closed set F' = X such that B c F.

Proof. a) If pe X and p ¢ E then p is neither a point of E nor a limit point of E.
Hence p has a ncighborhood which does not intersect £. The complement of E
is therefore open. Hence E is closed.

b) If E = E, (a) implies that E is closed. If E is closed, then E' < E. Hence E = E.

13



c) If Fis closed and E < F, then F' c F, hence E' © F. Thus EcF
O

Theorem 2.28 Let E' be a nonempty set of real numbers which is bounded above. Let
y =sup E. Then y € E. Hence y € E if E is closed.

Proof. If y € E then y€ E. Assume y ¢ E. For every h > 0 there cxists then a point
x € E such that y — h < z <y, for otherwise y — h would be an upper bound of E.
Thus y is a limit point of E. Hence y € £ O

Theorem 2.30 Suppose Y < X. A subset E of Y is open relative to Y if and only if
E =Y n G for some open subset G of X.

Proof. Suppose E is open relative to Y. To each p € E there is a positive number r,
such that the conditions d(p,q) < rp, g € Y imply that g € E. Let V, be the set of all
q € X such that d(p,q) < rp, and define G = UpeE V,. Then G is an open subset of
X, by Theorems 2.19 and 2.24. Since pe V, for all pe E, it is clear that Ec G Y.
By our choicc of V,, we have V, n Y < E for every p € E, so that GnY < E. Thus
E = G Y, and one half of the theorem is proved. Conversely, if G is open in X and
E =GnNY,every p€ E has a neighborhood V, € G. Then V,nY < E, so that E is
open relative to Y. a

Theorem 2.33 Suppose K ¢ Y © X. Then K is compact relative to X if and only if K is
compact relative to Y.

Proof. Suppose K is compact relative to X, and let {V,} be a collection of sets, open
relative to Y, such that X < | J, Va. By Theorem 2.30, there are sets G, open relative
to X, such that V, = Y n G,, for all o; and since K is compact relative to X, we have

Kc Gy v uG,,
for some choice of finitely many indices o, ...,a,. Since K < Y, implies
KcV,u---uV,,

This proves that K is compact rclative to Y.

Conversely, suppose K is compact relative to Y, let {G,} be a collection of open subsets
of X which covers K, and put Vo, = Y nG,. Then K < V,, u--- U V,, holds for some
choice of ay, ..., a,; and since V,, © G, this implies K © G,, v+ - U G,,. O

Theorem 2.34 Compact subsets of metric spaces are closed.
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Proof. Let K be a compact subset of a metric space X. We shall prove that the
complement of K is an open subset of X.

Suppose p € X, p ¢ K. If ¢ € K, let V; and W, be neighborhoods of p and ¢
respectively, of radius less that %d(p, q). Since K is compact, therc are finitely many
points qi,...,qn in K suchthat Kc W, v--- W, =W. IfV=V, n-.-n}{,,
then V is a neighborhood of p which does not intersect W. Hence V < K, so that P
is an interior point of K. The theorem follows. 0

Theorem 2.35 Closed subsets of compact sets are compact.

Proof. Suppose F < K c X, F is closed (relative to X), and K is compact. Let {V,}
be an open cover of F. If F* is adjoined to {V,}, we obtain an open cover 2 of K.
Since K is compact, there is a finite subcollection @ of 2 which covers K, and hence
F. If F* is a member of ®, we may remove it from & and still retain an open cover of
F. We have thus shown that a finite subcollection of {V,} covers F. O

Corollary If F is closed and K is compact, then F n K is compact.

Theorem 2.36 If {/} is a collection of compact subscts of a metric space X such that the
intersection of every finite sub-collection of {K,} is nonempty, then [) K, is nonempty.

Proof. Fix a member Ky of {K,} and put G, = KS. Assume that no point of K,
belongs to every K,. Then the sets G, form an open cover of K,; and since K, is
compact, there are finitely many indices oy, ag, ..., ap such that K} € G,,u---UG,,,.
But this means that Ky n K, n---n K, is empty, in contradiction to our hypothesis
that the intersection of every finite sub-collection of {K,} is nonempty. (W]

Corollary If {K,} is a sequence of nonempty compact sets such that K, > K,y (n =
1,2,3,...), then () K, is not empty.

Theorem 2.37 If E is an infinite subset of a compact set K, then E has a limit point in
K.

Proof. If no point of K were a limit point of F, then each ¢ € K would have a
ncighborhood V; which contains at most onc point of £ (namely g, if g € E). It is
clear that no finite subcollection of {V,} can cover E; and the same is true of K since
E < K. This contradicts the compactness of K. O

Theorem 2.38 If {I,} is a sequence of intervals in R such that [, > I,4; (n = 1,2,3,...),
then (7, is not empty.

Proof. 1f I, = [a,,b,], let E be the set of all a,. Then E is nonempty and bounded
above (by b,). Let z be the sup of E. If m and n are positive integers, then

a’" S a’"l"’" S b’""" S. b”i
so that z < by, for each m. Since it is obvious that a,, < z, we see that = € I, for

m=123,.... D
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Theorem 2.39 Let k be a positive integer. If {I,} is a sequence of k-cells such that I, = In;
(n=1,2,3,...), then (7 I, is not empty.

Proof. Let I, consist of all points x = (z,...,Z,) such that
a’n,jsmjsbu,j (1€j$k;n=1,2,3,...)

and put /,; = [an;,bn;]. For each j the sequence {I,;} satisfies the hypotheses of
Theorem 2.38. Hence there are real numbers z7(1 < j < k) such that

tn; S T; < by (1<j<k;n=123,...)

Sctting x* = (z},z3,...,2}), we scc that x* € I, for n = 1,2,3,.... The thcorem
follows. O

Theorem 2.40 Every k-cell is compact.

Proof. Let I be a k-cell, consisting of all points x = (z,...,zx) such that a; < z; < b;

(1<j<k). Put
. 1/2
4= {Z(bj - a,-)z} .
1

Then |x —y| < & if z,y € I. Sccking a contradiction, suppose that therc exists an
open cover {G,} of I which contains no finite subcover of I. Put ¢; = (a; +b;)/2. The
intervals [a;,c;] and [cj,b;] then determine 2* k-cells Q; whose union is I. At least
one of these sets of Q;, call it J; cannot be covered by any finite subcollection of {Gq}
(otherwise / could be covered). We next subdivide /; and continue the process. We
obtain a sequence {/,} with the following properties:

ay Inholhho...

b) I, is not covered by any finite subcollection of {Ga};

c) if x,y € I,, then |x - y| <2774,
By (a) and Theorem 2.39, there is a point x* which lies in every I,. For some «,
x* € G,. Since G, is open, there exists 7 > 0 such that |y — x*| < r implies that
y € G,. If n is so large that 27" < r (there is such an n, for otherwise 2" < 4/r for

all positive integers n, which is absurd since R is archimedcan), then (c) implics that
I, © Gq, which contradicts (b), completing the proof. O

Theorem 2.41 If a set £ in R* has one of the following three properties, then it has the

other two.

a) FEis closed and bounded
b} E is compact
¢) Every infinite subset of E has a limit point in E.
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Proof. 1f (a) holds, then E c I for some k-cell I, and (b) follows from Theorem 2.40
and 2.35. Theorem 2.37 shows that (b) implies (c). If remains to be shown that (c)
implies (a).

If E is not bounded, then E contains points x, with |x,| > n (n =1,2,3,...). The set
S cousisting of these points X, is infinite and clearly has no limit points in R¥, hence
has none in E. Thus, (c¢) implies that £ is bounded.

IF E is not closed, then there is a point xo € R* which is a limit point of £ but not a
point of E. For n = 1,2,3,..., there are points x, € E such that |x, — x| < 1. Let
S be the set of these points x,. Then S is infinite (otherwise |x,, — xg| would have a
constant positive value, for infinitely many n), S has xg as a limit point, and S has no
other limit point in R¥. For if y € R¥, y # Xo, then |x, — y| = |x0 — y| — |[Xn — Xo| =
Ixo —y| — £ > 3% — y| for all but finitcly many n; this shows that y is not a limit
point of S. Thus s has no limit point in E; hence E must be closed if (c) holds. O

Theorem 2.42 (Weierstrass) Every bounded infinite subset of |R* has a limit point in
R,

Proof. Being bounded, the set E in question is a subset of a k-cell I ¢ R*. By Theorem
2.40 I is compact, and so E has a limit point in I, by Theorem 2.37. O

Theorem 2.43 Let P be a nonempty perfect set in R*. Then P is uncountable.

Proof. Since P has limit points, P must be infinite. Suppose P is countable, and denote
the points of P by x;, X2, X3, .... We shall construct a sequence {V,,} of neighborhoods,
as follows.

Let V) be any neighborhood of x,. If V; consists of all y € R* such that [y — x| <,
the closure V', of Vj is the set of all y € R* such that |y — x;| < 7.

Suppose V;, has been constructed, so that V; n P is not empty. Since every point of
Pis a limit point of P, there is a neighborhood V,,, such that (i) V.., < V,, (ii)
Xn € Vaar, (i) Vagr 0 P is not empty. By (iii), V,,+1 satisfies out induction hypothesis,

and the construction can proceed.

Put K, = V, n P. Since V, is closed and bounded, V,, is compact. Since x, ¢ Kn,1,
no point of P lies in (" K,. Since K, < P, this implies that ()" K, is empty. But
each K, is nonempty, by (iii}, and K, = K, by (i); this contradicts the Corollary to
Theorem 2.36. O

Corollary Every interval [a,b] is uncountable. In particular, the set of all real numbers is
uncountable.

Theorem 2.47 A subset I of the real line R is connected if and only if it has the following
property: ifre Eandye E,andr <z <y, then z€ E.
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Proof. If there exists € E, y € E, and some z € (z,y) such that z ¢ E, then
E =A.,u B, where A. = En (—,2), B. = En(z,0). Sincex € A, and y€ B;, A
and B arc nonempty. Since A; c (-, z) and B. < (z, ), they arc scparated. Hence
E is not connected.

To prove the converse, suppose E is not connected. Then there are nonempty separated
scts A and B such that Au B = E. Pick z € A, y € B, and assume (WLOG) that
x < y. Define z = sup(An[r,y]). By Theorem 2.28, z € 4; hence z ¢ B. In particular,
r<z<y. lf2¢ A, it follows that z < z <y and z ¢ E. If z € A, then z ¢ B, hence
there exists z; such that z < z; <yand 2, ¢ B. Thenz <z, <yand z; ¢ E. O

18



Chapter 3 Numerical Sequences

Definitions

Converge/ Diverge A sequence {p,} in a metric space X is said to converge if there is a
point p € X with the following property: for every £ > 0 there is an integer N such
that n > N implies that d(p,,p) < €. In this case we also say that {p,} converges to
p, or that p is the limit of {p,}, and we write p, — p, or

lim p, =p

Tt—+ 00
If {p,} does no converge, it is said to diverge.

Range/ Bounded The set of all points p, is the range of {p,}. The range of a sequence
may be a finite sct, or it may be infinite. The scquence {p,} is said to be bounded if
it’s range is bounded.

Subsequence Given a sequence {p,}, consider a sequence {n,} of positive integers, such
that n; < nps < ng < .... Then the sequence {p,,} is called a subsequence of {p,}. If
{pn;} converges, its limit is called a subsequential limit of {p,}.

It is clear that {p,} converges to p is and only if every subsequence of {p,} converges
to P.

Cauchy Sequence A sequence {p,} in a metric space X is said to be a Cauchy sequence
if for every € > 0 there is an integer N such that d(p,,pm) <€ ifn> Nand m > N.

Diameter Let £ be a nonempty subset of a metric space X, and let S be the set of all real
numbers of the form d(p, ¢), with p€ E and g € E. The sup of S is called the diameter
of E.

Complete A metric space in which every Cauchy sequence converges is said to be complete.
Monotonic A sequence {s,} of real numbers is said to be

Sn+1 (Tl= 1,2,3,...)

a) monotonically increasing if s, <
b) monotonically decreasing if s, 2 sp41 (n=1,2,3,...)

The class of monotonic scquences consists of the increasing and the decreasing se-
quences.

Convergence to Infinity Let {s,} be a sequence of real numbers with the following prop-
erty: For cvery real A there is an integer NV such that » > N implies s, 2 M. We
then write: s, — +00.

Similarly, if for every real M there is an integer N such that n > N implies s, < M.
We then write: s, — —o0.
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Upper/ Lower Limits Let {s,} be a sequence of real numbers. Let E be the set of numbers
X such that s,, — x for some subsequence {s,, }. This set E contains all subsequential
limits as defined above. Let:

s*=supFE s, =inf E

The numbers s* and s, are called the upper and lower limits of {s,}; we use the

notation:

limsups,, = s* liminf s, = s,
n—.o0 n-—c

Series Given a sequence {a,}, we use the notation »,’ —p@n tO denote the sum a, + a,41 +
-+ +a,. With {a,} we associate a sequence {s,} where s, = Zz,p a. For {s,} we also
usc the symbolic expression a; + a; + a3 + ... or, morc concisely,

[« ]
D, an
n=1

We call this an infinite series. or just a series. The numbers s, are called the partial
sums of the series. If {s,} converges to s, we say that the series converges, and write

el
S =s.
n=]

The number s is called the sum of the series; but it should be clearly understood that
s is the limit of a sequence of sums, and is not obtained by simple addition.

If {s,} diverges, the series is said to diverge.

> o1
B Zn~—-0 nlt
Power Series Given a sequence {¢,} of complex numbers, the scries

o
Z 2"

nw=l

is called a power series. The numbers c, are called the coefficients of the series; z is a
complex number.

Absolute Convergence The series . a,, is said to converge absolutely if the series 3, |a,|
converges.

Product Given Y, a, and },b,, we put

n
Cn = Z akbn—k
k=()

and call Y ¢, the product of the two given series. Equivalently,

product = i i apbn i

n=0k=0

20

s’



Rearrangement Let {k,} n = 1,2,3,... be a sequence in which every positive integer
appears once and only once (that is, {k,} is a one-to-one function from J onto J,
Putting af, = ax, (n =1,2,3,...), we say that ), a], is a rearrangement of Y, a,.

Theorems

Theorem 3.2 Let {p,} be a sequence in a metric space X.

a) {pn} converges to p € X if and only if every neighborhood of p contains p, for all
but finitely many n.

b) If pe X, p' € X, and if {p,} converges to p and to p/, then p’ = p.
c) If {pn} converges, then {p,} is bounded.

d) If E c X and if p is a limit point of E, then there is a sequence {p,}in E such
that p = limp,..o Py

Proof. a) Suppose p, — p and let V be a neighborhood of P. For some £ > 0, the
conditions d(g,p) < €, g € X imply g € V. Corresponding to this ¢, there exists
N such that n = N implics d(p,,,p) < . Thus m = N implics p, € V.

Conversely suppose every neighborhood of p contains all but finitely many of the
Pn. Fix € > 0, and let V be the sct of all ¢ € X such that d(p,q) < €. By
assumption, there exists N (corresponding to this V') such that p, e Vifn > N.
Thus d(p,,p) < € if n 2 N; hence p, — p.

b) Let € > 0 be given. There exist integers N, N’ such that

n = N implies d(p,, p) < % n = N’ implies d(p,,p’) < %

Hence if n = maz(N, N'), we have: d(p,p’) < d(p,p,) + d(p,,p')Me. Since ¢ was
arbitrary, we conclude that d(p,p’) = 0.

c¢) Suppose p, — p. There is an integer N such that n > N implies d(p,,p) < 1.
Put r = max{1,d(p,,p),....d(pn,p)}. Then d(p,,p) << rforn=1,2,3,....

d) For each positive integer n, there is a point p, € E such that d(p,,p) < % Given
e > 0, choose N so that Ne > 1. If n > N, if follows that d(p,,p) < €. Hence

Pn—p
(|

Theorem 3.3 Suppose {s,}, {t.} arc complex sequences, and lim,, . s, = s, lim,, oo £, = ¢.
Then,

a) limpoo(sn +tp) = s+ ¢
b) limp_.q c8p = ¢, limpao(c+ sp) = ¢+ 55

¢) Hmy—.e Sul, = st
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d) limyee é = %, provided s, # 0 and s # 0.
Proof. a) Given ¢ > 0, there exists integers N, Np such that

. . & . . I £
n = N; implies [s, — s| < 5 n = N, implies [t, — t| < 5

If N = max(N, N2}, then n = N implies
|(sn + ta) = (s + )| < |sn— 8| + |ta —t] <€

This proves (a).
b) Trivial.
c) We use the identity:

Sptn — 5t = (Sp — 8)(tn — t) + S(ta — t) + t(5p — )
Given ¢ > 0, there are integers Ny, Np such that
n = Ny implics |s, — s| < /€, n = N, implics |t,, — t| < /&

If we take N = maz(N,N2), n = N implies |[(s, — s)(t. — t)| < €. so that
im0 (8n — 8)(¢n —t) = 0. We now apply (a) and (b) to our original equivalence,
and conclude that lin,_.(spt, — st) = 0.

d) Choose m such that |s, —s| < %Is: if n = m, we see that |s,| > %|s|. Givene > 0,

there is an integer N > m such that n > N implies s, — s| < ?|s|2e Hence, for
nzN,

L L _|on=s| 2 |sn —s| <€

S5, 8 P [s]2™" '
O
Theorem 3.4 Suppose x, € R* and x, = (@14,020,...,0kn,). Then {x,} converges to

x = (a1, ag, ..., a) if and only if
lim a;, = a; (1<j<k)

n—o0

Suppose {X,}, {1} are sequences in R*, {8,,} is a sequence of real numbers, and x,, — x,
Yo=Y, Ba— B. Then

lim (x, +y,) =x+y  lim(X,-y,)=x-y  lim(fx,) = fix
Proof.  a) If x,, — x, the inequalities |a;, — ;| < |x, — x|, which follow immediately
from the definition of the norm in R¥, show that lim,,. @, = ; for (1 < 7 < k).

Conversely, if lim,.o;n = a; for (1 < j < k), then to each € > 0 there
corresponds an integer N such that n > N implics |, —ay| < sfor (1<j<k).

Hence n > N implies
1/2
12
-z|= {Z |atj — ! } <&,

so that x,, — x.
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b) Follows from (a) and Theorem 3.3.
O

Theorem 3.6 a) If {p,} is a sequence in a compact metric space X, then some subse-
quence of {p,} converges to a point of X.

b) Every bounded sequence in R¥ contains a convergent subsequence.

Proof. a) Let E be the range of {p,}. If E is finitc then there is a p € E and
a sequence {n;} with n; < no < ..., such that p,, = p,, = --- = p. The
subsequence {p,,} so obtained converges evidently to p
If E is infinite, Theorem 2.37 shows that E has a limit point P € X. Choose n;
so that d(p, pa,) < 1. Having chosen n — 1,...,n,_;, we see from Theorem 2.20
that there is an intcger n; > n,_; such that d(p,p,,) < 1/i. Then {p,,} converges
to p.

b) This follows from (a), since Theorem 2.41 implies that every bounded subset of
R* lies in a compact subset of R,

]

Theorem 3.7 The subsequential limits of a sequence {p,} in a metric space X form a closed
subset of X.

Proof. Let E* be the sct of all subscquential limits of {p,} and let ¢ be a limit point
of E* . We have to show that g € E™.

Choose n; so that p,, # ¢. (If no such n, exists, then E* has only one point and there
is nothing to prove.) Put § = d(g,p,,). Suppose n,,...,n;_; are chosen. Since q is
a limit point of E*, there is a z € E* with d(z,q) < 27%6. Since £ € E* there is an
n; > n;—y such that d(z,p,,) < 27'6. Thus d(q,p,,) < 2% fori = 1,2,3,.... This
says that {p,,} converges to q. Hence g € E*. O

Theorem 3.10 a) If E is the closure of a set E in a metric space X, then
diam E = diam E
b) If K, is a sequence of compact sets in X such that K, o I, and if
lim diam K, = 0,
n—ex
then ﬂf’ K, consists of exactly one point.

Proof. a) Since E < E, it is clear that diam E' < diam E. Fix € > 0, and choose
p€ E, q € E. By definition of E, there are points p/, ¢, in E such that d(p,p’) < ¢,
d(q,q') < €. Hence

d(p,q) <d(p,p') +d(®',q") + d(¢,q) < 2 +d(p',¢') < 2¢ + diam E

Thus, diam E < diamE. Therefore diam E = diam E.
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b)

Put K =) +1%°K,. By Theorem 2.36, K is not empty. If K contains more than
one point, then diam K > 0. But for each n, I, o K, so that diam K, > diam K.
This contradicts the assumption that diam K, — 0.

a

Theorem 3.11 a) In any metric space X, every convergent sequence is a Cauchy se-

b)

c)

quence.

If X is a compact metric space and if {p,} is a Cauchy scquence in X, then {p,}
converges to some point of X.

In R*, every Cauchy sequence converges

Proof. a) lf p, — p and if € > 0, there is an integer N such that d(p,p,) < ¢ for all

b)

n = N. Hence, for n,m =2 N:

d(Pn, Pm) < d(pn,p) + d(pm,p) < 2¢

Thus {p,} is Cauchy.

Let {p,} be a Cauchy sequence in the compact space X. For N = 1,2,3,...,
let Ey be the set consisting of py,pn+1,.... Then limy_qe diamEy = 0, by
Definition 3.9 and Theorem 3.10(a). Being a closed subset of the compact metric
space X, each Ey is compact (Theorem 2.35). Also Ex D En1, so that Enxy>
EN +1-

Theorem 3.10(b) shows now that there is a unique p € X which lies in every Ey.
Let £ > 0 be given. Because limy_.» diam Ey = 0 there is an integer Ny such
that diam Ey < € if N = Np. Since p € Ey, it follows that d(p,q) < ¢ for every
g € En, hence for every q € E,. In other words, d(p,p,) < € if n = Np. This says
precisely that p, — p.

Let {x,} be a Cauchy sequence in R¥. Define Ey as in (b) with x; in place of p;.
For some N, diam Ey < 1. The range of {x,} is thc union of Eyx and the finite
set {x1,...,Xn-1}. Hence {x,} is bounded. Since every bounded subset of R*
has compact closure in R* (c) follows from (b).

a

Corollary All Compact metric spaces and all Euclidcan spaces are complete.

Corollary Every Closed subset E of a complete metric space X is complete.

Theorem 3.14 Suppose {s,} is monotonic. Then {s,} converges if and only if it is bounded.

Proof. Suppose s, < Sn41 (the proof is analogous in the other case). Let E be the
range of {s,}. If {s,} is bounded, let s be the least upper bound of E. Then s, < s
(n=1,2,3,...). For every € > 0, there is an integer N such that s —¢ < sy < s, for
otherwise s — € would be an upper bound of E. Since {s,} increases, n > N therefore
implies s — £ < s, < s, which shows that {s,} converges to s. The converse follows
from Theorem 3.2 (c). O
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Theorem 3.17 Let {s.} be a sequence of real numbers. Let £ and s* be as defined above.
Then s* has the following two properties:

a) s*e FE

b) If z > s*, there is an integer N such that n 2> N implies s, < z.

Moreover, s* is the only number with these properties. Furthermore, the analogous
result is true for s,.

Proof. a) If s* = 4o, then E is not bounded above; hence {s,} is not bounded
above, and there is a subsequence {s,,} such that s,, — +oo.

If s* is real, then £ is bounded above, and at least one subsequential limit exists,
so that (a) follows from Theorems 3.7 and 2.28.

If s* = —oo, the E contains only one element, namely —co, and there is no
subsequential limit. Hence, for any real M, s, > A for at nost finite number of
values of n, so that s, — —o0.

b) Suppose there is & number z > s* such that s,, > z for infinitely many values of
n. In that case, there is a number y € £ such that y > x > s*, contradicting the
dcfinition of s*.

Thus s* satisfies (a) and (b).

To show the uniqueness, suppose there are two numbers, p and ¢, which satisfy
(a) and (b), and suppose p < q. Choosc z such that p < z < ¢. Since p satisfics
(b), we have s, < x for n. 2 N. But then q cannot satisfy (a).

0O

Theorem 3.19 If s, < i, for n > N, where N is fixed, then:

li’I‘l_l. glf 8n < li’l‘IL iololf t, liEln_'sotolp S € lir::s:;p tn
Theorem 3.20 a) If p> 0, the limyo 5 =0
b) If p > 0, the limp—.oo /p =1
c) limp Im=1
d) If p> 0 and o € R, then lim,_q # =0

e) If |z} < 1, then lim, ., z" = 0.

Proof. a) Taken > (%) 4 (Note that the archimedean property of the real number
system is used here.)

b) If p > 1, put #, = p—1. Then z, > 0, and, by the binomial theorem,
l+nz, <(1+x,)"=psothat 0 <z, < ";—1 Hence z, — 0. If p =1, (b) is
trivial, and if 0 < p < 1, the result is obtained by taking reciprocals.
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¢) Put z, = {/n — 1. Then z, > 0, and, by the binomial theorem, n — (1 + z,)" >
ﬂ"z—_llzﬁ Henee, 0 € z, <4/ forn > 2.

d) Let Let k be an integer such that k > o, £ > 0. For n > 2k:
k kpk
w. [ an-1)...(n—k+1) , n
(L+p)"> (L) - Kl P> Gl

Hence 0 < (a+p),, < L‘Fn""" for n > 2k. Since a — k < 0, n®* = 0, by (a).

¢) Take a = 0 in (d).

O

Theorem 3.22 Y a, converges if and only if for every £ > 0 there is an integer N such that

m
S <e
k=n

if m > n > N. In particular, by taking m = n, |a,| <¢

Theorem 3.23 If 3 a, converges, then lim,_.oa, = 0.

Theorem 3.24 A scries of nonncgative terms converges if and only if its partial sums form
a bounded sequence.

Theorem 3.25 (Comparison Test) a) If |a,] < ¢, for n 2 Ny, where Ny is some fixed
integer, and if ) ¢, converges, then Y, a, converges.

b) If ap = d, = 0 for n = Ny, and if 3 d, diverges, then )} a, diverges.

Proof. Given € > 0, there exists N > Ny such that m = n = N implies >}, c <€,
by the Cauchy criterion. Hence

m m m
Sl < Sal< Sase
k=n k=n k=n

and (a) follows.

Next, (b) follows from (a), for if 3} a, converges, so must D d,. Note, (b) also follows
from Theorem 3.24. O

Theorem 3.26 (Geometric Series) If 0 < z < 1, then

o0

n=0

If > 1 this scrics diverges.
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Proof. Ifx #1,s, = Zk-of” = ﬂ The result follows if we let n — 0. Forz =1,
weget 1+1+4+1+..., which ev1dently diverges. I:J

Theorem 3.27 (Cauchy Condensation Test) Suppose a; = a; = a3 = -+ = 0. Then

the scries Z"_ a,, converges if and only if the serics

Z2kazk =a; + 2a; +4ay + 8ag + ..
k=0

converges.

Proof. By Theorem 3.24, if suffices to consider boundedness of the partial sums. Let
Sp=0ay+ Qg+ +ay tp = ay + 209 + - - + 2¥a5e. For n < 2K,

S +{a+2+az)+- 4 (apk 4+ +agriy) < a4+ 2ap + - + a0 =1,
so that s,, < t;. On the other hand, if n > 2*,
1 - 1
Sp 2 a1+ag+(a+3+a4)+~'+(a2k~1+1+---+a2k) < §a1+a2+2a4 c 25 agk = Etk

so that 2s, 2 t. So, s, <t < s,. Thus, the sequences {s,} and {¢;} arc cither both
bounded or both unbounded. This completes the proof. O

Theorem 3.28 (p-Test) Y, % converges if p > 1 and diverges if p < 1

Proof. If p € -, divergence follows from Theorem 3.23. If p > 0, Theorem 3.27 is
applicable, and we are led to the series

@K X
> 2"% =) 2l=nk

Now, 277 < 1 if and only if 1 — p < 0, and the result follows by comparison with the
geometric series (take z = 2'~? in Theorem 3.26). O

Theorem 3.29 If p> 1
i 1
i n(logn)?
converges. If p < 1, the series diverges.

Proof. The monotonicity of the logarithmic function implies that {logn} increases.
Hence {1/z log n}decrease, and we can apply Theorem 3.27; this leads us to the series

0

e o]
Z 2* 2"(log 2k)p g k log 2~ (log2)r :;1 kr

and Theorem 3.29 follows from Theorem 3.28. O
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Thoerem 3.31 limp .o (1 + %)" =e.

Proof. Let sp = X5, ﬁ, tp = (1 ;_) . By the binomial theorem:

e tetet (1= e (1Y (1= 2l (- 1Y (1-2) . -l
2 n) 2 n n n! n n n

Hence &, < sy, so that limsup,,_, ¢, < e, by Theorem 3.19. Next if n = m,

1 -1
t,..zl-i-l-i‘i 1—l +--~-i-i 1—-—]... 1—m )
2! n m! n n

Let n — <0, keeping m fixed. We get liminft, 2 1+ 1+ % SRR ﬁ, so that
8m < liminf,_.t,. Letting m — oo, we finally get e < liminf,_.»¢,. The theorem
follows. 0

Theorem 3.32 ¢ is irrational.

Proof. Supposc ¢ is rational. Then e = p/q, where p and g are positive integers.
Because 0 < e — s, < o=, we know that 0 < ql(e — s) < % By our assumption gle is
an integer. Since gls, = g1+ 1+ 5+ -~ + %) is an integer, we see that g!(e — s,) is
an integer. Since g > 1, this implies the existence of an integer between 0 and 1. We
have thus reached a contradiction. 0

Theorem 3.33 (Root Test) Given Y, a,, put & — limsup, .o, {/|ax|. Then:

a) if @ < 1, ), a, converges
b) if @ > 1, Y a, diverges

c} if & = 1, the test gives no information

Proof. If & < 1, we can choose 3 so that < § < 1, and an integer N such that
%/lan] < B for n = N. That is, n > N implies |a,| < f". Since 0 < f < 1, 28"
converges. Convergence of oa,, follows now from the comparison test.

If @ > 1, then, again by Theorem 3.17, there is a sequence {n;} such that "{/la,,| — a.
Hence |a,| > 1 for infinitely many values of n, so that the condition a, — 0, necessary
for convergence of ga,,, does not hold.

To prove (c), we consider the series 3 1, 37 %, For each of these series a = 1, but the
first diverges, the second converges. O

Theorem 3.34 (Ratio Test) The series }; a,

Anil
(137

a) Converges if limsup,, el
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2 1 for all n 2 ng, where ng is some fixed integer.

b) Diverges if limsup,,_,, 5"-""1!-

Proof. If condition {a) holds, we can find 8 < 1 and an integer N, such that |1:".:—1’ <p

for n 2 N. In particular, |aysi| < Blanl, lan+2| < Blan+1| < Blan], - |aN+,,| <
ﬂ”|a~| That is, |a.| < |ax]|8~"N - ™ for n = N, and (a) follows from the comparlson
test, since o™ converges.

If |ans1| = |a,] for n = ny, it is casily scen that the condition a, — 0 docs not hold,
and (b) follows. [

Theorem 3.37 For any sequence {c,} of positive numbers,

liminf &+ < liminf en limsup {/c, < limsup c:

n—w  Cp T—00 n—t0 S

1

Proof. We shall prove the second inequality; the proof of the first is quite similar. Put

= limsup, _ c’;:'. If @ = +o0, there is nothing to prove. If a is finite, choose
B > «. There is an integer N such that °::1 < f3 for » 2 N. In particular, for any
p > 0, cysrs1 € Bensr. Multiplying these inequalities, we obtain ¢yyp < SPcp, or
cn € cnfNpB" for n = N. Hence /¢, < {/c,8~V - B, so that limsup,,_,, {/cn < B, by

Theorem 3.20 (b). Since this is true for every # > «, we have limsup,,_,, {/¢; < a. O

Theorem 3.39 Given the power series Y, ¢,2", put

a = limsup {/|e,], R= 1
n—oo «

If « = 0, then R = +o0; if « = 4+, R = 0. (Note, R is called the radius of
convergence). Then 3] c,2™ converges if |z| < R, and diverges if |2| > R.

Proof. Put a,, = c,2", and apply the root test:

fimsup el = o] limsup /fer] = 2
n—w

n—

0O

Theorem 3.41 Given two sequence {a.}, {b.}, put A, = > _sax if n = 0; put A_; = 0.
Then, if 0 < p < g, we have

q q-1
> @ubn = Y Anlbn — bns1) + Agby ~ Ap_ybp

n=p n=p

Proof.

g=-1 q—1

Zanb = Z(A —An1)b ZA bu— Y Anbnis = Y An(ba—bni1)+Agbs— Ay 1b,

n=p n=p n=p n=p

O
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Theorem 3.42 Suppose

a) the partial sums A, of };a, form a bounded sequence;
b) bp=b =2by2

¢) limy—obn, =0

Then Y a,b, converges.

Proof. Choose M such that |A,| < M for all n. Given € > 0, there is an integer N
such that by < (¢/2M). For N < p < q, we have

7] L/ 1

Z b S

n| = | Y Anlbn — bns1) + Agbg — Ap-1by
n=p

n=p

<

n=p |

Convergence now follows from the Cauchy criterion. We note that the first inequality
in the above chain depends of course on the fact that b, — b4, = 0. O

Theorem 3.43 (Alternative Series Test) Supposc

a) || = |eo| = |3l = .. .5
b) com-1 =20, com <0 (m=1,2,3,...)

¢) limp_gc, =0

Then Y] ¢, converges
Proof. Apply Theorem 3.42, with a, = (=1)"*!, b, = c,| O

Theorem 3.44 Suppose the radius of convergence of 3. ¢,2" is 1, and suppose ¢ = ¢; 2
¢ = ..., lipewcn = 0. Then 3¢ 2" converges at every point on the circle |z| = 1,
cxcept possibly at z = 1.

Proof. Puta, = 2", b, =c¢, . Thc hypotheses of Theorem 3.42 are then satisfied, since
IA"l lZm Ozml = |1-’"+1| < |1 21, if |Z| = 1 z# 1 [
Theorem 3.45 If 3. a, converges absolutely, then Y a, converges.

T

Proof. The assertion follows from the inequality |3, ax| < XJi-,, |akl, plus the Cauchy
criterion. O

Theorem 3.47 If S a, = A and 3 b, = B, then ¥;(a, + b,) = A+ B and ), ca, = cA, for
any fixed c.
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Proof. Let Ap = 35 o0k, Ba = X obk. Then A, + B, = 35 _o(ax + b). Since
lim, .0 Ap = A and lim,_., B, = B, we see that limn,_.(A, + B,) = A+ B. The
proof of the sccond assertion follows. O

Theorem 3.50 Suppose

a) Y, an converges absolutely

b) 3 pan=A

C) Ef=0 b" = B
d) o = Ypog Chkbnok (n=0,1,2,...)

Then 3, c. = AB.

Proof. Put A, = 330 _gak, Ba =25 _gbky Cn = 250 Cky Bn = By — B. Then:

Cn = apbp)aghy + arb) + - - - + (aghn + a1bp—y + - - + anbp)
=aoBn + a1Bp_1 + -+ a, By
= ag(B + Bn) + a1(B + 1) + -+ + aa(B + fo)
= A,B + apf, + a18u-1+ - + a3

Put v, = @B, + a18u—1 + - + a,50. We wish to show that C,, — AB. Since
ApB — AB, it suffices to show that lim,—.oc ¥a = 0/ Put a = 3, o |a,|. It is here that
we use (a). Let € > 0 be given. By (c}, 8, — 0. Hence we can choose N such that
|B4| < € for n = N, in which case

[n] < |Bottn + -+ + Bnan—n| + |BN1Gn-n-1 + - + Brao| < |Bottn + - - + Bnan-n| +ea.

Keeping N fixed, and letting n - oo, we get limsup,_ o || < ca, since ¢ — 0 as
k — oo. Since ¢ is arbitrary, lim, ..o 7, = 0 follows. O

Theorem 3.51 If the series Ya, = A, b, = B, Y,¢, = C, and ¢, = agby + -+ + aaby,
then C = AB.

Theorem 3.54 Let }a, be a series of real numbers which converges, but not absolutely.
Suppose —0 < a < 8 < o. Then there exists a rearrangement Y, a/, with partial sums
s;, such that

. . " — . ‘[ —
11’1}_1‘ 1£f s, =« limsups, = 3
n=+

Proof. Let p, = 19413:.2;».’ Gn = J“—"Iz"& for (n = 1,2,3,...). Then p, — q, = a,,
Pn+qn = |G|, Pn,gn = 0. The series Y] p,, D, g, must both diverge. If, on the contrary,
both were convergent, the >{(p, + ¢.) = Y, |an| would converge, contradicting the
hypothesis. Since ZnN=l a, = Zﬁ':l(pn ~Gn) = Dopey Pn — Zf:]:l qn, divergence of Y. p,
and convergence of Y ¢, or vice versa implies divergence of 3’ a,, again contradicting
the hypothesis.
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Now let Py, P, P, ... denote the nonnegative terms of 3 a,, in the order in which they
occur, and let @y, Qs, Qs3, ... be the absolute values of the negative terms of Y, ¢y, also
in their original order. The serics Y, P, Y. @y differ from };p, , 3¢, differ only by
zero terms, and are therefore divergent. We shall construct sequences {my,}, {ks}, such
that the series

Pi+"‘+Pm| —Ql_'“_Qk; +Pm1+l +-“-ng_Qk1+l _"'_ka'*'"‘t
which is clearly a rearrangement of Y, a,, satisfies

P ! : L
h,.nl g)lf 5, =« limsups, = f
n—aw

Choose real-valued sequences {ay,}, {8} such that e, — «, fn — B, an < Bn, 1 > 0.

Let my, k; be the smallest integers such that
P+ +Py,>p and P+ -+ Py —h— —Qy <
Let mq, ko be the smallest integers such that
Pit-o 4Py —Qi=-=Quy + Pnysr + ... Py > P,

Pt oot Poy == = Qu+ Pyt + . Py = Qry1 — -+ — Qi < 35
and continue in this way. This is possible since 3, P, and @, diverge.

If &, yn denote the partial sums of the string whose last termns are P, and —Qy,,
then |z, — Bu| € Py |¥n — | < Q. Since P, — 0 and Q,, — 0 as n — o0, we see
that z, — B, ¥, — .

Finally, it is clear that no number less than « or greater than § can be a subsequential
limit of the partial sums. O

Theorem 3.55 If Y a, is a scrics of complex numbers which converges absolutely, then
every rearrangement of Y, a, converges, and they all converge to the same sum.

Proof. Let Y, al, be a rearrangement, with partial sums s;,. Given £ > 0, there exists
an integer N such that m > n > N implies Y}, |ai| < &. Now choose p such that
the integers 1,2,3,..., N are all contained in the set ki, ks, ..., kp. Then if n > p, the
numbers ay, .. .,ay will cancel in the difference s, — s);, so that |s, — s;,| < e. Hence
{s!,} converges to the same sum as {s,}. O
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Chapter 4 Continuity

Definitions

Limit of a Function Let X and Y be metric spaces; suppose E < X, f maps E into Y
and p is a limit point of E. We write f(z) > gasz — por

lim f(z) = q

T—p

if there is a point q € Y with the following property: Fore very € > 0 there exists a
d > 0 such that dy(/f(z),q) < € for all points z € E for which 0 < dx(z,p) < 6.

Sum/ Difference/ Product/ Quotient of Function Suppose we have two complex func-
tions, f and g, both defined on E. By f + ¢ we mean the function which assigns to
cach point z of E the number f(z) + g(z). Similarly we define f — g, fg, f/g for
g(r) # 0. If f assigns to each point of z of £ the same number ¢, f is said to be a
constant function, or constant, and we write f = ¢. If f and g are real functions then
f(z) = g(z) is the same as f > g. The same holds for f, g : E — RX,

Continuous Suppose X an Y are metric spaces, Ec X,pe E,and f: E—= Y. Then f is
said to be continuous at p if for every € > 0 there exists a d such that

dy(F(x), f(p)) <€
for all points x € F for which dx(z,p) < d.

If f is continuous at every point of E, then f is said to be continuous on E.

Bounded A mapping f of a set E into R* is said to be bounded if there is a real number A/
such that |f(z)] < M forallz € E.

Uniformly Continuous Let f be a mapping of a metric space X into a metric space Y.
We say that f is uniformly continuous on X if for every € > 0 there exists § > 0 such

that
dy(f(p), f(g)) <«
for all p and q in X for which dx(p,q) < 4.

One-Sided Limit of a Function Let f be defined on («¢,b). Consider any point x such
that a < z < b. We write:

fla+)=q

if f(t.) — g as n — oo, for all sequences {t,} in (x,b) such that t, — z. To obtain the
definition of f(x—), for a < z < b, we restrict ourselves to sequences {t,} in (a,z}.

It is clear that at any point z € (a,b) the lim,_,, f(t) exists if and only if

f(e+) = fla=) = lim f().
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Simple Discontinuity Let f be defined on (a,b). If f is discontinuous at a point z and if
f(z+) and f(z—) exists, then f is said to have a discontinuity of the first kind, or a
simple discontinuity, at z. Otherwisc the discontinuity is said to be of the sccond kind.

There are two ways in which a function can have a simple discontinuity:
f@+) # fz=) or  f(z+) = f(z-) # f(=).

Monotonic Let f be real on (a,b). Then f is said to be monotonically increasing on (a,b)
ifa <z <y <bimplies f(z) < f(y). If the last inequality is reversed, we obtain the
definition of a monotonically decreasing function. The class of monotonic functions
consists of both the increasing and the decreasing functions.

Neighborhood of Infinity For any real ¢, the sct of real numbers z such that z > c is
called a neighborhood of +00 and is written (c, +00). Similarly, the set (—o0,c) is a
neighborhood of —oo.

Limit at Infinity Let f be a rcal function defined on E ¢ R. We say that f(1) — A as
t — z, where A and z are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of = such that V n E is not empty, and such that
f)eU forallte VnE, t+z.

Theorems

Theorem 4.2 Let X and Y be metric spaces; suppose £ < X, f maps E into Y and p is
a limit point of E. Then lim,_,, f(z) = ¢ if and only if lim,.» f(p.) = g for every
sequence {p,} in E such that p, # p lim,_.o P = p.

Proof. Suppose that lim,_., f(x) = ¢. Choose {p,} in E as stipulated. Let £ > 0 be
given. Then there exists 8 > 0 such that dy(f(z),q) <cifz e E. and 0 < dx(z,p) < 0.
Also, there exists N such that n > N implies 0 < dx(pn,p) < 6. Thus for n > N we
have dy (f(p.),q) < €, which show s that holds.

Converscly, supposc lim,_., f(z) # g. then there cxists some € > 0 such that for every
§ > 0 there exists a point # € E (depending on §), for which dy(f(z),q) = € but
0 < dx(z,p) < 6. Taking &, = % we thus find a sequence {p,} in E satisfying the
aforementioned requirements, for which lim, .o f(p,) = ¢ is falsc. O

Corollary If f has a limit at p, this limit is unique.

Theorem 4.4 Suppose E < X, a metric space, p is a limit point of £, f and g are complex

functions on E, and
lim f(z) = A limg(z) = B
Tp x—p

Then:

a) lim, .,(f+g)(z)=A+B
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b} lim,_,,(fg) = AB

c) lim,, ('g) =4

Proof. In view of Theorem 4.2, these assertions follow immediately from the analogous
properties of sequences in Theorem 3.3. O

Theorem 4.6 Suppose X an Y are metric spaces, £ < X, p € E such that p is a limit point
of E,and f: E — Y. Then f is continuous at P if and only if lim,_, f(z) = f(p).

Proof. This is clear if we compare Definitions 4.1 and 4.5. O

Theorem 4.7 Suppose X,Y, Z are metric spaces, E < X, f maps E into Y. ¢ maps the
range of f, f(E), into Z, and H is the mapping of E into Z defined by

hz) = g(f(z)) (z € E)

If f is continuous at a point p € E and if g is continuous at the point f(p), then h is
continuous at P. The function # is called the composition or the composite of f and
g, most commonly noted: h = go f.

Proof. Let € > 0 be given. Since g is contimious at f{p), there exists > 0 such that
dz(g(y), 9(f(p))) < € if dv(y, f(p)) < n and y € f(E). Since f is continuous at p,
there exists § > 0 such that dy(f(z), f(p)) < n if dx{z,p) < § and z € E. It follows
that dz{h(z), h(p)) = dz(g(f(z)),9(f(p))) < e. if dx(z,p) < d and z € E. Thus h is
continuous at p. ]

Theorem 4.8 A mapping f of a metric space X into a metric space Y is continuous on X
if and only if f~'(V'} is open in X for every open set V in Y.

Proof. Suppose f is continuous on X and V is an open set in Y. We have to show that
every point of f~1(V) is an interior point of f~}(V). So, suppose pe X and f(p)e V.
Since V is open, there exists £ > 0 such that y € V if dy(f(p),y) < ¢; and since f is
continuous at p, there exists § > 0 such that dy (f(z), f(p)) < € if dx(z,p) < d. Thus
z e f~Y(V) as soon as d(z,p) < 4.

Conversely, suppose f~1(V) is open in X for cvery open set V in Y . Fix pe X and
€ > 0, let V be the set of all y € Y such that dy(y, f(p)) < €. Then V is open; hence
F~YV) is open; hence there exists § > 0 such that z € f~!(V) as soon as dx(p,z) < 6.
But if z € f~1(V), then f(x) € V, so that dy(f(z), f(p)) < &. 0O

Corollary A mapping f of a metric space X into a metric space Y is continuous if and only
if f~1(C) is closed in X for every closed set C in Y. (Note, f~1(E") = [f~YE)]°).

Theorem 4.9 Let f and g be complex continucus functions on a metric space X. Then
[+ g, fg, [/g are continuous on X.
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Proof. At isolated points of X there is nothing to prove. At limit points, the statement
follows from Theoretns 4.4 and 4.6. O

Theorem 4.10 a) Let fj,..., fi be real functions on a metric space X, and let f be the
mapping of X into R* defined by f(z) = (fi(z),..., fx(z)), then f is continuocus
if and only if each of the functions f; is continuous.

b) If f and g are continuous mappings of X into R*, then f+g and f-g are continuous
on X.

The functions f; are called the components of f.

Proof. Part (a) follows from the inequalities

k 3
fi(z) = £;()| < |f(z) — £(y)| = (Z |fi(x) = fs(y)lz)
i=1
for j = 1,...,k. Part (b) follows from (a) and Theorem 4.9. O

Theorem 4.14 Supposc f is a continuous mapping of a compact metric space X into a
metric space Y. Then f(X) is compact.

Proof. Let {V,}be an open cover of f(X). Since f is continuous, Theorem 4.8 shows
that each of the sets f~1(V,) is open. Since X is compact, there are finitely many
indices, say ¢, . .., an, such that X c f~Y(V,,)u---u f1(Va,). Since f(f~'(E))c E
for every E < Y, this implies that f(X)c Vo, u--- U V,,. O

Theorem 4.15 If f is a continuous mapping of a compact metric spacc X into R¥, then
£(X) is closed and bounded. Thus, fis bounded.

Proof. This follows from Theorem 2.41 a

Theorem 4.16 Suppose f is a continuous real function on a compact metric space X, and

M = sup f(p) m = inf f(p)
X peX

Then there exists points p, q € X such that f(p) = M and f(¢) = m. That is, f attains
it’s maximum and minimum.

Proof. By Theorem 4.15 f(X) is closed and bounded set of real numbers; hence f(X)
contains M = sup f(X) and m = inf f(X), by Theorem 2.28. O

Theorem 4.17 Supposc f is a continuous 1-1 mapping of a compact metric spacc X onto
a metric space Y. Then the inverse mapping f~! defined on Y hy

@) =2 (ze X)

is a continuous mapping of Y onto X.
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Proof. Applying Theorem 4.8 to f~! in place of f we see that it suffices to prove that
f(V) is an open set in Y for every open set V in X. Fix such a set V.

The complement V¢ of V is closed in X, hence compact by Theorem 2.35; hence f(V*)
is a compact subset of Y by Theorem 4.14 and so is closed in Y by Theorem 2.34. Since
f is one-to-one and onto, f(V) is the complement of f(V¢). Hence f(V) is open. 0O

Theorem 4.19 Let f be a continuous mapping of a compact metric space X into a metric
space Y. Then f is uniformly continuous on X.

Proof. Let € > 0 be given. Since f is continuous, we can associate to cach point pe X
a positive number @(p) such that g € X, dx(p,q) < ¢(p) implies dy(f(p), f(q)) < §.
Let J(p) be the set of all ¢ € X for which dx(p,q) < 1é(p). Since p € J(p), the
collection of all sets J(p) is an open cover of X; and since X is compact, there is
a finite set of points py,...,p, in X, such that X < J(p;) v -+ v J(p,). We put

= tmin[¢(m),...,#(»,)]. Then § > 0. (That is, because the minimum of a finite
set of positive numbers is positive. On the contrary the inf of an infinite set of positive
numbers may be 0.)

Now let g and p be points of X, such that dx(p,¢q) < §. By our finite open cover,
there is an integer m, 1 € m < n, such that p € J(pn); hence dx(p,pm) < 26(pm),
and we also have dx(q,p,) < dx(p,q) + dx(p,pn) < 6 + %tﬁ(pm) < ¢(pm). Finally,
because dy (f(p), f(g)) < § when dx(p,q) < é(p), dv{f(p). f(q)) < dv(f(p), f(pm)) +
dy(f(q), f(pm)) <e. O

Theorem 4.20 Let E be a non-compact set in R. Then

a) there exists a continuous function of E which is not bounded;
b) there exists a continuous and bounded function on E which has no maximum.

¢) If, in addition, E is bounded then: there exists a continuous function on E which
is not uniformly continuous.

Proof. Suppose first that E is bounded so that there exists a limit point z, of E which
is not a point of E. Consider f(z) = I_lm. This is continuous on E, but evidently
unbounded. To see that it is not uniformly continuous, let € > 0 and § > 0 be arbitrary,
and choose a point z € F such that |z — zy4| < §. Taking ¢ close enough to z,, we can
then make the difference |f(t) — f(z)| greater than ¢, although |t — z| < §. Since this

is true for every § > 0, f is not uniformly continuous on E.

The function g given by g(z) = m is continuous on F, and is bounded, since

0 < g(z) < 1. 1t is clear that sup_.p g(z) = 1, whereas g(z) < 1 forall z € E. Thus g
has no maximum on E.

Having proved the theorem for bounded sets E, let us now suppose that E is un-
bounded. Then f(z) = z cstablishes (a), whereas h(z) = = cstablishes (b), since
sup.eg M(z) =1 and h(z) < 1for all z € E.
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Assertion (c) would be false if boundedness were omitted from the hypotheses. For, let
E be the set of all integers. Then every function defined on E is uniformly continuous
on E. To sce this we nced merely take § < 1 in Def 4.18. O

Theorem 4.22 If f is a continuous mapping of a metric space X into a metric space Y,
and if E is a connected subset of X, then f(E) is connected.

Proof. Assume, to the contrary, that f(E) = Au B where A and B are nonempty
separated subsets of Y. Put G = EnfY(A), H = En f"Y(B) . then E = GUH, and
neither G nor H is empty. Since A < 4, we have G < f~!(A); the latter set is closed,
since f is continuous; hence G = f~!(A). It follows that f(G) < A. Since f(H) = B
and 4 n B is empty, we conclude that G n H is empty.

The same argument shows that G n H is empty. Thus G and H are separated. This
is impossible if E is connected. O

Theorem 4.23 (Intermediate Value Theorem) Let f be a continuous real function on
the interval [a,b]. If f(a) < f(b) and if c is a number such that f(a) < c < f(b), then
there exists a point = € (a,b) such that f(z) = c.

Proof. By Theorem 2.47, {a, b] is connected; hence Theorem 4.22 shows that f([a, 8]) is
a connected subset of R, and the assertion follows if we appeal once more to Theorem
2.47. O

Theorem 4.29 Let f be monotonically increasing on (a,b). Then f(z+) and f(z—) exists
at every point of z of (a,b). More precisely,

sup f(t) = f(z-) < f(x) < fla+) = inf f(t)

a<i<z

Furthermore, if a < £ < y < b, then

fz+) < f(y-)

. Analogous results hold for monotonically decreasing functions.

Proof. By hypothesis, the set of numbers f(t), where a <t < z, is bounded above by
the number f(z), and therefore has a least upper bound which we shall denote by A.
Evidently A < f(z). We have to show that A = f(z-) .

Let € > 0 be given. It follows from the definition of A as a least upper bound that
there cxists § > Osuch that a < 2 — 8 < z. and A — ¢ < f(z —d) < A. Since f is
monotonic, we have, for r —§ < t <z, f(z —8) < f(t) < A. Combining these two, we
see that |f(t) — A| < . Hence f(z—) = A.

Likewise, f(x+) = infz<i<p f(t).

Ifa <z <y <b weseethat f(z+) = infyeiep f(£) = infraicy f(2). The last equality is
obtained by applying the aforementioned equality to {(a,¥) in place of (a,b). Similarly
f(z—) = sup,cye, f(t) = Sup,.<, f(t). Comparison of these two strings of equalities
gives us that f(z+) < f(y—). O
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Corollary Monotonic functions have no discontinuities of the second kind.
Theorem 4.30 Let f be monotonic on (a,b). Then the set of points of (a,b) at which f is

discontinuous is at most countable.

Proof. Suppose, for the sake of definiteness, that f is increasing, and let F be the
set of points at which f is discontinuous. With every point =z of E we associate
a rational number r(z) such that f(x—) < r(z) < f(z+). Since z; < o implies
F(zy+) < f(za—), we sec that r(z;) # r(z2) if 7y # zo.

We have thus established a 1-1 correspondence between the set £ and a subset of the
set of rational numbers. The latter, as we know, is countable. O

Theorem 4.34 Let f and g be defined on E < R Suppose
f(t) — A g(t) = B ast —
Then
a) f(t) = A" implies A’ = A

)

b) (f+9g)z)—~A+B
c) (f9)(t) — AB

d) (f/9)(t) — A/B

Note: 00 — o0, 0 - o0, 00/00, A/0 are not defined.
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Chapter 5 Differentiation

Definitions

Deivative Let f be defined (and real-valued) on [a,b]. For any x € [a, ] form the quotient

() f()

P(t) = (a<t<bt#2)

and define
/(@) = lim (1
provided this limit exists.

We thus associate with the function f and a function f’ whose domain is the set of
points z at which the above limit exists; f’ is called the derivative of f.

Differentiable If f’ is defined at a point & we say that f is differentiable at z. If f'is
defined at every point of a set E < [a,b], we say that f is differentiable on E.

Local Maximum Let f be a real function defined on a metric space X. We say that f has
a local mazimum at a point p € X if there exists § > 0 such that f(q) < f(p) for all
g € X with d(p.q) < 4. (Local minima are defined likewise.)

Higher Order Derivatives If f has a derivative f’ on an interval. and if f' is itself
differentiable, we denote the derivative of f’ by f” and call f” the second derivative of
f. Continuing in this manner, we obtain functions

A W L W
each of which is the derivative of the preceding one. f) is called the nth derivative,
or the derivative of order n, of f.

Note, In order for f™(z) to exist at a point z, f("~1(t) must exist in a neighborhood
of z (or in a one-sided neighborhood, if z is an endpoint of the interval on which [ is
defined), and f™*~1(z) must be differentiable at z.

Theorems

Theorem 5.2 Let f be defined on [a,b]. If f is differentiable at a point x € [a,b], then f
is continuous at .

Proof. Ast — z, we have, by Theorem 4.4, f(t) - f(z) = M (t—z) — f'(z)-0
0.

Du

Theorem 5.3 Suppose f and g arc defined on [a,b] and are differentiable at a point z €
[a,b). Then f + g, fg, f/g are differentiable at z, and:
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a) (f +9)(z) = f'(z) + ¢'(z)
b) (f9)(z) = f'(z)g(z) + ¢'(2) f(2)

3 (§ - g
Proof. (a) is clear, by Theorem 4.4. Let b = fg. Then h(t) = h(z) = f(t)[g(t) —

g(x)] + g(z)[f(t) — f(z)]. If we divide this by t —z and not that f(t) — f(z) ast — z
(Theorem 5.2) then (b) follows. Next let h = f/g. Then

h(t)—h(z) 1 fR) = f=) . g(t) —g(z)
e = e [ e - et 2.
Letting ¢ — x, and applying Theorem 4.4 and 5.2, we obtain (c). O

Theorem 5.5 (Chain Rule) Suppose [ is continuous on [a,b], f/(z) exists at some point
z € [a,b], g is defined on an interval I which contains the range of f, and g is differen-
tiable at the point f(z). If

h(t) = g(f(t)) (a<t<))

then h is differentiable at z, and
W(z) = g'(f(z))f'(z)

Proof. Let y = f(z). By dcfinition of the derivative, we have f(t) — f(z) = (t -

)[['(z) + u(t)] and g(s) — g(y) = (s — ¥)[g'(y) + v(s)], where t € [a,b], 5 € I, and
u(t) » 0ast — z and v(s) — 0 as s — y. Let s = f(t). Using this, we obtain

h(t) = h(z) = g(f(t)) — g(f(z)) = [f(t) = f(2)] - [’ (¥) + v(s)]) = (t — =} [f'(z) + u(t)]-
[¢'(y) + v(s)], or, if t # =,
h(t) = h(z)
t—zx

=[g'(y) + v(s)] - [f'(z) + u(t)].

Letting ¢ — x, we see that s — y, by the continuity of f, so that the right side of the
previous cquation tends to ¢'(y) f'(z). O

Theorem 5.8 (Rolle’s Theorem) Let f be defined on [a,b]; if f has a local maximum at
a point = € (a,b), and if f'(z) exists, then f'(z) = 0. (The analogous statement for
local minima also holds.)

Proof. Choose ¢ in accordance with Definition 5.7, sothata < t—=d < x < z+6 < b. If
z—6 <t <z, then %1_) > 0. Letting t — z, we sce that f'(z) 2 0. Ifz <t < z+6,

then % < 0, which shows that f'(z) < 0. Hence f'(z) = 0. O

Theorem 5.9 (Generalized Mean Value Theorem) If f and g are continuous real func-
tions on [a, b] which are diffcrentiable in (a, b), then there is a point z € (a, b) at which:

[/(b) = fla)]g'(z) = [9(b) - g(a)]f'(z)
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Proof. Put h(t) = [f(b)— f(a)]g(t)—[g(b) —g(a)] f(¢). Then h is continuous on [a,b], h
is differentiable in (a, ), and h{a) = f(b)g(a)— f(a)y(b) = h(b). To prove the theorem,
we have to show that h'(z) = 0 for some z € (a, b).

If h is constant, this holds for every = € (a,b). If h(t) > h(a) for some t € (a,b), let z be
a point on [a, b] at which h attains its maximum (Theorem 4.16). Because h(a) = h(b)
we know that = € (a,b), and Theorem 5.8 shows that h'(z) = 0. If h(t) < h{a) for
some ¢t € (a,b), the same argument applies if we choose for = a point on [a, b] where h
attains its minimum. O

Theorem 5.10 (Mean Value Theorem) If f is a real continuous function on [a, b} which
is differentiable in (a,b), then there is a point z € (a,b) at which

f(b) = f(a) = (b—a)f'(x)
Proof. Take g(z) = z in Theorem 5.9. (]

Theorem 5.11 Suppose f is differentiable in (a,b).

a) If f'(z) = 0 for all z € (a,b), then f is monotonically increasing.
b) If f/(z) = 0 for all z € (a,b), then f is constant.

c) If f/(z) < O for all z € (a,b), then f is monotonically decreasing.

Proof. All conclusions can be read off from the equation f(z2) — f(z;) = (w2 —x1) /' (2),
which is valid, for each pair of numbers z;, z; in (a, b) for some z between z; and z;. O

Theorem 5.12 (Intermediate Value Theorem for Derivatives) Suppose f is a real
differentiable function on [a,b] and suppose f'(a)} < A < f'(b). Then there is a point
€ (a,b) such that f'(z) = A

Proof. Put g(t) = f(t) — At. Then ¢'(a) < 0, so that g(t;) < g(a) for some ¢, € (a,b)
and g'(b) > 0, so that g(¢;) < g(b) for some t; € (a,b). Hence g attains its minimum on
[a, b} (Theorem 4.16) at some point .z such that a < < b. By Theorem 5.8, ¢'(x) = 0.
Hence f'(z) = A. O

Corollary If f is differentiable on [a, b], then f’ cannot have any simple discontinuities on
[a, ]

Theorem 5.13 (L’Hospital’s Rule) Suppose f and g are real and differentiable in (a, b),
and g¢'(z) # 0 for all z € (a, b}, where —o0 < @ < b < +9. Supposc

re _ ,

S x .
¢(z) ¢ -

If
f(z)—=0 and g(z)—-0 as zT—a
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or if
g(z) = +0  as  z—a,

then
/@,
g(=)

The analogous statcment is also true if z — b or if g(z) — —c0.

as r—a

Proof. We first consider the casc in which -~ € A < +00. Choose a real number ¢
such that A < ¢, and then choose r such that A < r < q. Because -—,—(-;- — Aasz —a,

there is a point ¢ € (a,b) such that ¢ < z < ¢ implies ;:g; <r. fa<z<y<e,

then Theorem 5.9 shows that there is a point ¢ € (z,y) such that % -’7:—3 <r.

Suppose that f(z) — 0 and g(z) — 0 as £ — a.. Letting £ — a in the previous
equation, we see that £{—!% Sr<ga<y<ec).

Next, suppose that g(z) — +o as ¢ — a. Keeping y fixed in % = ;;% <r,
we can choose a point ¢; € (a,y) such that g(z) > g(y) and g(z) > 0 il a < z < ¢;.

Multiplying this by [g{z) — g(¥)}/g(z), we obtain ﬁ:—; <r- zg; + ﬁ— If we let
z — a in this equation, we know that there is a point ¢; € (a, ¢;) such that [=) o q for

a(z)
(e <z <co).
Summing up ;5%} £r < gqgand ﬁ'((% < ¢ show that for any ¢, subject only to the
condition A < g, there is a point ¢; such that f(z)/g(z) < g ifa < z < ca.

In the same manner, if —o0 < A € 4+, and p is chosen so that p < A, we can find a
point ¢3 such that p < ;(;2 for a < < ¢3. And thus the conclusion follows. O

Theorem 5.15 (Taylor’s Theorem) Suppose f is a real function on [a, b], n is a positive
integer, f™*~1) is continuous on [a,b], f™(t) exists for every t € (a,b). Let , B be
distinct points of [a, b], and define:

P(t) Z f (a) (t o Ic

Then there exists a point £ between a and S such that

f {3 (.'17)

[(B) = P(B) + ——=(8 — o)™,

Proof. Let M be the number defined by f(8) = P(8) + M(8 — a)” and put g(t) =
f(t) = P(t) — M(t — a)". We have to show that n!Af = f™(z) for some = between o
and 8. By P(t) = Y07 L2 (¢ — o)* and g(t) = f(t) - P(t) — M(t — a)",

g™(t) = O (t) — nIM.
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Hence the proof will be complete if we can show that ¢ (x) = 0 for some z between
« and B.

Since P*(a) = f®{a) for k = 0,...,n—1, we have g(a) = ¢'(e) = --- = g™ V(a) = 0.
Out choice of M shows that g() = 0, so that ¢g’(z,) = 0 for some x; between « and /3,
by the mean value theorem. Since ¢'(«) = 0, we conclude similarly that g“(x2) = 0 for
some z2 between o and z,. After n steps we arrive at the conclusion that g™ (z,) = 0
for some 7, between o and 7,_,, that is, between a and £.

O

Theorem 5.19 Suppose f is a continuous mapping of [a,b] into R* and f is differentiable
in (a,b). Then there cxists = € (a, b) such that

If(b) — £(a)| < (b~ a)|E(z)].

Proof. Put & = f(b) = f(a), and define p(t) = €-f(t) for a < t < b. The ¢ is a real-
valued continuous function on [a, ] which is differentiable in (e,b). The mean value
theorem shows therefore that @(b) — p(a) = (b —a)¢'(z) = (b — a)e - F(z) for some
z € (a,b). On the other hand,

o(b) - p(a) =2 - £(b) ~2---f(a) = 2- = [e]".

The Schwarz incquality now gives [¢]2 = (b — a)|e - f(z)| < (b — a)le||f (z)|. Hence
|| < (b — a)|f (z)|, which is the desired conclusion. O
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Chapter 6 The Riemann-Stieltjes Integral

Definitions

Partition Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of
points zg, T, ..., T,, where

We write
Azi=zi—z, (i=1,...,n).

Integral Components Suppose f is a bounded real function on [a,b]. Corresponding to
cach partition P of [e,b] we put:

M; =sup f(r) (rioy S 7 < 10), m; = inf f(x) (zi) €7 < 3),
U(P,f) = Y. MiA;, L(P, f) = ) miAx,
- i=1 . t=1
J fdz =infU(P, f), f fdz = sup L(P, f)
a P Ya P

The last two are called the upper and lower Riemann integrals of f over [a, b] respec-
tively.

Riemann Integrable If the upper and lower integrals are equal we say that f is Riemann-
integrable on [a,b], we write f € Z (that is, Z denotes the set of Riemann-integrable
functions), and we denote the common value of the upper and lower integrals by:

b b
J fdz orby J f(z)dz
Alpha Let a be a monotonically increasing function on [a,b]. Corresponding to each par-
tition P of [a,b] we write
Aa; = a(z;)) - a(zi) (G=1,....n).
Note, Aq; = 0.

Integral Components Suppose f is a bounded real function on [a,b]. Corresponding to
each partition P of [a,b] we put:

U(P, f,0) =) MAa, L(P, f,a) = ) miAas,
i=1 =1
—b b
| raa=ipguee g0 | rda=swpi(ps,a)
a ¥ g P
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Riemann- Stieltjes Integrable If the upper and lower integrals are equal we denote their
common value by

J;bfda or by J;bf(a:) da.

This is the Riemann- Stieltjes integral of f with respect to « over [a,b]. If this exists,
we say that f is intcgrable with to « and we write f € Z(a)

Refinement We say that the partition P* is a refinement of P is P* o P.

Common Refinement Given two partitions, P, and P,, we say that P+ is their common
refinement if P* = Py u B,

Unit Step Function The unit step function I is defined by:

~J0 (z=<0),
He)= {1 (z > 0).

Vector-valued Functions Let fi,..., fi be real functions on [a,b] and let f = (fy,..., fi)
be the corresponding mapping of [a,b] into R*. If « increases monotonically on [, b],
to say that f € Z(a) means that f; € Z(a) for j = 1,...,k. If this is the case, we

define
b ) b
f fda = (I flda,...,f fkda).

In other words, § fd is the point in R* whose jth coordinate is § f; de.

Curve/ Arc/ Closed Curve/ Length/ Rectifiable A continuous mapping v of an in-
terval [a, b] into R* is called a curve in R*. To emphasize the parameter interval [a, ],
we may also say that v is a curve on [a,b]. If v is one-to-one, + is called an arc. If
v(a) = y(b), 7 is said to be a closed curve. It should be noted that we define a curve
to be a mapping, not a point set.

We associate to each partition P = {xy,...,x,} of [¢,b] and to each curve y on [a, b]

the number .

A(P,7) = Z [y(2:) — @il

i=1

The ith term in this sum is the distance between the points. Hence A(P,7) is the
length of a polygonal path with vertices at y{zp), ¥(z1),...,7{zn), in this order. As
our partition becomes finer and finer, this polygon approaches the range of v more
closely. Thus, length of - is:

A{y) = sup A(P, ),
If A(y) < oo we say that v is rectifiable.
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Theorems
Theorem 6.4 If P* is a refinement of P, then

L(P, f,a}) < L(P*,f,a) and U(P*,f,a) <U(P f,a).

Proof. To prove that L{P, f,a) < L(P*, f,a), suppose first that P* contains just one
point more than P. Let this extra point be z*, and suppose z;_; < z* < x;, where
z;—; and z; arc two consccutive points of P. Put w; = inf f(z) for ;- < £ < z* and
wy = inf f(x) for 2* < z < x;. Clearly w; = m,; and wy = m,; (previously m; = inf f(zx)
for z;_; € z < x;. Hence

L(P*, f,a) = L(P, f,a) = wi[a(z*) — a(zim1)] + wola(z:) — a(z*)] — mifa(z:) — a(zio))] = (wy -

If P* contains & points more than P, we repeat this reasoning k times, and arrive at
our conclusion. The proof of U(P*, f,a) < U(P, f,a) is analogous. 0

b =b
Theorem 6.5 Lf da < § fda

Proof. Let P* be the common refinement of two partitions P; and P;. By Theorem 6.4,
L(P, f,a) < L(P*, f,a) SU(P*, f,a) S U(P,, f,a). Hence L(P, f,a) < U(P, f,q).
If P is fixed and the sup is taken over all P, this gives {fdo < U(P,, f,a). The
theorem follows by taking the inf over all P, in the last equation. O

Theorem 6.6 f € Z(a) on [a,b] if and only if for every € > 0 there exists a partition P

such that:
U(Pafaa) = L(Pafsa) <Eg

Proof. For every P wehave L(P, f,a) < {fda < {fda < U(P, f,a). Thus, U(P, f,a)-
L(P, f,a) < € implies that 0 < ffda—lfda < ¢. Hence, if U(P, f,a) - L(P, f,a) < £
for every € > 0, we have gf do = f da, that is f € Z(a).

Conversely, supposc f € %Z(a), and let € > 0 be given. Then there cxist partitions P,
and P, such that U(P, f,a) — § fda < £, and { fda - L(P, f,a) < 5. We choose
P to be the common refinement of P, and P,. Then Theorem 6.4 together with the
aforementioned inequalities show that:

U(P.f,0) < U(Psfy0) < [ fdat 5 < L(R, fic) +e < L(Rf,a) 4
Thus, for partition P, U(P, f,a) — L(P, f,a) < ¢ O

Theorem 6.7 a) IfU(P, f,a)—L(P, f,a) < ¢ holds for some P and some ¢, then it holds
for every refinement of P.
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b) If U(P, f,a) — L(P, f,a) < ¢ holds for P = {xg,...,z,} and if s,,t; are arbitrary
points in [:L'.-_l,:s,-], then

n

S 1f(s) - f(t:)be < e

1=

c) If f € Z(«) and the hypotheses of (b) hold, then

<€

n b
3 F(t:)do — f fda

i=1

Proof. Theorem 6.4 implies (a). Under the assumptions made in (b), both f(s;) and
f(t:) lie in [my, M;], so that | f(s:) — f(t:)| < M; —m;. Thus

n

M f(se) = f(t:)|Aes < U(P, f,a) = L(P, f, ),

i=1
which proves (b). The obvious inequalities L(P, f,a) < )] f(t:)Ac; < U(P, f,a) and
L(P. f,e) < { fda < U(P, f,a) prove (c). O

Theorem 6.8 If f is continuous on [a,b] then f € %Z(a) on [a,b].

Proof. Let € > 0 be given. Choose n > 0 so that [a(b)—a(a)]n < e. Since f is uniformly
continuous on [a, b] (Theorem 4.19), there cxists a & > 0 such that |f(z) — f(t)| < nif
z,t € [a,b] and |z — t| < &. If P is any partition of [a,b] such that Az; < § for all 4,
then the above equation implies that M; —m, <75 (i — 1,...,n) and therefore

U(P, f,a) = L(P, f,a) = i(M,- - m;)Aa; € niAa,- = nfa(b) — afa)] < ¢.
i=1

t=1

By Theorem 6.6, f € Z(a). O
Theroem 6.9 If f is monotonic on [a, b], and if « is continuous on [, b], then f € Z(c).

Proof. Let € > 0 be given. For any positive integer n, choose a partition such that
Aw; = ﬂkltjﬂ“—) This is possible since « is continuous (Theorem 4.23).

We suppose that f is monotonically increasing (the proof is analogous in the other
case). Then M; = f(z;), m; = f(zi_) so that

U(P,f,0)-L(P. £,0) = X0 2D Sy o)) =

n

o) — 2@ 74y o)) <«

if n is taken large enough. By Theorem 6.6, f € #Z(«). O
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Theorem 6.10 Suppose f is bounded on [a,b], f has only finitely many points of discon-
tinuity on [a,b] and « is continuous at every point at which f is discontinuous. Then
f € Ra.

Proof. Let € > 0 be given. Put M = sup|f(z)|, let E be the set { points at which
f is discontinuous. Since E is finite and « is continuous at every point of E, we can
cover E by finitely many disjoint intervals [u;,v;] < [a,b] such that the sum of the
corresponding differences av;) — a(u;) is less that . Furthermore, we can place these
intervals in such a way that every point of E n (a, b) lies in the interior of some [u;,v;].
Remove the segments (u;, v;) from [a,b]. The remaining set K is compact. Hence f is
uniformly continuous on K, and there exists § > 0 such that |f(s) — f(t)| <eifse K,
te K, |s—t| <é.

Now form a partition P = {zo,z1,...,Z,} of [a,b], as follows: Each u; occurs in P.
Each v; occurs in P. No point of any segment (u;, v;) occurs in P. If z;_, is not one
of the u;, then Ax; < 4.

Note that M; — m; < 2M for every i, and that M; — m; < € unless z;_, is one of the
u;. Hence, as in the proof of Theorem 6.8

U(P, f,a) — L(P, f,a) < [a(b) — a(a)]e + 2Me.

Since ¢ is arbitrary, Theorem 6.6 shows that f € Z(a). (Note: if f and & have common
points of discontinuity, then f need not be in Z{a). O

Theorem 6.11 (Composition of Functions) Suppose f € Z(a) on [a,b], m < f < M,
¢ is continuous on [m, M], and h(z) = ¢(f(z)) on [a,b]. Then h € Z(a) on [a,b].

Proof. Choose € > 0. Since |phi is uniformly continuous on [m, M], there exists § > 0
such that § < € and |¢(s) — @(t)| < e if |s — | < J and s,t € [m, M].

Since f € Z(a), there is a partition P = {xq,z,,...,2,} of [a, b] such that U(P, f,a) -
L(P, f,a) < 6% Let M;,m; have the same meaning as in Definition 6.1 and let Af*,
m] be the analogous numbers for k. Divide the numbers 1,...,n into to classes: i€ A
ifM;—m,<éandie Bif M;—m; 2 4.

For i € A, our choice of § shows that M — m} < e.

Forie B, M! — m! < 2K, where K = sup|¢(t)|, m <t < M. Because U(P, f,a) —
L(P, [,a) < 6%, we have § 3,5 Ac; < 3. g(M; = m;i)Aa; < 8% so that 3.5 Aa; < 6.
If follows that:

U(P,h,a) = L(P,h,a) = D (M —m})Aa; + Y (M} — m})Aoy
€A ieB
< ela(d) — a(a)] + 2K§ < g[afd) — a(a) + 2K

Since € was arbitrary, Theorem 6.6 implies h € Z(c). 0
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Theorem 6.12 (Properties of Integrals) a) If fi, f> € Z(a) on [a,b], then fi + fo €
(), cf € Z (o) for every constant ¢, and

b b
j(cfl +f2)da=cj flda+ff2da

b) If fi(z) < fo(z) on [a, b], then

b
J- f]da < rfgda.

¢) If f e Z() on [a,b] and a < ¢ < b, then f € Z(a) on {e,c] and f € Z(a) on

[c,b], and
chda+Lbfda=J;bfda.

d) If f € Z() on [a,b] and if | f(z)| < M on [a,b], then

f/da

e) If fe Z(a,) and f € Z(az), then f € Z(a) + o) and

< Ma(a) — a(b)].

J;b Jd{ay +a2) = J;b fd(ay) + Lbfd(ag);

If f € Z(a) and c is positive constant, then f € Z(ca) and
b b
f fd(ca) = cj f da

Proof. If f = fi + f, and P is any partition of [a,b], we have
L(nylsa) o+ L(Paf2,a) < L(Paf)a) < U(Paf’a) < U(P7flaa) + U(‘P!f2!a)'

If fi € Z() and f, € Z(c), let € > 0 be given. There are partitions P; (j = 1,2)
such that U(P}, fj,a) — L(P;, fj,a) < €. Thesc incqualitics persist if Py and P arc
replaced by their common refinement P. Then our original string of inequalities implies
U(P, f,a) — L(P, f,a) < 2, which proves that f € Z(a).

With this same P we have U(P, fj,a) < §fijda + . Hence our original string of
inequalities implies § f da < U(P, f,a) < § fida + § fada + 2¢. Since € was arbitrary,
we conclude that § fda < { fi do + § f2 do. If we replace f; and fp with —fi and —fa,
the incquality is reversed and the equalities is proved. (]

Theorem 6.13 If f € Z(a) and f € Z(c) on [a,b], then:
8) fg € %(e);
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b) |f| € Z(a) and

f. fda| < 11| d

Proof. If we take |phi(t) = t?, Theorem 6.11 shows that f%inZ(c) if f € Z(a). The
identity 4fg = (f + )% — (f — g)? completes the proof of (a).

If we take ¢(t) = |t|, Theorem 6.11 shows similarly that |f| € Z(a). Choose ¢ = +1,
so that c€ fda > 0. Then |{ fda| = c{ fda = {cfda < §|f|da, sincecf < |f]. O

Theorem 6.15 If a < s < b, f is bounded on [a, ], f is continuous at s and a = I(z — s),
then

[[1da=10

Proof. Consider partitions P+ {xy, T1,Z2,23}, where zg = a,and x; = 5§ < Ty < 73 = b.
Then U(P, f,a) = M, L(P, f,a) = m,. Since f is continuous at s we sce that A, and
ma converge to f(s) as z; — s. O

Theorm 6.16 Suppose ¢, = 0 for 1,2,3,...,Y ¢, converges, {s,} is a sequence of distinct
points in (a, b) and

a(z) = i cul(z — 50)
n=1

Let f be continuous on {a,b]. Then

ffda = 3 cuflsn).

n=1

Proof. The comparison test shows that the series },°_| c,J(z — s,) converges for every
z. Its sum afz) is evidently monotonic, and a(a) = 0, a(b) = D c,.. Let € > 0 be
given, and choosc N so that 27\3*.1 ¢, < €. Put

N ©
a(z) = Z cl(z—s,) ofz)= Z cal(z — 85)
n=1 N+1

By theorem 6.12 and 6.15, S:fdal - Zﬁlc,.f(s,,). Since az(b) — az(a) < &, we sce
that |Sf:fdag| < Me, where M = sup|f(z)|. Since @ = a; + ay, it follows from these

equations that ‘Sz fdo— ?;1 cnf(sn)| < Me. If we let N - oo, we obtain the desired
equality. 0

Theorem 6.17 Assuine « increases monotonically and o/ € Z on [a, b]. Let f be a bounded
rcal function on [a,b]. Then f € %(a) if and only if fo' € Z. In that casc

J;bfda - J;b f(z)d (z) dz.
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Proof. Let € > 0 be given and apply Theorem 6.6 to o: There is a partition P =
{€0,...,%n} of [a,] such that U(P,a') — L(P,a’) < &. The mean value theorem
furnishes points ¢; € [z;-1,7;] such that Aa; = o'(t;)Az; for i = 1,....n. I s; €
[iz1,7:], then X, [/ (s:) — ' (t:)Az;i| < &, because U(P,a') — L(P,a') < € and hy
Theorem 6.7 (b). Put M = sup|f(z)|. Since 3., f(s:)Aa: = X, f(s:)o/(t:)Am; it
follows from the aformentioned sum that |35, f(s:i)Ac; — 230, f(s:)a/(s:)Az;| < Me.
In particular, Y., f(s:)Aa; < U(P, fo') + Me, for all choices of s; € [zi-1,z:] so that
U(P, f,a) < U(P, fo/)+Me. The same argument leads to U(P, fo') < U(P, f,a)+Me.
Thus |U(P, f,a) — U(P, fa')] < Me. Now we note that this remains true if P is

Tf,f da — T’;f (z)o'(z) dz| < Me. But e

is arbitrary. Hence ?‘:: fda = T: f(z)d/(x) dx, for any bounded f. The equality of the
lower integrals follows in the exact same way. O

replaced by any refinement. We conclude that

Theorem 6.19 (Change of Variables) Supposc ¢ is a strictly increasing continuous func-
tion that maps an interval [A4, B] onto [a,b]. Suppose a is a monotonically increasing
function on [a,b] and f € Z(a) on [a,b]. Define 8 and g on [A, B] by

B(y) = ale(y)), 9(y) = f(e(y)).

ded[i= Lbfda

Proof. To each partition P = {x_,...,z,} of [a,b] corresponds a partition @ =
{¥o,--.,yn} of [4,B], so that z; = (). All partitions of [A, B] are obtained in
this way. Since the values taken by f on [7;_1,7;] are exactly the same as those taken
by ¢ in [y:-1,u:], we see that U(Q, g,8) = U(P, f,a), L(Q.g,6) = L(P, f, ).

Since f € #(a), P can be chosen so that both U(P, f,a) and L(P, f,a) arc close to
{ f de. Hence the combinations of the equalities with Theorem 6.6 shows that g € Z(B)
and that the desired equivalence is true. a

Then g € Z(B) and

Theorem 6.20 Let f € Z on [a,b], for a < z < b, put

F(z) = Jx f(t)dt.

Then F is continuous on [a, b]; furthermore, if f is continuous at a point z; of [a, b],
then F is differentiable at zg, and F'(zo) = f(xo).

Proof. Since f € &, f is bounded. Suppose |f(t)] S Mfora<t<b Ifa<z<y<)b,
then |F(y) — F(z)| = |{ f(t) dt| < M(y — z), by Theorem 6.12 (c) and (d). Given
e > 0, we see that |F(y) — F(z)| < € provided that |y — x| < ¢/M. This proves
continuity (and, in fact, uniform continuity) of F.
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Now suppose f is continuous at zg. Given ¢ > 0, choose § > 0 such that | f(¢)— f(zo)| <
eif[t—zg) < d,anda <t < b. Hence,ifzp—d<s<zg<t<zp+danda<s <t b,
we have by Theorem 6.12(d),

[FO=29 - o) = | 2 [ 1) - sGan) ] <
It follows that F'(zg) = f(zo). O

The Fundamental Theorem of Calculus If f € % on [a, b] and if there is a differentiable
function F on [a,b] such that F’/ = F, then

jf(z F(5) - F(a).

Proof. Let € > 0 be given. Choose a partition P = {zo,...,z,} of [a,b] so that
U(P, f) = L(P, f) < €. The mean value theorem furnishes points ¢; € [z;_y,x;] such

that F(z;) = F(z;—y) = f(t:)Az; fori—1 ,n Thus Y ft) Az = F(b)— F(a). It
now follows from Theorem 6.7(c) that I F(b) Sa f(z) da:| < €. Since this holds
for cvery € > 0, the proof is complete. |

Theorem 6.22 (Integration by Parts) Suppose F' and G are differentiable functions on
[a,b], F' = fe Z, and G' = g€ Z. Then

b b
f F(a)g(x) dz = F)G(b) — F(a)C(a) -f /()G (x) de.

Proof. Put H(z) = F(z)G(z) and apply Theorem 6.21 to H and its derivative. Note
that H' € Z, by Theorem 6.13. 0

Theorem 6.24 If f and F map [a.b] into R*, if fe & on [a,b], and if F' = f, then
b
f f(t) dt = F(b) — F(a).

Theorem 6.25 If f maps [a, ] into R* and if f € %Z(a) for some monotonically increasing
function & on [a,b], then |f] € Z(a) and
b
< J |f] dex.

b
J fda

Proof. 1f fi,.... fi are the components of f, then |f| = (fZ +--- + f?)/2. By Theorem
6.11, each of the functions f? belongs to %Z(«); hence so does their sum. Since 22
is a continuous functions of z, Theorem 4.17 shows that the squarc-roots function is
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continuous on [0, M], for every real M. If we apply Theorem 6.11 once more, we see
that |f| € Z(«).

To prove the desired inequality, put y = {11,..., ) where y; = § f; da. Then we have
y = {fdo, and |y|*> = T y? = Zu; § fida = §(Xy;f;) da. By the Schwarz inequality,
Sy fi(t) < ly||f(t)|, hence Theorem 6.12 (b) implies |y|* < |y|§/flde. If y = 0, then
the inequality is trivial. If y # 0, division by |y| gives the incquality. O

Theorem 6.27 If o is continuous on [a, b], then 7 is rectifiable, and

b
Aw) = [ e

v de] < 2 () d.
Hence T'(P,vy) < SZW (t)| dt for every partition P of [a,b]. Consequently, T'(y) <
fo 1) dt.

To prove the opposite inequality, let £ > 0 be given. Since 7/ is uniformly continuous on
[a,b], there exists § > O such that |y'(s) —v'(t)| < e if [s—t| < 4. Let P = {zq,...,Tn}
be a partition of [a,b], with Az; < § for all ¢. If @iy < ¢ < &, it follows that
|v'(¥)] < |+'(z:)] + €. Hencee

Proof. If a < 7;—; < z; < b, then |y(z;) — y(zi-))| =

[ wena < wieias + e

Ti-1

r [ () + ' (z:) = ¥ (t)] dt’ + Az

Liwl

+ eAx;

f‘ ¥(@) — ()] dt

Tyl

J ¥ (2) dt‘ +

Ti~1

< |y(z:) = v(Tiz1)| + 26z,

If we add these inequalities, we obtain
b
f W(8)] dt < T(P,7) + 26(b — a) < T(7) + 2¢(b - a).

Since € was arbitrary S: |¥/ ()] dt < T'(y). This completes the proof. a
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Chapter 7 Sequences and Series of Functions

Definitions

Limit/ pointwise convergence/ sum Suppose {f,}, » = 1,2,3,..., is a sequence of
functions defined on a set F, and suppose that the sequence of numbers {f,(z)} con-
verges for every x» € £. We an then define a function f by

f(z) = im Joz)  (z€E)

Under these circumstances we say that {f,} converges on E, that f is the limit, or
the limit function, of {f,}, and that {f,} converges to f pointwise on E. Similarly, if
> fa(x) converges for every x € E, and if we define:

f@) =) falz) (ze€E)
n=1

the function f is called the sum of the series ¢ f,.

Uniform Convergence We say that a sequence of functions {f,},n = 1,2,3,..., converges
uniformly on E to a function f is for every £ > 0 there is an integer N such thatn > N
implies the following for all z € E:

fu(z) - f(z) <€

Supremum Norm If X is a metric space, (X'} will denote the set of all complex=values,
continuous, bounded functions with domain X. We associate each f € ¥ (X) with its
supremum norm

|I£| = sup | f(=)|.
zeX

Since f is assumed to be bounded, || f|| < c. It is obvious that || f|| = 0 if and only if
f(z)=0foreveryze X. fh=f+g:

[h(z)| < [f()] + g(z)] < ||FIl + [lgll

for all z € X; hence
LS+ gll < | £I| + ligl]-

%(X) as a Metric Space If we define the distance between f € ¥(X) and g € CX to be
[[f = gll, it follows that the Axioms for a metric are satisfied. Therefore, A sequence
{fu} converges to f with respect to the metric of € if and only if f, = f on X.

Pointwise Bounded Let {f,} be a sequence of functions defined on a set E. We say that
{fu} is pointwise bounded on E if the scquence {f,(z)} is bounded for cvery z € E,
that is, if there exists a finite-valued function ¢ defined on E such that

falz) < 0(z) (z€E,n=12.3,...).

(If {fa} is pointwise bounded on E and E; is a countable subset of E it is always
possible to find a subsequence {f,, } such that {f,, (z)} converges for cvery z € E;.)
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Uniformly Bounded We say that {f,} is uniformly bounded on E if there exists a number
M such that
|fulz)| < M (zeE, n=1,23,...).

(If {f.} is a uniformly bounded sequence of continuous functions on a compact set £,
there need not cxists a subsequence which converges pointwise on E. )

Equicontinuous A family & of complex functions f defined on a set E in a metric space
X is said to be equicontinuous on E if for every € > 0 there cxists a 6 > 0 such that

|f(z) - fly)l <€

whenever d(z,y) < §, 7,y € E, f € #. (Note: Every member of an equicontinuous
family is uniformly continuous.)

Algebra A family & of complex functions defined on a set E is said to be an algebra if: (i)
f+ge o, (il) fge o (iii) cf € &. for all f,g € o and for all complex constants c,
that is & is closed under addition, multiplication, and scalar multiplication.

Uniformly Closed If & has the property that f € & whenever f, € A (n = 1,2,3,...)
and f, = f on E, then & is said to be uniformly closed.

Uniform Closure Let % be the set of all functions which are limits of uniformly convergent
sequences of members of &. Then & is called the uniform closure of <.

Seperate Points Let & be a family of functions on a set E. Then & is said to separale
points on E if every pair of distinct points z;,z2 € E there corresponds a function
f € o such that f(z,) # f(z2).

Vanishes At No Point If to each z € E there corresponds a function g € & such that
g(z) # 0, we say that |A vanishes at no point of E.

Theorems

Theorem 7.8 (Cauchy) The sequence of functions { f,}, defined on E, converges uniformly
on E if and only if for every € > 0 there exists an integer N such that m =2 N, n 2> N,
z € E implies:

Ifu(z) - fm(m)l <€

Proof. Suppose {f,} converges uniformly on E, and let f be the limit function. Then
there is an integer N, such that n > N, x € E implies |f.(x) — f(z)| < 5, so that
ifvt(z) e fm(a:)l < Ifn(m) - f(z)l + |f(:L‘) - fm(m)l s¢ifn,m=N,zeE.

Conversely, suppose the Cauchy condition holds. By Theorem 3.11, the sequence
{f.(z)} converges, for every z, to a limit which we may call f(z). Thus the sequence
{f.} converges on E, to f. We have to prove that the convergence is uniform. Let
£ > 0 be given, and choose N such that |fa(z) = fm(z)! < €. Fix n and let m — o0.
Since fia(x) — f(x) as m — oo, this give |fa(x) — f(x)| < € for every n = N and every
e E, which completes the proof. 0
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Theorem 7.9 Suppose
lim fu(c) = f(z)  (zeE)
Put
M, = sup|fu(z) — f(z)|
el
Then £, — f uniformly on E if and only if M,, — 0 as n — infty.

Theorem 7.10 (M-test) Suppose {f,} is a sequence of functions defined on E. and sup-

pose
[falz)] < M, (ze E,n=1,2,3,...).

Then )] f, converges uniformly on E if Y, M, converges.

Proof. 1f 3} M, converges, then, for arbitrary € > 0, |37 fi(z)| € 3, M; < ¢ pro-
vided m and n are sufficiently large. Uniform convergence now follows from Theorem
7.8. O

Theorem 7.11 Suppose f, — f uniformly on a set £ in a metric space. Let z be a limit
point of E, and suppose that

%im falt) = A, n=1,23,...).
—

Then {A,} converges, and
im0 = fim, A

In other words, the conclusion is that:

lim lim f,(¢) = lilglo }im fa(?)

ez 00

Proof. Let € > 0 be given. By the uniform convergence of { f,,}, here exists N such that
nz2N,m2N,te Eimply |f,(t)— fm(t)| < e. Letting ¢ — = we obtain |A,—A,| < ¢
for n,mm 2 N, so that {A,} is a Cauchy sequence and therefore converges, say to A.
Next |f(t) — A| < |f(t) — falt)] + | fa(t) — An] + |An — Al. We first choose n such that
|f(t) = fu(t)| < § for all t € E (this is made possible by the uniform convergence), and
such that |A, — A| < §. Then, for this n, we choose a neighborhood V of z such that
falt) —An| < §ifteVnE t#x

Substituting the inequalities, we see that |f(t) — A| < ¢, provided te VA E, t # z.
This is equivalent to our desired equivalence. [

Theorem 7.12 If {f,.} is a sequence of continuous functions on E and if f,, =% f on E, then
[ is continuous on E.

Theorem 7.13 Suppose K is compact, and

a) {f.} is a sequence of continuous functions on K
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b) {fn} converges pointwise to a continuous function f on K,

¢) falz) 2 frsr(z) forallze K, n=1,2,3... ({f.} is a decreasing sequence)
Then f, = f on K.

Proof. Put g, = f. — f. Then g, is continuous, g, — 0 pointwise, and g, = gn+1. We
have to prove that g, — 0 uniformly on K.

Let ¢ > 0 be given. Let K, be the set of all z € I with g,(x) = e. Since g,
is continuous, I{, is closed (Theorem 4.8), hence compact (Theorem 2.35). Since
Gn = Gus1, we have K, © K,4,. Fix z € K. Since g,(z) — 0, we sce that = ¢ K, if
N is sufficiently large. Thus z ¢ [ K,. In other words (] K, is empty. Hence Ky is
empty for some N (Theorem 2.36). It follows that 0 < gn(z) < € for all z € K and for
all n > N. This proves the theorem. 0O

Theorem 7.15 The aforementioned metric makes %(X) a complete metric space. (That
is, a metric space in which every Cauchy Sequence converges

Proof. Let {f.} be a Cauchy scquence in ¥(X). This mecans that to cach € > 0
corresponds an N such that || fo= fm|| < £ifn = N and m 2 N. If follows (by Theorem
7.8) that there is a function f with domain X to which {f,} converges uniformly. By
Theorem 7.12, [ is continuous. Moreover, f is bounded, since there is an N such that
|f(z) — fa(z)| <1 for all z € X, and f, is bounded.

Thus f € €(X), and since f, = f on X, we have ||f — fu|| = 0 as n — 0, a

Theorem 7.16 Let a be monotonically increasing on [a, b], for n = 1,2,3,..., and suppose
fu =3 fon[a,b]. Then f € %(a) on [a,b] and

b b
fda = lim | f,da.
a n0Jda

Proof. It suffices to prove this for real f,,. Put &, = sup | fa(z) — f(z)|, the supremum
being taken over ¢ € = < b Then f, — e, < f < fu + €, so that the upper and
lower integrals of f satisfy S (fa = €n)da < §fda < §fda < §2(fa + €n) do. Hence

< {fda - §f da < 2eq[afb) — (a)]. Since e — O as n — (Theorem 7.9), the
uppcr and lower intcgrals of f are cqual.

Thus f € %Z(c). Another application of the previous formula now yiclds Sf; fda - Si’ fu dal <
en|a(b) — a(a)]. This implies the desired cquivalence. ' O

Corollary If f, € Z(c) on [a,b] and if
flz) = Z fal)  (a<z<h)
n=1
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the series converging uniformly on [a, b], then

ffda—Zf f dax

n=1

In other words, the series may be integrated term by term.

Theorem 7.17 Suppose {f.} is a sequence of functions, differentiable on [a,b] and such
that {f.(z0)} converges for some point zp on [a,b]. In {f'} converges uniformly on
[a, b], then {f,} converges uniformly on [a,b], to a function f, and

f(@) = lm fil@) (a<z<b).

Proof. Let € > 0be glven Choose N such that n,m > N, implies | f,(zo) — fm(z0)| < B
and |f,(t) — m(t)l < 3=a 2(b—a)
If we apply the mean value theorem 5.19 to the function f, — f,,, shows that |f,(z) —

()= L) + fin(8)] < ,‘[,f,:':) sfor any z and ¢ on [a, b], if n,m = N. The incquality

[fa(z) = fu ()| < [fa(®) = fin(2) = fal2o) + frnlZo)| + | fu(Zo) — fm (o)

implies that | f,(z) — fim(Z)| < € so that {f,} converges uniformly on [a,b]. Let f(z) =
lim,_. fo(z). Let us now fix a point z on [a,b] and define ¢,(t) = La)=/n(z) , O(t) =

t—x

M fora <t <b,t+#z Thenlim,.,¢,.(t) = fi(z). From |f,(z) = fm(z) = fu(t) +

fm( )] 2?%‘% we know that |¢,(2) — dm(t)| < ey SO that {¢n} converges uniformly,
for t # z. Since {f,} converges to f, we conclude that lim,_.o ¢,(t) = ¢(t) uniformly

foragt<b t+#zx.

If we now apply Theorem 7.11 to {¢,}, we see that imy_., ¢(t) = lim,_o fi{z); and
this is the desired equality by the definition of ¢(t). O

Theorem 7.18 There exists a real continuous function on the real line which is nowhere
differentiable.

Proof. Define p(r) = |r| (-1 < = < 1) and extend the definition of () to all real =
by requiring that ¢(z + 2) = ¢(z). Then, for all s and ¢, |<p(s) o(t) < |s—t|. In
particular, ¢ is continuous on R. Define f(z) = 37 (3 ) p(4"z). Since 0 < p < 1,
Theorem 7.10 shows that the series converges uniformly on R. By Theorem 7.12, f is

continuous on R.

Now fix a real number z and a positive integer m. Put é,, = i% +4™™ where the sign
is so chosen that no integer lics between 4™z and 4™(z + 4,,,). This can be dome, since
4™|8,u| = 3. Define 7, = ”"4"(”6"5':’)) —¢(4"3) \When n > m, then 4"6,, is an cven integer,
so that '7,, =0. When — <n<m, |7,| < 4“

Since |y;| = 4™, we conclude that

flz + 63:2 —f@)| _ Z’:;’ G)"%

Asm — <0, 6, — 0. If follows that f is not differentiable at z. a

m~1
1
> 3" - 2 3" = 5(3"1 + 1)

nwi)
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Theorem 7.23 If {f,} is a pointwise bounded sequence of complex functions on a countable
set E, then {f,} has a subsequence {f,,} such that {f,, ()} converges for every x € E.

Proof. Let {z;}, i = 1,2,3,..., be the points of E, arranged in a sequence. Since
{f.(z1)} is bounded, there exists a subsequence, which we shall denote by {fi«}, such
that {fix(z1)} converges as k — co.

Let us now consider sequences Sy, S, S3, ... which we represent by the array:
S1: fin frzy fize- -

S2: far, f22, fa3,---
Ss: fans Faz fage -

and which have the following propertics:

a) S, is a subsequence of S,,_; for n = 2,3,4,...

b) {fax(zn)} converges as k — oo (the boundedness of {f,(z.}} makes it possible to
choose S, in this way);

¢) The order in which the functions appear is the same in each sequence; i.e.m if one
function precedes another in S, they are in the same relation in every S, until
one or the other is deleted. Hence, when going from one row in the above array
to the next below, functions may move to the left but never to the right.

We now go down the diagonal of the array; i.e., we consider the sequence S : fi1, f22, f33,---

By (c), the sequence S is a subsequence of S,, for n = 1,2,3,.... Hence (b) implies
that f, () converges, as n — o, for every z; € E. [

Theorem 7.24 If K is a compact metric space, if f, € €(K) for n = 1,2,3,dots, and if
{fa} converges uniformly on I, then {f,} is equicontinuous on XK.

Proof. Let € > 0 be given. Since {f,} converges uniformly, there is an integer N such
that || fu — fn|| <. Since continuous functions are uniformly continuous on compact
sets, there is a § > 0 such that |fi(z) — fi(y)| <eif1 i< N and d(z,y) < 4.

If n > N and d(z,y) < 4, it follows that
|fa(z) = [o@)] < |fal@) = fn(@)] + () = fn()| + | v (W) — faly)l < 3e.

This proves the theorem. O

Theorem 7.25 If K is compact, if f, € €(K) for n = 1,2,3,dots, and if {f,} is pointwise
bounded and equicontinuous on K, then

a) {fa} is uniformly bounded on K,

b) {f.} contains a uniformly convergent subsequence.
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Proof. a) Let € > 0 be given and choose § > 0, in accordance with Definition 7.22,
so that |f,(z) — fa(y)| < € for all n provided that d(z,y) < 4.

Since K is compact, there are finitely many points p;,...,p, in K such that
to every £ € K corresponds at least one p; with d(z,p;) < 4. Since {f,} is
pointwise bounded, there exist M; < oo such that |f.(p;)] < M; for all n. If
M = max(M, ..., M,), then |f,(z)| < M + ¢ for every z € K. This proves (a).

b) Let E be a countable dense subset of . Theorem 7.23 shows that {f,} has a
subsequence {f,,} such that {f,,(z)} converges for every z € E.

Put f,,, = g;, to simplify the notation. We shall prove that {g; }converges uniformly
on K.

Let € > 0, and pick § > 0 as in the beginning of this proof. Let V(z, ) be the set
of all y € K with d(z,y) < 4. Since E is dense in K, and K is compact, there are
finitely many points z,...,Zn in E such that K < V(2,8) u -+ u V(zp, d).

Since {g:(z)} converges for every z € E, there is an integer N such that |g;(z,) —
g;(z,)| <€ whenever i 2 N, j = N,1<s<m.

If z € K, then z € V{z,, §)for some s, so that |f;(z) — g:(z,)] < ¢ for every i. If
i2 N, j= N, it follows that

l9:(z) — 9;(z)| < lgi(z) — gilz,)| + |gi(zs) — gi(zs)| + |g5(z,) — g;(x)] < 3¢

This completes the proof.
O

Theorem 7.26 (Stone-Weierstrass Theorem) If f is a continuous complex function on
[a, ], there exists a sequence of polynomials P, such that

lim P,(z) = f(x)

Tl

uniformly on [a,b]. If f is real, the P, may be taken real.

Proof. We may assume, without loss of generality, that [a,b] = [0,1]. We may also
assume that f(0) = f(1) = 0. For if the theorem is proved for this case, consider
g(z) = f(z) = f(0) — z[f(1) — f(0)]. Here g(0) = g(1) = 0, and if g can be obtained as
the limit of a uniformly convergent sequence of polynomials, it is clear that the same
is true for f, since f — g is a polynomial. Furthermore, we define f(z) to be zero for
z outside of [0,1]. Then f is uniformly continuous on the whole line.

We put Qn(z) = c,(1 — 2*)" where c, is chosen so that SilQn(:r) dr = 1. We need
some information about the order of magnitude of ¢,. Since
1 \ 1 \ YN \ YN \ 4 1
1z "d:z:=2J 1-z "dx;ZJ l-z "d:n)ZJ 1-nz*)dz = —= > —,
|a-ztraz=2f a-srase [ Ca-srase [ o= 2n s 2

it follows that ¢, < 4/n.
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The inequality (1 — z%)® > 1 — nz? which is used above is easily shown to be true by
considering the function (1 —?)" — 1+ nz? which is zero at = 0 and whose derivative
is positive in (0,1) . For any § > 0 the fact that ¢, < y/n implics Q.(z) < /(1 -48%)"
(6 < |l < 1)

Now set P,(z S f(z + t)Qn(t) dt. Our assumptions about f show, by a simple

change of vanable, that P,(x) = §'2° f(z + )Qa(t) dt = §o f()Qu(t — z) dt, and the
last integral is clearly a polynomlal in z. Thus {P,} is a sequence of polynomlals,
which are real if f is real.

Given £ > 0, we choose § > 0 such that |y — z| < 6 implies |f(y) = f(z)| < 5. Let
M = sup|f(z)|. Using the fact that Q,(z) = 0 in contingency with our hndmgs, we
see that for 0 < z < 1,

1 1
7o) - 1@ = | [ U@+ - 110 & < [ 15w +0) - r@ien0 @

=35 S 1
oM f Q.(t) dt + %_[ Q,.(t) dt + 2M J Q. (t)dt < AM/n(1 — 8*)" + % <e
-1 -8 é

for all large enough N, which proves the theorem. O

Corollary 7.27 For cvery interval [—a,a] there is a scquence of real polynomials P, such
that P,(0) = 0 and such that
lin&) P,(z) = |z|
n—

uniformly on [—a,a].

Proof. By Theorem 7.26, there cxists a sequence {Py} of rcal polynomials which con-
verge to I:L'| uniformly on [—a,a]. In particular P?(0) — 0 as n — 0. The polynomials
P,(z) = — P2(0) have desired properties. O

Theorem 7.29 Let & be the uniform closure of an algebra & of bounded functions. Then
2 is a uniformly closed algebra.

Proof. If f € @ and g € 4B, there cxist uniformly convergent sequences {f.}, {g.}
such that f, — f, g» — g and f, € &, g, € &. Since we are dealing with bounded
functions, it is easy to show that f, + gn — f + g, fagn — fg, cfn — cf, where cis
any constant, the convergence being uniform in each case.

Hence f+ g€ @B, fge B, and cf € B, so that & is an algebra.. By Theorem 2.27, 2
is (uniformly) closcd. O

Theorem 7.31 Suppose & is an algebra of functions on a set E, & separates points on E,
and |A vanishes at no points of E. Suppose z;,z, are distinct points of E, and ¢, ¢z
are constants. Then & contains a function of f such that:

flz)=¢q [(@2) =c2
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Proof. The assumptions show that & contains functions g, &, and % such that g{z;) #
glxa), h(xy) # 0, k(xq) # 0. Put u = gk —g(z))k and v = gh — g(x2)h. Then u,v e &,
z(z) = v(zs) = 0, u(zz) # 0, and v(z;) # 0. Therefore f = e + atey has the

desired properties. (|

Theorem 7.32 Let & be an algebra of real continuous functions on a compact set K. IF
&/ separates points on K and if &/ vanishes at no point of K, then the uniform closure
A of & consists of all rcal continuous functions on K.

Proof. Step 1: If f € &, then |f| € B.

Let a = sup | f(z)| and let € > 0 be given. By Corollary 7.27 there exists real numbers
e1,...,Cq such that Y7 ey’ — |y|| < € for —a < y < a. Since & is an algebra, the
function g = 3", ¢ f* is a member of . Thus, |g(x) — |f(z)|| < € for z € K. Since
2B is uniformly closed, this shows that |f| € £.

Step 2: If f e % and g € &, then max(f, g) € & and min(f, g) € B. (By max(f, g) we
mean the function & defined by

hz) = {f(:v) 1(z)  g(z)
g9(z) f(=) < g(z)

and min(f, ¢) is defined likewise)

Step 2 follows from step 1 and the identities max(f,g) = %2 + !L;_gl’ min(f,g) =

L}‘Z - ]%l By iteration, the results can of course be extended to any finite set of
functions: If fi,..., f, € &, then max(fy,..., fu) € &, and min(fy,..., f,, € B.

Step 3: Given a real function f, continuous on K, a point z € K and € > 0, there
exists a function g, € & such that g,(z) = f(z) and g.(t) > f(t) —e for t € K.

Since & = & and & satisfies the hypotheses of Theorem 7.31 so does &. Hence, for
every y € I, we can find a function h, € & such that h,(r) = f(x), h,(y) = f(y). By
the continuity of &, there exists an open set J;,, containing y, such that A, () > f(t)—e¢.
Since K is compact, there is a finite set of points y,....,y, such that K < J, u---uJdy,.
Put g, = max(hy,,...,h,,). By Step 2, g. € %, and the aforementioned relations show
that g, has the other required properties.

Step 4: Given a real function f, continuous on K, and € > 0 there exists a function
h € % such that lh(z) — f(z)| < &. Since & is uniformly closed, this statement is
equivalent to the conclusion of the theorem.

Let us consider the functions g., for each = € K, constructed in step 3. By the
continuity of g, there exist open sets V, containing z, such that g.(¢) < f(t) + ¢
(t € V7). Since K is compact, there exists a finite set of points x,,..., T, such that
KcV,uV,,. Puth=min{g,,...,9:..) Bystep 2, he & and k(t) > f(t) —¢.
However By Step 3, h(t) < f(t) + £. Thus, |h(z) — f(z)| < €.
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Theorem 7.33 Suppose & is a self-adjoint algebra of complex continuous functions on a
compact set I, & separates points on I, and & vanishes at no point of K. Then the
uniform closure & of |A consists of all complex continuous functions on K. In other

words, & is dense in € (K).

Proof. Let &z be the set of all real functions on K which belong to &7.

If fe o and f = u + iv, with u,v € R, then 2u = f + f, and since & is self-adjoint,
we scc that u € @. If 2, # zo, there cxists f € & such that f(z,) = 1, f(z2) = 0;
hence 0 = u(zs) # u(z;) = 1, which shows that o/ separates points on K. If z € K,
then g(z) # 0 for some g € &, and there is a complex number A such that Ag(z) > 0;
if f= Ag, f = u+ iv, it follows that u(z) > 0; hence &g vanishes at no point of K.

Thus /g satisfies the hypotheses of Theorem 7.32. It follows that every real continuous
function on K lies in the uniform closure of @/, hence lies in &. If f is a complex
continuous function on K, f = u+iv, then u € B, v € &, hence f € . This completes
the proof. O
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Chapter 8 Some Special Functions

Definitions

Analytic Functions Functions of the form

fle) = Y, eala - )"

n=0
Exponential Function Define
X _n
2
E(z)= ), =
n=0
The ratio test shows that this series converges for every complex z. Note:
2]
(z+w)*
E(z)E(w) = Z}) ~— =Bz +w)
n=

Thus, E(z)E(-z) = 1. Further,

E'(2) = lim E(z+ h) - E(2) — lim E(z+h)—-1
h—0 h He0 h_

E(2)
Let E(1) =e. So E(n) = E(1+1+4+1+---+1) = E(1)E(1)... E(1) = &". This holds
for any n € Q. Furthermore, E(z) = ¢* = supe? (p < z, p rational).

Triginometric Functions Define the following:
Clz) = %[E(z’w) ¢ E(-iz)]  S(z) = %[E(im) - B(—iz)]
Note: E(ix) = C(x) + ¢S(z). Further,
C'(z) =-S(z) S'(z)=C(X)
Ultimately equivalent to cos and sin.

Trigonometric Polynomial A trigonometric polynomial is a finite sum of the form

N
f(z) =ay + Z (@, cosnz + b, sinnzx) (zreal),
n=1
where ag,...,an,b;,...,by are complex numbers. The above identitics can also be
written in the form

N
f(.l.‘) L chetu:z
-N
It follows that:
_l_ einz: dr = 1 ('l'fn = 0)
27 J_» 0 (¢fn=+1,%2,...)
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Fourier Coefficients If f is an integrable function on {—m, 7], the numbers c,, defines by:
1 (" »
— mnxr d
Cm = 5— _[.,, f(z)e™ dzx

for all integers m are called the Fourier coefficients of f,

Fourier Series The series: .

Zr‘ Pinx
e

~o0

formed with the Fourier coefficients is called the Fourier series of f.

Orthogonal System of Functions/ Orthonormal Let {¢.} (» = 1,2,3,...) be a se-
quence of complex functions on [a, b] such that

Jb In(2)pm(z)de =0  (n#m).

Then {¢,} is said to be an orthogonal system of functions on [a,b]. 1f in addition:

b
[1entoae =1
a
for all n, {¢,} is said to be orthonormal.
Gamma Function For 0 <z <

= o]
I(z) = J gl di,
0

The integral converges for these . (When z < 1, both 0 and @ have to be looked at.)

Theorems

Theorem 8.1 Suppose the series
(s 8]
Y, et
n=0

converges for |z| < R, and define

f@) =Y eaz”  (la| <R).

n=0

Then the series converges uniformly on [~ R+¢, R—¢] no matter which € > 0 is chosen.

The function f is continuous and differentiable in (- R, R).
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Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all orders in (- R, R),
which are given by:

f®(z) = i nn—-Dmn=2)...(n—k+ Degz™* .
n=k

In particular, f*}(0) = klcy.

Theorem 8.2 Suppose ), ¢, converges. Put

Then

lim f(z) = Z(;)c,.

Theorem 8.3 Given a double sequence {a;;},:=1,2,3,...,7=1,2,3,..., suppose that:

v 0]
> lag = b
jm=1
and Y, b; converges. Then
o ®© €L oo
5150~ 515,

i=1 jm] J=li=

—

Theorem 8.4 (Taylor’s Theorem) Suppose

f(z) =Y caz®  (lz] <R).

n=0

If -R < a < R, then f can be expanded in a power series about the point z — a which
converges in |z — a| < R — |a|, and

©  fin)(g
) =2 8@ 0y (r—al<R-a)
n=0 :

Theorem 8.5 Suppose the series ), a,&™ and Y, b,z™ converge in the segment S = (- R, R).
Let E be the set of all z € S at which

[ea} [»4]
Z " = Z bpz™.

n=() n=0

If E has a limit point in S, then a, = b, forn =0,1,2,.... Hence the above equation
holds for all z € S.

67



Theorem 8.6 Let e be defined on R! as it is above. Then:
a) e* is continuous and differentiable for all x;
b) () = ¢
c) € is a strictly increasing function of z and e* > 0;
d) &tV = ¢*e¥;
e) € —» +was r — 4+, e = 0as r — —x;
£) limg .o 2™e™™ = 0 for every n.
Theorem 8.7 a) The function E is periodic, with period 2.
b) The functions C and S are periodic with period 27.
c) If 0 <t < 27 then E(it) # 1.

d) If z is a complex number with |z| = 1, there is a unique 7 € [0,27) such that
E(it) = z.

Theorem 8.8 Suppose ag, .. .,a, arc complex number, n = 1, a,, # 0,

n

P(z) = Z apz®.

0

Then P(z) = 0 for some complex number z.

Theorem 8.11 Let {¢,} be orthonormal on [a.b]. Let

n

.9,,(.’17) — Z Cm¢m("r)

m=1

be the nth partial sum of the Fourier series of f, and suppose

(@) = 3 Tm(z).

me=1

Then . ,
[1r-sipde< [ 1r-tfas,
and equality holds if and only if v, = ¢
Corollary If f(z) = 0 for all z in some segment J, then lim,, (f;z) = 0 for every z € .J.

Theorem 8.15 If f is continuous (with period 27} and if ¢ > 0, then there is a trigonometric
polynomial P such that |P(z) — f(z)! < € for all real z.



Theorem 8.16 (Parseval’s Theorem) Suppose f and g are Riemann-integrable func-
tions with period 27, and

@ o
f(.‘L') ~ chein:r g(:z:) ~ Z’Ynei'w-
—0 -

Then i
lim L If(z) — sn(f;x)*dr =0

N—sow 27

-

1. — o
ooint?, f(z)9(z) dz = ;:Omn

[o o]
%WLWWﬁ=§mP

Theorem 8.18 a) The function cquation:
I(z + 1) = z(z)

holds if 0 < z < 0.
b) Mn+1)=nlforn=1,23,....

c) logT is convex on (0, ®).
Theorem 8.19 If f is a positive function on {0, ) such that

8) f(z+1) = 2/(x)
b) £(1) =1

c) log f is convex
then f(z) = ['(z).
Theorem 8.20 If x > 0 and y > 0, then

' y=1 4, _ LE@T()
J, a0 %= T +y)

This integral is the so called beta function B(z,y).

Stirling’s Formula This provides a simple approximate expression for I'(z + 1) when z is
large (hence for n! when n is large). The formula is

. Mz+1)
o ey vans
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Chapter 9 Functions of Several Variables

Definitions

Vector Space A nonempty set X < R” is a vector space if x + y € X and cx € X for all
x,ye X,ceR.

Linear Combination If x;,...,X; € R" and ¢;,...,c, are scalars, the vector
Xy + o+ CreXg
is called a linear combination of x,,...,X.

Span If S  R" and if E is the set of all linear combinations of elements of S we say that
S spans E, or that E is the span of S. Observe that every span is a vector space.

Independent/ Dependent A set consisting of vectors x,, . . . , x;. (we shall use the notation
{z1,...,%x} for such a set) is said to be independent if the relation c;x) + -+ +cxx = 0
implies that ¢; = -+ = ¢, = 0. Otherwise {z;,...,x} is said to be dependent.

Dimension If a vector space X contains an independent set of 7 vectors but contains no
independent set of 7 +1 vectors, we say that X has dimension 7, and write: dim X = r.

Basis/ Coordinates/ Standard Basis An independent subset of a vector space X which
spans X is called a basis of X. Obscrve that if B = {z,...,x%,} is the basis of X, then
every x € X has a unique representation of the for x = )] ¢;x;. Such a representation
exists since V spans X, and it is unique since B is independent. The numbers ¢, ..., ¢,
are called the coordinates of x with respect to the basis B. The most familiar example
of a basis is the set {ej,...,e,}, where e; is the vector in R" whose jth coordinate is
1 and whose other coordinates are all 0. If x e R®, x = (zy,...,%,), then x = 3 z;e;.
We shall call {ey,...,e,} the standard basis

Linear Transformation A mapping A of a vector space X into a vector space Y is said
to be a linear transformation if

Alex) + x2) = cA(x;) + A(zg)

for all x;,%2 € X and all scalars c. Note that Ax = A(x). Further, a linear transfor-
mation A of X into Y is completely determined by its action on any basis.

Linear Operators A linear transformations of X into X are often called linear operators
on X.

Invertible If A is a lincar opcrator on X which (i) is onc-to-one and (ji) maps X onto X, we

say that A is invertible. In this case we can define an operator A" on X by requiring
that A~!(Ax) = x for all x€ X.
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Set of Linear Transformation Let L{X,Y) be the set of all linear transformations of
the vector space X into the vector space Y. Instead of L(X, X) we shall simply write
L(X). If A1, A; e L(X,Y) and if ¢, c2 arc scalars, define ¢4y + c24; by

(ClAl -+ C2A2)x = 1 A1X + cpAzX
Clearly c1 Ay + c2A2 € L(X,Y)

Product If X,Y, Z arc vector spaces and if A € L(X,Y) and B € L(Y, Z), we define their
product BA to be the composition of A and B:

(BA)x = B(Ax) (xe X)
Then BA e L(X,Z). Note that BA need not be the same as AB,evenif X =Y = Z.

Norm For A € L(R®*,R™), define the norm ||A|| of A to be the sup of all numbers |Ax],
where x ranges over all vectors in R® with |x| < 1. Observe that the inequality

| Ax| < || Al[[x]
liolds for all x € R™. Also, if A is such the |[Ax| < Ajx| for all x € R", then [|A]] <\
Matrices Omitted, trivial.

Differentiable Suppose E is an open set in R", f maps E into R™ , and x € E. If there
exists a linear transformation A of R™ into R™ such that
lim f(x + h) — f(x) — Ah| _

h—0 !hl

0

then we say that f is differentiable at x, and we write:
fi(x)=A

If f is differentiable at every x € F we say that f is differentiable in E.
If |h! is small enough then x + h € E, since E is open. Thus f(x + h) is defined,
f(x + h) e R™, and since & € L(R",R™), Ah € R™. Thus

f(x + h) — f(z) — Ah e R™.

Notes a)
lim |f(x + h) — f(x) — Ah)| _
h—0 |h]
can be rewritten in the form:

f(x + h) — f(x) = f'(x)h + r(h)

0

where the remainder r(h) satisfies: limy,_ 1%3—)1 = 0. That is, for fixed x and small

h the left side is approximately equal to £(x)h, that is, to the value of the linear
transformation applied to h.
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b) If fis differentiable in E then f'(x) is a function that maps £ into L(R",R™).

c) fis continuous at any point at which f is differentiable.

d) The aforementioned derivative in part (a) is called the differential of f at x, or
the total derivative, to distinguish it from the partial derivatives.

Components Consider f : £ ¢ R* — R™. Let {e],...,e,} and {uy,...,u,} be the
standard bases of R” and R™. The components of f are the real functions fi,..., fm
defined by

f(x) = if,-(x)ui (xe E)

Partial Derivative For x€ E, 1 <i < m, 1 < j < n, we define:
f,’(x + te,) — f,‘(X)
t 1

(D fi)(x) = !1_{‘(}

provided the limit exists. Writing fi(z1,...,,) in place of fi(x) we scc that D;f; is
the derivative of f; with respect to z;, keeping the other variables fixed. The notation
gf} is therefore often used in place of D, f;, and D, f; is called a partial derivative.

Continuously Differentiable A differentiable mapping f of an open set £ < R” into R™
is said to be continuously differentiable in E if f is a continuous mapping of E into
L(R™,R™). More explicitly, it is required that to every x € £ and to every £ > 0
corresponds a & > 0 such that

I (y) - £(x)l| <&
ifye Fand |x - y| <é.

Contraction Let X be a metric space, with metric d. If ¢ maps X into z and if there is a
number ¢ < 1 such that

d((z), p(v)) < cd(z,y)
for all z,y € X, then ¢ is said to be a contraction of X into X.

Fixed Point For ¢ : X — X a point = € X such that ¢(z) = z is called a fired point.

Notation for Implicit Function Theorem Ifx = (z,,...,z,) e R*andy = (y1,...,¥m) €
R™, let us write (x,y) for the point {or vector)

n+m
(mb-“)mn’yh--'yyfn) eR

In what follows, the first entry in (x,y) or in a similar symbol will always be a vector
in R" and the second a vector in R™.

Every A € L(R"*™, R™) can be split into two linear transformations A, and A, defined
by
A)zh = A(h,0), Ak = A(0,k)

for any h e R*, k e R™. Then A4, € L(R") and A, € L(R™, R"), and
A(h,k) = A;h + gk
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Null Space The null space of A, 4 (A), is the set of all x € X at which Ax = 0. It is clear
that (A) is a vector space in X.

Range The range of A, Z(A), is a vector space in Y.
Rank The rank of A is defined to be the dimension of Z(A).

Projection Let X be a vector space. An Operator P € L(X) is said to be a projection in
X if P*= P.
More explicitly, the requirement is that P(Px) = Px for every x € X. IN other words,
p fixes every vector in its range Z#(P). Some elementary properties:
a) If P is a projection in X, then every x € X has a unique representation of the
form x = x; + %, where x; € Z(P), x2 € N (P).

b) If X is a finite-dimensional vector space and if X, is a vector space in X, then
there is a projection P in X with Z(P) = X,.

Determinants If (5,...,J,) is an ordered n-tuples, define
S(jly oo ajn) = Hsgn(jq - Jp)
p<q

where sgn is the sign. Let [A] be the matrix of a lincar operator A on R", relative to
the standard basis {e,...,e,}, with entries a;; in the ith row and jth column.

det[A] = 2 S(j], 500 -jn)alj1a2jz « e Qnj,
The sum extends over n-tuples of integers. Let x; be the ith column vector of A.

det(xy,...,x,) = det[A].

Jacobians If f maps an open set £ < R" into R", and if f is differentiable at a point x € E,
the determinant of the lincar operator f'(x) is called the Jacobian of f at x:

Je(x) = det f'(x)

For (y1,...,y.) = f(z1,...,z,), we shall also use the notation:
a(yl) 1o 7yﬂ)
ozy,...,Tn)

Second-order Partial Derivatives Suppose f is a real function defined in an open set
E < R" with partial derivatives Dy f,..., D, f. If the functions D, f are themselves
differentiable, then the second-order partial derivatives of f are defined by

Dijf = DiD;f  (i,j=1,...,n)
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Theorems

Theorem 9.2 Let r be a positive integer. If a vector space X is spanned by a set of r
vectors, then dim X < r.

Proof. If this is false, there is a vector space X which contains an independent set
Q@ = {y1,.--1¥,+:} and which is spanned by a set Sy consisting of r vectors.

Suppose 0 < i < r, and suppose a set S; has been constructed which spans X and
which consists of all y; with 1 < j < ¢ plus a certain collection of r — ¢ members
of Sy, say X1,...,%X,—;. (In other words, S; is obtained from S, by replacing 7 of its
elements by members of Q, without altering the span.) Since S; spans X, y;,, is in the
span of S;; hence there are scalars ay, ..., i1, bi,...,be_;, with a;4; = 1, such that
Z;“l a;y, + 2y kX = 0. If all by's were 0, the independence of @ would force all
a;'s to be 0, a contradiction. If follows that some x, € S; is a linear combination of the
other members of T; = S; u {y;,;}. Remove this x; from T; and call the remaining set
Si+1. Then S;.; spans the same set as T}, namely X, so that S;;; has the properties

postulated for S; with 7 + 1 in place of <.

Starting with S;, we thus construct sets Sy,...,S,. The last of these consists of
¥i,--+,¥r, and our construction shows that it spans X. But Q is independent; hence
¥,41 i not in the span of S,. This contradiction cstablishes the Theorem. O

Corollary dimR" = n

Proof. Sine {e;,...,e,} spans R", the theorem shows that dim R" < n. Since {ey,...,e,}
is independent, dimR" > n. (]

Theorem 9.3 Suppose X is a vector space, and dim X = n.

a) A set E of n vectors in X spans X if and only if E is independent.

b) X has a basis, and every basis consists of n vectors.

c) If1 <7 <nand {y,...y,} is an independent set in X, then X has a basis
containing {y,,...¥:}.

Proof. Suppose E = {xi,....X,}. Since dimX = n, the set {x),...,Xn,y} is depen-
dent, for cvery y € X. If E is independent, it follows that y is in the span of £; hence
E spans X. Conversely, if E is dependent, one of its members can be removed without
changing the span of E. Hence E cannot span X, by Theorem 9.2. This proves (a).

Since dim X = n, X contains an independent set of n vectors, and (a) shows that cvery
such set is a basis of X; (b) now follows from 9.1(d) and 9.2.

To prove (c), let {Xi,...,X,} be a basis of X. The set S = {y;,..., ¥, X1,...,Xn}
spans X and is dependent, since it contains more than n vectors. The argument used
in the proof of Theorem 9.2 shows that one of the x;’s is a linear combination of the
other members of S. If we remove this x; from S, the remaining set still spans X. This
process can be repeated r times and leads to a basis of X which contains {y,,...,y,},
by (a). O
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Theorem 9.5 A linear operator A on a finite-dimensional vector space X is one-to-one if
and only if the range of A is all of X.

Proof. Let {xy,...,X,} be a basis of X. The linearity of A shows that its range Z(A)
is the span of the set @ = {Ax,,..., Ax,}. We therefore infer from Theorem 9.3(a)
that Z(A) = X if and only if @ is independent. We have to prove that this happens
if and only if A is one-to-one.

Supposc A is one-to -one and Y, ¢;Ax; = 0. Then A3 eix:) = 0, hence Y, cz; = 0,

hence ¢; = -+ = ¢, = 0, and we conclude that @ is independent.
Conversely, suppose @ is independent and A(} ¢;z;) = 0. Then 3 c;Ax; = 0, hence
¢ == ¢, =0, and we conclude: Ax = 0 only if x = 0. If now Ax = Ay, then

Az - y) = Az — Ay = 0, so that z — y = 0, and this says that A is one-to-one. O

Theorem 9.7 a) If A € L(R®,R™), then ||[A|]] < o and A is a uniformly continuous
mapping of R” into R™.
b) If A, B € L(R",R™) and c is a scalar, then

1A+ Bl < ||AI[+1IBll, Al = |ll|All

With the distance between A and B defined as ||A — B||, L(R"*, R™) is a metric
space.

c) If Ae L(R",R™) and B € L(R", R*) then
[[BA]| < [|BI||[4ll

Proof. a) Let {e,...,e,} be the standard basis in R"and suppose x = 3, c;e;, |x| <
1, so that |¢;] € 1 fori=1,...,n. Then

< ) lelldeil < ) | ded|

so that ||A|| < 37, |[Ae; < . Since |[Ax — Ay| < ||A]||z — y| if x,y € R", we see
that A is uniformly continuous.

|4x| = 3 e

b) The inequality in (b) follows from
(A + B)x| = |Ax + Bx| < |Ax| + | Bx| < (||4l| + || B[[)|x]-

The second part of (b) is proved in the same manner. If A, B, C € L(R",R™), we
have the triangle incquality

|IA=clf={(A-B)+(B-C)l < [[A- Bl +|IB-Cl|

and it is casily verified that [|A — B|| has the other properties of a metric.



c) Finally, (c) follows from
[(BA)x| = |B(Ax)| < ||Bl||Ax]| < [|B]||Allix]-

Since we now have metrics in the space L{R",R™), the concepts of open set,
continuity, etc., make sense for these spaces. Our next theorem utilizes these
concepts.

0

Theorem 9.8 Let  be the set of all invertible linear operators on R™.

a) If Ae Q, Be L(R"), and
1B - All-[]A7" <1

then Be Q

b) € is an open subset of L(R™), and the mapping A — A~! is continuous on §).

Proof. a) Put ||A7}|| = 1/a, put ||B — A|| = 8. Then § < a. For every x € R",
olx| = a]A7' Ax| < of|A7Y| - |Ax| = |Ax| < |(A - B)x| + | Bx| < B|x| + | Bx|,

so that (o — f)|x| < |Bx|. Since @ — 8 > 0, this shows that Bx # 0if x = 0.
Hence B is 1-1. By Theorem 9.5, B € §2. This holds for all B with ||B - A| < a.
Thus we have (a) and the fact that £ is open.

b) Next, replace x by B~'y in (@ — 8)|x| < |Bx|. The resulting inequality (& —
B)|B~'y| < |BB~'y| = |y| shows that ||B~}|| < (@ — 8)~!. The identity B~ —
A~! = B~Y(A - B)A™!, combined with Theorem 9.7 {c), implies therefore that
1B~ — A~Y| < ||B7Y|)|A - Bjll|A7Y| < a—(u%) This establishes the continuity
assertion made in (b), since § — 0 as B — A.

O

Theorem 9.12 Suppose E and f are as in the definition of differentiable, x € E, and the
following holds with A = A, and A = A:

| [f(x +h) — f(x) - AR| _

h—0 Ihl 0.

Then A] = AQ.

Proof. If B = A, — Ay, the inequality |Bh| < |f(x +h) — f(x) — A h| + |f(x + h) — f(x) -
Aoh| shows that |Bh|/|h| — 0 as h — 0. For fixed h # 0, it follows that !E_l(%'ll — 0 as
t — 0. The linearity of B shows that the left side is independent of . Thus Bh = 0
for every h € R*. Hence B = 0. 0
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Theorem 9.15 (Chain Rule) Suppose E is an open set in R”?, f maps E into R™, f is
differentiable at xp € E, g maps an open set containing f(F) into R¥, and g is differ-
entiable at f(xy). Then the mapping F of E into R* defined by

F(x) = g(f(x))
is differentiable at x, and

F'(x0) = g'(£(x0))f (xo).

Proof. Put yy = f(xo), A = f(x0), B = g'(y,), and define u(h) = f(xy+h)—f(x¢) ~Ah
and v(k) = g(y, + k) — g(yo) — Bk, for all h € R*, k € R™ for which f(xo + h) and
g(yo + k) are defined. Then |u(h)| = e(h)|h|, |[v(k)| = n(k)|k|, where e(h) — 0 as
h—0and 5(k) - 0ask — 0.

Given h, put k = f(xg + h) — f(xo). The |k| = |Ah + u(h)| < [||A|| + e(h)]|k|, and
F(xo+h)—F(xo)—BAh = g(y,+k)—g(y,)—BAh = B(k—Ah)+v(k) = Bu(h)+v(k).
Hence, for h # 0,

F(xo + h) - F(xo) — BAh| < ||Blle(h) + [||A]| + (h)]n(k).

||
Let h — 0. Then e(h) — 0. Also, k — 0, so that n(k) — 0. It follows that
F'(xo) = BA = g'(f(x0))f (x0)- O

Theorem 9.17 Suppose f: E < R" — R™, and f is differentiable at a point x € E. Then
the partial derivatives (D;f;)(x) exists, and

m

F(x)e; = ) \(D;if)(x)w  (1<j<n)

i=]

Proof. Fix j. Since fis differentiable at x, f(x + te;) — f(x) = f'(x)(te;) + r(te;) where
|r(te;)| /t — 0 as t — 0. The linearity of f'(x) shows therefore that

f(x + te;) — £(x)
t

lim

i = f(x)ej.

If we now represent f in terms of its components, the limit becomes

™m

l-‘oz ft(x + te]) f‘(x)ug — f(x)e,.

It follows that each quotient in this sum has a limit, as ¢ — 0, so that each (D, f,)(x)
occupies the spot in the ith row and jth column of [f'(x)]. Thus

(D1fi)Y(x) ... (Dufi)(x)
(Drfu)®) . (Dofu))

Ifh = 3 hje; is any vector in R”, then we see that f(x)h = Y { ;'=1(Djf,-)(x)h,-} u,
O

[f(x)]) =
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Theorem 9.19 Suppose f maps a convex open set £ c R™ into R™, f is differentiable in E,
and there is a real number M such that ||f'(z)|| < M for every x € E. Then

|f(b) — f(a)| < M|b — a|

Proof. Fix a € E, b € E. Define 7(t) = (1 — t)a + tb for all t € R such that
v(t) € E. Sincc E is convex, v(t) € Eif 0 < t < 1. Put g(t) = f(y(¢)). Then
g(t) = F(y()Y () = F(7(1))(b - a), so that |g'(t)| < [[F(v(t)ll]b —a] < M|b - al
for all ¢ € [0,1]. By Theorem 5.19, |g(1) — g(0)| < M|b — a| . But g(0) = f(a) and
g(1) = f(b). This completes the proof. O

Corollary If, in addition f(x) = 0 for all x € E, then f is constant.

Proof. To prove this, note that the hypotheses of the theorem hold now with M =
0. a

Theorem 9.21 Suppose f : E =« R®* — R™. Then f € ¥'(E) if and only if the partial
derivatives D, f; exists and are continuouson Efor1 <i<m,1<j<n

Proof. Assume first that f € €’(E). We know from Theorem 9.17 that (D;f,)(x) =
(f'(x)e;) - u; for all 7,7 and for all x € E. Hence

(D; £i)(y) — (Difi)(x) = {[f(y) - £(x)]e;} - w
and since |u;| = |e;| = 1, it follows that
(D;£:)(y) = (Dif)(x)| < |[f(y) ~ £ (x)]e;] < |If(y) = £)II.

Hence D; f; is continuous.
For the converse, it suffices to consider the case m = 1. (Why?) Fix xe E and € > 0
. Since E is open, there is an open ball S © E, with center at x and radius f, and
the continuity of the functions D;f shows that r can be chosen so that |(D;f)(y) —
(Dif)(x)| < £ fory € S.
Suppose h = Y hje;, |h| <7, put vo = 0, and vx = hie; + -+ + ey, for 1 < k < n.
Then "
flx+h) = f(x) = Y [flx+v;) = f(x+v;2)]

i=1
Since |vi| < 7 for 1 < k£ < n and since S is convex, the segments with end points
X + v;; and x + v; lie in S. Since v; = v;_, + h;e;, the mean value theorem shows
that the jth summand is equal to hj(D; f)(x + v;-1 + 8;h;e;) for some 6; € (0,1) and
this differs from h;(D; f)(x) by less that |kjle/n. It follows that

o+ ) = 1) = 2 (D) < %Z [hslefs < Inle
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for all h such that |h| < 7.

This says that f is differentiable at x and that f'(x) is the linear function which assigns
the number 3} h;(D;f)(x) to the vector h = Y h;e;. The matrix [f'(x)] consists
of the row (D f)(x),...,(Dnf)(x); and since these are continuous functions on F,
fe¥'(P). O

Theorem 9.23 (Contraction Mapping Principle If X is a complete metric space, and
if ¢ is a contraction of X into X, then there exists one and only one z € X such that

o(z) = z.

Proof. Pick zoinX arbitrarily, and define {z,} recursively, by setting z,41 = ¢(z,).
Choose ¢ < 1 so that d{p(z),¢(y)) < cd(z,y) holds. For n > 1 we then have
d(Zns1, 2n) = d(@(xn), p(2n-1) € cd(zn,zn-1). Hence induction gives d(i£n41.2q) <
C"d(fL'l,.'L'o).

Ifn < mit follows that d{z,, z,) < 37, dlzi, zi1) < (™ 4+ +e™ (2, 70) <
[(1—c)~1]d(x1, x0)]c™. Thus {x,} is a Cauchy sequence. Since X is complete, limz, =
for somec z € X.

Since ¢ is a contraction, ¢ is continuous (in fact, uniformly continuous) on X. Hence
‘P(‘E) = limy oo 0(Lp) = iy Zpyy = 2. a

Theorem 9.24 (Inverse Function Theorem) Suppose f is a ¥”’-mapping of an open set
E < R" into R", f'(a) is invertible for somec a € E, and b = f(a). Then

a) there exists open sets U and V in R" such that a e U, b e V, fis one-to-one on
U, and f(U) =V,

b) if g is the inverse of f, defined in V by
g(f(x))=x (xeU),

then g e €'(V).

Proof. a) Put f'(a) = A, and choose A so that 2A||A~!|| = 1. Since f is continuous
at a, there is an open ball U < E, with center at a, such that ||f'(x) — A|] < A for
zeU.

We associate to each y € R™ a function ¢, defined by ¢(x) = x + A=}y - f(x))
for x € E. Note that f(x) = y if and only if x is a fixed point of .

Since ¢'(x) = I — A7 (x) = A~1(A — f(x)), we see that [[¢/(x)|]| < i for xe U.
Henee |@(x;) — @(x2)| < §|%1 — 2| by Theorem 9.19. It follows that ¢ has at
most one fixed point in U, so that f(x) = y for at most one x € U. Thus fis 1-1
inU.

Next put V' = f(U), and pick y, € V. Then y, = f(xg) for some xo € U. Let B
be an open ball with center at xg and radius r > 0, so small that its closure B lies
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in U. We will show that y € V whenever |y = yo| < Ar. This proves, of course,
that V is open.

Fix y, |y — yol < Ar. With ¢ as defined earlier, [p(xq) — Xo| = [A~ Yy = yo)l <
||[A=|[Ar = £. If z € B, it therefore follows that

1 T
lo(x) = xo| < [p(x) — @(%a)| + |p(%0) — X0 < §|x - Xo| + 5 S

hence @(x) € B. Note that [p(x1) — ¢(x2)| < 3|x1 — X2| holds if x;, Xz € B.
Thus, ¢ is a contraction of B into B. Being a closed subset of ]R"_,_§ is complete.
Theorem 9.23 implies therefore that ¢ has a fixed point x € B. For this x,
f(x)=y. Thusyef(B)c f(U) =V

This proves part (a) of the theorem.

b) Pick y € V, y + k € V. Then there exist x € U, x + h € U, so that y = f(z),
y + k = f(x + h). With ¢ as defined in (a),

px+h)—px)=h+A7[f(x) - flx+h)]=h-A"'k

Because |o(x1) — ¢(x2)| < i[x1 — %o|, |h — A’k < 3|h|. Hence |A7'k| > i,
and |h| < 2||A7Y||k| = A7 K]
Recognize that f(z) has an inverse (we conclude this from our original assertions
and Theorem 9.8), say T. Since g(y + k) —g(y) ~Tk = h—Tk = -T[f(x+h) -
f(x) — f'(x)h]. we see that

lg(y + k) —gly) - Tk| _ |IT||  [f(x+h) - f(x) - f(x)h|

k| DY |h| ‘

As k — 0, we see that h — 0. The right side of the last inequality thus tends to
0. Hence the same is true of the left. We have thus proved that g'(y) = T. But
T was chosen to be the inverse of f(x) = f(g(y)). Thus g'(y) = {f(g(y))}~".
Finally, note that g is a continuous mapping of V onto U (since g is differentiable,
that f' is a continuous mapping of U into the sct €2 of all invertible clements of
L(R"), and that inversion is a continuous mapping of { onto §2, by Theorem 9.8.
If we combine these facts with the last equation, we see that g e €'(V).

This completes the proof.
O

Theorem 9.25 If fis a ¥’-mapping of an open set E < R" into R" and if f'(z) is invertible
for every x € E, then f(IV) is an open subset of R" for every open set W < E. In
other words, fis an open mapping of E into R"

Theorem 9.27 If A e L(R™*", R") and if A, is invertible, there there corresponds to every
k € R™ a unique h € R" such that A(h,k) = 0. This h can be computed from k by
the formula:

= —(A)'Ak
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Proof. Because A(h, k) = A;h+ Ak, A(h, k) —0if and only if A;h + Ak = 0, which
is the same as h = —(A4,) ' A,k when A, is invertible. [

Theorem 9.28 (Implicit Function Theorem) Let f be a %’-mapping of an open set
E < R™™ into R", such that f(a, b) = 0 for some point (a,b) € E.

Put A = f'(a,b) and assume that A; is invertible. (That is, the Jacobian, the deter-
minant of the n x n matrix A, is nonzero.) Then there exists open sets U < R**™
and W < R™, with (a,b) € U and b € Wm having the following property:

To every y € W corresponds a unique x such that
(x,y)eU and f(x,y)=0.

If this x is defined to be g(y), the g is a ¥’-mapping of W into R* g(b) = a,

flg(y)y)=0 (ye W),

and
gl(b) = _(Az)_lAy

Proof. Define F be F(x,y) = (f(x,y),y). Then F is a ¥’-mapping of F into R**™,
We claim that F'(a, b) is an invertible clement of L{R"*+™):

Since f(a, b) = 0, we have f(a+h, b + k) = A(h, k) +r(h, k). where r is the remainder
that occurs in the definition of f'(a, b). Since

F(a+h,b+k) — F(a,b) = (f(a + h, b + k), k) = (A(h, k), k) + (r(h, k), 0)

It follows that F'(a, b) is the linear operator on R™*™ that maps (h, k) to (A(h, k), k).
If this image vector is 0, then A(h, k) = 0 and k = 0, hence &/ (h, 0}) = 0, and Theorem
9.27 implies that h = 0. It follows that F'(a, b) is 1-1; hence it is invertible.

The inverse function theorem can therefore be applied to F. It shows that there exist
open set U and V' in R™*"*, with (a,b) € U, (0,b) € V such that F is a 1-1 mapping
of U onto V.

We let W be the set of all y € R™ such that (0,y) € V. Note that b e W. It is clear
that W is opcn since V is open.

If y e W, then (0,y) = F(x,y) for some (x,y) € U. By our definition of F(x,y),
f(x,y) = 0 for this x.

Suppose, with the same y, that (x',y) € U and f(x',y) = 0. Then F(X,y) =
(fix,y),y) = (f(x,¥),y) = F(x,y). Since F is 1-1 in U, it follows that x' = x.
Thus proving the first part of the theorem.

For the second part, define g(y), for y € W, so that (g(y).y) € U and f(g(y),y) = 0.
Then F(g(y),y) = (0,y) . If G is the mapping of V onto U that inverts F, then

G € ¥’ by the inverse function theorem, and (g(y),y) = G(0,y). Since G € ¥, this
shows that g € ¢”.
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Finally, to compute g'(b), put (g(y),y) = ®(y). Then ®(y)k) = (g'(y)k, k). Because
f(g(y),y) = 0, f(®(y)) = 0 in W. The chain rule shows therefore that f'(®(y))®'(y) =
0. When y = b, then ®(y) = (a,b), and f(®(y)) = A. Thus A% (b) = 0.

If now follows that A.g'(b)k + A,k = A(g'(b)k, k) = A% (b)k) = 0 for every k € R™.
Thus A.g'(b) + A, = 0. This is equivalent to g'(b) = —(4;)"'4,. O

Theorem 9.32 Suppose m,n, T are nonncgative integers, m 2 r, n = r, F is a ¥"-mapping

of an open set £ ¢ R" into R™, and F'(x) has rank r for every x € E. Fixae E,
put A = F'(a), let Y; be the range of A, and let P be a projection in R™ whose range
is Y7. Let Y3 be the null space of P. Then therc are open sets U and V' in R" with
ae U, U c E, and there is a 1-1 ¥’-mapping H of V onto U (whose inverse is also of
class ¥”) such that

F(H(x)) = Ax + p(Ax) (zeV)

where @ is a ¢’-mapping of the open set A(V) < Y] into Ya.

Proof. If r = 0, Theorem 9.19 shows that F(x) is constant in a neighborhood U of a,
and now F(H(x)) = Ax + ¢(Ax) holds trivially, with V' = U, H(x) = x, ¢(0) = F(a).

From now on we assume r > 0. Since dimY; = r, ¥; has a basis {y,,...,y,}. Choose
€ € R" so that Ag; =y, (1 <i <), and define a linear mapping S of Y; into R™ by
setting S(a1y, + -+ + ¢y, ) = 181 + - - - + &, for all scalars ¢y, ..., cr.

The ASy; = Ag; =y, for 1 < i < r. Thus ASy = y. Define a mapping G of E into
R™ by setting G(x) = x + SP[F(x) — Ax]. Since F'(a) = A, differentiation of this
shows that G'(a) = I, the identity operator on R™. By the inverse function theorem,
there are open sets U and V in R®, with a € U, such that G is a 1-1 mapping of U
and V, if necessary, we can arrange it so that V is convex and H'(x) is invertible for
every x € V.

Note that ASPA = A, since PA = A. Therefore AG(x) = PF(x). In particular, this
holds for x € U. If we replace x by H(x), we obtain PF(H(x)) = Ax.

Define ¥(x) = F(H(x)) — Ax. Since PA = A, this implies that qy)(x) = 0 for all
x € V. Thus v is a €'-mapping of V into Ya.

Since V is open, it is clear that A(V') is an open subsct of its range Z(A) = Y).

To complete the proof, we have to show that there is a ¥’-mapping ¢ of A(V) into 1>
which satisfies ¢(Ax) = ¥(x).

We will first prove that ¥(x;) = ¥(x2) if x1,%2 € V, Ax; = Ax,.

Put ®(x) = F(H(x)) for x € V. Sincec H'(x) has rank n for cvery x € V, and F'(x)
has rank r for every x € U, it follows that rank®’(z) = rankF(H(x))H'(x) = r

Fix x € V. Let M be the range of ®(x). Then M < R™, dimM = r. Because
PF(H(x)) = Ax, P®'(x) = A. Thus P maps M onto Z(A) = Y;. Since M and Y}
have the same dimension, it follows that P (restricted to M) is 1-1.

Suppose now that Ah = 0. The P®(x)h = 0. But ®'(x)h e M, and P is 1-1 on M.
Hence ®(x)h = 0. Thus, we've proved that if x € V and Ah = 0, then ¢'(x)h = 0.
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We can now prove ¥(x;) = 1¥(xz). Suppose x; € V, x5 € V, Ax; = Ax,. Put
h = x, — x; and define g(t) = ¥(x; + th). The convexity of V' shows that x; +the V
for these t € [0,1]. Hence, g'(t}) = ¥'(x; + th)h = 0, so that g(1) = g(0). But
g(1) = ¥(x2) and g(0) = v(x;). This proves the desired equivalence.

By this equivalence, ¥(x) depends only on Ax for x € V. Hence our definition of ¢
unambiguously in A(V). It only remains to be proved that ¢ € ¢'.

Fix y, € A(V), fix xg € V so that Axy = y,. Since V is open, y, has a neighborhood
W in Y; such that the vector x = xo + S(y — yp) lies in V for all y € W. Thus
Ax = Axp+y —yo = ¥. Thus ¢(y) = ¥(x¢ — Sy, + Sy). This formula shows that
w e € in IV, hence in A(V), since y, was chosen arbitrarily in A(V). This completes
the proof. a

Theorem 9.34 a) If I is the identity operator on R®, then

det[I] = det(ey,...,e,) =1

b) det is a linear function of each of the column vectors x;, if the others are held
fixed.

c¢) If [A], is obtained from [A] by interchanging two columns, then det[A;] =
— det[A].
d) If [A] has two equal columns, then det[A] = 0.

Proof. If A = I, then a(i,i) = 1 and a(i,j) = 0 for ¢+ # j. Hence det[/] =
s(1,2,...,mn) = 1, which proves (a). By the definition of sgn, s(j;,...,7,) = 0 if
any two of the j's are equal. Each of the remaining n! products in the computation of
the determinant contains exactly one factor from each column. This proves (b). Part
(c) is an immediate consequence of the fact that s(ji,...,7,) changes sign if any two
of the j’s are interchanged, and (d) is a corollary of (c). O

Theorem 9.35 If [A] and [B] are n x n matrices then:

det([B][A]) = det([B]) det[A].

Proof. Ifx,...,x, are the columns of {A] define Ag(x;,...,x,) = Ag[A] = det([B][A]).

The columns of [ B][ 4] are the vectors Bx;, ..., Bx,. Thus Ag(xy,...,X,) = det(Bx,..., Bx,).
Using this and Theorem 9.34, Ap also has properties 9.34(b) to (d}). By (b) and the
definition of x;,

Ag[A] = Ap (Za(i, le;, zg,... ,x,.) = Za(i, 1Ag(e;, Xa,...,Xn).

Repeating this process with xa, . .., X,, we obtain Ag[A] = 3 a(iy, 1)a(iz, 2) ... a(in, n)AB(e1,. .., €,)
the sum being cxtended over all ordered n-tuples (7y,...,%,) with 1 < 2, < n. By (c)
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and (d), Ap(e;,,...,e,) = t(i1,...,in)AB(e1,...,€,), where ¢t = 1—,0,1, and since
[B][I] = [B], we see thatAg(e;,...,e,) = det[B]. Substituting things, we obtain
det([B][4]) = {Zali1,1)...a(in, n)t(7,. .., i)} det[B], for all n by N matrices [A]
and [B]. Taking B = I, we see that the above sum in braces is det[A]. This proves
the theorem. O

Theorem 9.36 A linear operator A in R" is invertible if and only if det[A] # 0.

Proof. If A is invertible, Theorem 9.35 shows that det[A]det[4™!] = det[4A™!] =
det[]] = 1 so that det[A] # 0.

if A is not invertible, the columns x,, ...,x, of [A] are dependent; hence there is one,
say, Xg, such that x; + Zj 4 ¢X; = 0 for certain scalars ¢;. By 9.34 (b) and (d), x
can be replaced by x; + ¢;x; without altering the determinant, if j # k. Repeating,
we see that x; can be replaced by the left side of the previous sum, i.e., by 0, without
altering the determinant. But a matrix which has 0 for one column has determinant
0. Hence det[A] = 0. O

Theorem 9.40 Suppose f is defined in an open set £ < R? , and D;f and Dy f exist
at cvery point of E. Suppose Q < E is a closed rectangle with sides parallel to the
coordinate axes, having (a,b) and (a + h,b + k) as opposite vertices. Put

A(f,Q) = fla+h,b+k)— fla+ h,b) — fa,b+ k) + f(a,])
Then there is a point (z,y) in the interior of @ such that A(f, Q) = hk(D.1f)(z,y).

Proof. Put u(t) = f(t,bc) — f(t,b). Two applications of Theorem 5.10 show that there
is an x between a and a + h, and that there is a ¥ between b and b + k, such that

A(f,Q) = u(a+h)—u(a) = hu'(z) = h[D1f)(z,b+k) — (D1f)(z, b)] = hk(Dn f)(z,y).
(]

Theorem 9.41 Suppose f is defined in an open sct £ < R?, and D, f. Dy f. and Dof
exist at every point of E, and Dy, f is continuous at some point (a,b) € E. Then Dy, f
exists at (a,b) and (D3 f)(a,b) = (D21 f)(a,b)

Corollary D21f = D]gf if fE cgfl(E)

Proof. put A = (Da f)(a,b). Choose € > 0. If Q is a rectangle as in Theorem 9.40,
and if A and k are sufficiently small, we have |A — (Da1 f)(z,y)| < € for all (z,y) € Q.
Thus |$(,% - A‘ < ¢. Fix h and let &k — 0. Since D, f exists in £, the last incquality

implies that i(D 2f )(“”"b,),'w”f Nab) _ Ai < €. Since € was arbitrary, and since this holds

for all sufficiently small . # 0, it follows that Dy f)(a,b) = A. This gives the desired
cquality. O
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Theorem 9.42 Suppose

a) o(z,t) isdefined fora <z < b, c<t < d;
b) a is an increasing function on [a, b];
c) ¢' e Z(a) for every t € [¢,d];

d) ¢ < s < d, and to every € > 0 corresponds a § > 0 such that |(Dyp)(z,t) —
(Dop)(x, s)| < € for all x € [a,b] and for all t € (s — 4, s5).

Define ,
f(t) =I p(z,t)da (c<t<d).

a

Then (Dap)® € Z{a), f'(s) exists, and

b
f(s) = f (Do), ) da

Proof. Consider the difference quotients ¢(z,t) = ﬂ% for 0 < |t — 5| < 4. By
Theorem 5.10 there corresponds to each (z,t) a number u between s and ¢ such that
W(x.t) = (Dop)(z,u). Hence (d) implies that |¢(z,t) — (Dop)(z,s)| < €. Note that
ﬂ%ﬂ = Sﬁ ¥(z,t) do(z), By the last inequality, ¥* — (Dap)*, uniformly on [a, b], as

t — s. Since cach ¥ € Z(«), the desired conclusion follows from the last cquality and
Theorem 7.16. O
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Chapter 1 The Real and Complex Number Systems

Definitions

Empty Set/ Nonempty If A is any set (whose elements may be numbers or any other
objects), we write z € A to indicate that = is a member (or an element) of A. If z is
not a member of A, we write: z ¢ A. The set which contains no elements will be called
the empty set. If a set has at least one element, it is called nonempty

Proper If A and B are sets, and if every element of A is an element of B, we say that A is
a subset of B, and we write A < B, or B o A. If, in addition, there is an element of
B which is not in A, then A is said to be a proper subset of B. Note that A c A for
every set A. If Ac B and B c A, we write A = B.

Order Let S be a set. An order on S is a relation, denoted by <, with the following two
properties:

a) If z € S and y € S then one and only one of the statements:
<y zT=Yy I>Y
is true.
b) Ifz,y,ze S,iffx <y, y <z thenz < 2.
Ordered Set An ordered set is a set S in which an order is defined.

Bounded Suppose S is an ordered set, and E c §S. IF there exists a 8 € S such that z < 8
for every z € E, we say that E is bounded above, and call 8 an upper bound of E.

Lower bounds are defined in the same way.

Least Upper Bound/ Greatest Lower Bound Suppose S is an ordered set E < S, and
E is bounded above. Suppose there exists an o € S with the following properties:

a) « is an upper bound of E
b) If ¥ < @, then + is not an upper bound of £

Then « is called the least upper bound of E or the supremum of E, and we write
a=supk.

The greatest lower bound, or infimum, of a set E which is bounded below is defined in

the same manner: The statement
a=infFE

means that « is a lower bound of E and that no 8 with 8 > « is a lower bound of E.

Least-Upper-Bound Property An ordered set S is said to have the least-upper-bound
property if the following is true:

If E c S, E is not empty, and E is bounded above, then sup E exists in S.
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Field A field is a set F with two operations, called addition and multiplication, which satisfy
the following so-called "field axioms”:

1. Axioms for Addition

(a) fze Fandye F,thenz +ye€ F.

(b) Addition is commutative: £ +y =y -+ for all z,y e F.

(c) Addition is associative: (z+y)+z=z+ (y+2) foral z,y,z€ F

(d) F contains an element 0 such that 0 + z = z for every z € F.

(e) To every = € F corresponds an element —z € F such that z + (—z) =0
2. Axioms for Multiplication

(a) f ze Fandye F, thenzy e F.

(b) Multiplication is commutative: zy = yz for all z,y € F.

(c) Multiplication is associative: (zy)z = z(yz) for all z,y,2€ F

(d) F contains an element 1 # 0 such that 1z = z for every z € F.

(e) If z € F and z # 0 then there exists and element 1/z € F such that z(1/x) =
1.

3. The Distributive Law: z(y + 2) = zy + zz forall z,y,z € F.
Ordered Field An ordered field is a field F' which is also an ordered set, such that

a)z+y<z+zifz,y,ze Fandy<z
b) zy>0ifz,ye F and z,y > 0.

If z > 0 we call z positive; if z < 0 we call z negative.

Extended Real Numbers The extended real number system consists of the real field R
and two symbols +00, —c0. We preserve the original order in R and define

-0 < < +4+00

for every xz € R.

Complex Number A complez number is an ordered pair (a, b) of real numbers. “Ordered”
means that (a,b) and (b, a) are regarded as distinct if & # b. Let z = (a,b) and y = (c,d)
be two complex numbers. We write z = y if and only if @ = ¢,b = d. We define:

z+y=(a+cb+d) zy = (ac — bd, ad + bc)

1i1=(0,1)eC

Conjugate If a,b € R and 2z = a + bi, the the complex number Z = a ~ bi is called
the conjugate of z. The numbers a and b are the real part and imaginary part of z

respectively. Note these as
a=R(z) b=S9(2)



Absolute Value If z € C, its absolute value |z| is the non-negative square root of 2€; that
is |2| = (2€)"2.

Coordinates For each positive integer k, let R* be the set of all ordered k-tuples
X = (z1,Ta,...,Tk)

where z1,Zs,...,Zx € R, called the coordinates of x. The elements of R* are called
points, or vectors, especially when k£ > 1. We shall denote vectors by boldfaced letters.
Ify ={y1,%,-..,¥), and if @ € R, then addition and multiplication are defined:

X+y=(z1+y,22+v2,..., % + yi) € R ax = (ary,azy, ..., az;) € R

These operations make R* into a vector space over the real field. The inner product is
defined by:

k
X-y= in%‘
i=1
and the norm of x by:

k 1/2
x| = (x-x)"? = (Zm?)

t=1

Theorems

Theorem 1.11 Suppose S is an ordered set with the least-upper-bound property, B c S,
B is not empty, and B is bounded below. Let L be the set of all lower bound of B.
Then

a=suplL

exists in .S and « = inf B. In particular, inf B exists in S.
Proposition 1.14 The axioms for addition imply the following statements.

a) fz+y=z+ztheny=2
b) fz+y=ztheny=0
c) fz+y=0,theny=-2
d) —(-z)=1=z
Proposition 1.15 The axioms for multiplication imply the following statements.

a) fz#0zy=zztheny =2z
b) fz #0zy=xztheny=1
c) fz#0zy=1,theny=1/z
d fz#01/(1/z) ==z



Proposition 1.16 The field axioms imply the following statements, for any z,y,z € F
a) 0z=0
b) If z 0 and y # 0 then zy # 0
¢) (—z)y = —(zy) = =(-v)
d) (—z)(-y) = zy
Proposition 1.18 The following statements are true in every ordered field.

a) If £ > 0 then —z < 0 and vice versa

b) If z > 0 and y < 2 then zy < zz

c) If z <0and y < z then zy > z2

d) If z # 0 then 2% > 0. In particular, 1 > 0
e) f0<z<ythen0<1l/y <1/z.

Theorem 1.19 There exists an ordered field R which has the least-upper-bound property.
Moreover R contains Q@ as a subfield.

Theorem 1.20 a (Archimedean Property) If z € R, y € R, and z > 0, then there is a
positive integer n such that nz > y.

b (Q is dense in R) If z,y € R and z < y, then there exists a p € Q such that
T < p < y. In other words, between and two real numbers there is a rational one.

Theorem 1.21 For every real z > 0 and every integer n > 0 there is one and only one
positive real y such that y® = z. This number is written {/z.

Corollary If a and b are positive real numbers and n is a positive integer, then (ab)V/r =
I/nblln
) .

Theorem 1.25 These definitions of addition and multiplication turn the set of all complex
numbers into a field with (0,0) and (1,0 in the role of 0 and 1.

Theorem 1.26 For any real numbers a, b € R we have

(a,0) + (b,0) = (a +b,0)  (a,0)(b,0) = (ab,0)

Theorem 1.28 2 = —1
Theorem 1.29 If a and b are real, then (a,b) = a + bi
Theorem 1.31 If z and w are complex, then

az+w=z+w
bzZu=zZ-w
c z+€=2R(2), z — €= 2i¥(2)



d 2E is real and positive (except when z = 0.)
Theorem 1.33 Let z and w are complex. then

a |z| >0

b [e] = |2|

¢ |zw| = |z||w|

d |R(2)| < |2

e |z +w| < |2] + |uw|.

Theorem 1.35 (Schwarz Inequality) If a,,...,a, and by,...b, are complex numbers,
then
n _ 2 n n
bl < Xl Y bl
j=1 J=1 jg]

Theorem 1.37 Suppose X,y,z € R* and a € R. Then

a |x| =0
b |x| =0if and only if x =0
¢ lox| = |o]|x]
d |x -yl < |x]ly]
e |x+yl < x| +]yl
<

flx—z|<|x-y|+]|y—2



Chapter 2 Basic Topology

Definitions

Function Consider two sets A and B, whose elements may be any objects whatsoever, and
suppose that with each element z of A there is associated, in some manner, an element
of B, which we denote by f(z). Then f is said to be a function from A to B (or a
mapping of A into B). The set A is called the domain of f (we also say f is defined
on A), and the elements f(z) are called the values of f. The set of all values of f is
called the range of f.

One-to-One, Onto Let A and B be two sets and let f be a mapping of A into B. If E c A,
f(E) is defined to be the set of all elements f(z) for z € E. We call f(E) the image
of E under f. In this notation, f(A) is the range of f. It is clear that f(A) c B.
If f(A) = B, we say that f maps onto B. If E ¢ B, f~'(E) denotes the set of all
z € A such that f(z) € E. We call f~}(E) the inverse image of E under f. If y € B,
f~Y(y) is the set of all z € A such that f(z) = y. If, for each y € B, f~'(y) consists
of at most one element of A, then f is said to be a one-to-one mapping of A into B.
This may also be expressed as follows: f is a 1-1 mapping of A into B provided that
f(z1) # f(z2) whenever z; # ), 71,72 € A.

Correspondence/ Equivalent If there exists a 1-1 mapping of A onto B, we say that
A and B can be put in 1-1 correspondence, or that A and B have the same cardinal
number, or, briefly, that A and B are equivalent, and we write A ~ B. This relation
has the following properties:

a) It is reflexive: A ~ A
b) It is symmetric: If A ~ B, then B ~ A.
c) It is transitive: If A ~ B and B ~ C, then A ~ C.

Any relation with these three properties is called an equivalence relation.

Finite For any positive integer n, let J,, be the set whose elements are the integers 1,2,...,n;
let J be the set consisting of all positive integers. For any set A,

a) we say A is finite if A ~ J, for some n (the empty set is also considered to be
finite).
b) A is infinite if A is not finite
c) Ais countable if A~ J
d) A is uncountable if A is neither finite nor countable
e) A is at most countable if A is finite or countable
Sequence A sequence is a function f defined on the set J of all positive integers. If f(n) =
Zn, for n € J, it is customary to denote the sequence f by the symbol {z,}. The values

of f are called the terms of the sequence. If A is a set and if z, € A for all n € J, then
{z,) is said to be a sequence in A, or a sequence of elements of A.
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Subsets/ Family of Sets Let A and Q) be sets, and suppose that with each element o of
A there is associated a subset of 2 which we denote by E,. The set whose elements
are set E, will be denoted by {E,}. We shall call these a collection of sets or family
of sets.

Union (From above) The union of the sets E, is defined to be the set S such that z € S if
and only if z € E, for at least one o € A. We use notation

S = UE,,

agA

If A consists of integers, we write one of the two following:
S=|JBE o S=EuvEuU---UE,

If A is the set of all positive integers, the usual notation is:
@
s={J&
i=1

Intersection The intersection of the sets E, is defined to be the set P such that z € P if
and only if z € E, for every a € A. We use notation:

P=ﬂ&<nP=ﬁ&=&n&nm&(nP=ﬁ&

ac€A i=] i=1

If An B # & the we say that A and B intersect; otherwise they are disjoint.

Metric Space A set X, whose elements we shall call points, is said to be a metric space if
with any two points p and ¢ of X there is associated a real number d(p, q) called the
distance from p to g, such that:

a) d(p,q) >0if p # q; d(p,p) = 0.
b) d(p,q) = d(g,p)
c) d(p,q) < d(p,r) + d(r,q) for any r e X.

Segment By the segment (a,b) we mean the set of all real numbers z such that a < z < b.
Interval By the interval [a,b] we mean the set of all real numbers z such that e < z < b.

K-Cell If a; < b; for i = 1,...,k, the set of all points x = (zy,...,7;) in R*¥ whose
coordinates satisfy the inequalities a; < z; < b;, (1 < i < k) is called a k-cell.

Ball If x € R* and r > 0, the open (or closed) ball B with center at x and radius  is defined
to be the set of all y € R such that |y —x| < 7 (or |y — x| < 7).

Convex We call a set E = R* convez if Ax + (1 — A\)y € E whenever x € E, y € E, and
O0<A<l



Neighborhood Let X be a metric space. A neighborhood of p is a set N,(p) consisting of
all g such that d(p,q) < r, for some r > 0. The number 7 is called the radius of N,(p).

Limit Point A point p is a limit point of the set E if every neighborhood of p contains a
point g # p such that g€ E.

Isolated Point If p € E and p is not a limit point of F, then p is called an isolated point
of E.

Closed E is closed if every limit point of E is a point of E.

Interior A point p is an interior point of E if there is a neighborhood N of p such that
NcE.

Open E is open if every point of E is an interior point of E.

Complement The complement of E (denoted E°) is the set of all points p € X such that
p¢E

Perfect E is perfect if E is closed and if every point of E is a limit point of E.

Bounded F is bounded if there is a real number M and a point g € X such that d(p,q) < M
forall pe E.

Dense E is dense in X if every point of X is a limit point of E, or a point of E (or both).

Closure If X is a metric space, if £ < X, and if E’ denotes the set of all limit points of £
in X, then the closure of E is theset E= FE U E'.

Open Cover By an open cover of a set E in a metric space X we mean a collection {Ga}
of open subsets of X such that E c | J, Ga.

Compact A subset K of a metric space X is said to be compact if every open cover of K
contains a finite subcover. More explicitly, the requirement is that if {G,}is an open
cover of K, then there are finitely many indices a;,...,a, such that K c G,, v+ U
G,,.

Separated Two subsets A and B of a metric space X are said to be separated if both AnB
and A n B are empty, i.e. if no point of A lies in the closure of B and no point of B
lies in the closure of A

Connected A set E ¢ X is said to be connected if E is not a union of two nonempty
separated sets.
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Theorems

Theorem 2.8 Every infinite subset of a countable set A is countable.

Theorem 2.12 Let {E,;}, n =1,2,3,..., be a sequence of countable sets, and put

Then S is countable.

Corollary Suppose A is at most countable, and, for every a € A, B, is at most countable.

Put
T=|]B.

agA

Then T is at most countable.

Theorem 2.13 Let A be a countable set, and let B, be the set of all n-tuples (ay,...,a,),
where a; € A, (k= 1,2,...,n), and the elements a,, ..., a, need not be distinct. Then
B, is countable.

Corollary The set of all rational numbers is countable.

Theorem 2.14 Let A be the set of all sequences whose elements are the digits 0 and 1.
This set A is uncountable.

Theorem 2.19 Every neighborhood is an open set.

Theorem 2.20 If P is a limit point of a set F, then every neighborhood of p contains
infinitely many points of E.

Corollary A finite point set has no limit points.

Theorem 2.22 Let {E,} be a (finite or infinite) collection of sets E,. Then
c
(U Ea) = n(E;)

Theorem 2.23 A set FE is open if and only if its complement is closed.
Corollary A set F'is closed if and only if its complement is open.

Theorem 2.24 a) For any collection {G,} of open sets, | J, G« is open.
b) For any collection {F,} of closed sets, [, F, is closed.
c) For any finite collection Gy,..., G, of open sets, (.., G; is open.
d) For any finite collection Fi,..., F, of closed sets, | J;._, F; is closed.

Theorem 2.27 If X is a metric space and E c X, then

11



a) E is closed,
b) E = E if an only if E is closed
¢) E c F for every closed set F = X such that E < F.

Theorem 2.28 Let E be a nonempty set of real numbers which is bounded above. Let
y=supE. Then ye E. Hence y € E if E is closed.

Theorem 2.30 Suppose Y c X. A subset E of Y is open relative to Y if and only if
E =Y n G for some open subset G of X.

Theorem 2.33 Suppose K ¢ Y c X. Then K is compact relative to X if and only if K is
compact relative to Y.

Theorem 2.34 Compact subsets of metric spaces are closed.
Theorem 2.35 Closed subsets of compact sets are compact.
Corollary If F is closed and K is compact, then F' n K is compact.

Theorem 2.36 If {K,} is a collection of compact subsets of a metric space X such that the
intersection of every finite sub-collection of {K,} is nonempty, then (] K, is nonempty.

Corollary If {K,} is a sequence of nonempty compact sets such that K, > K4y (n =
1,2,3,...), then (T K, is not empty.

Theorem 2.37 If E is an infinite subset of a compact set K, then E has a limit point in
K.

Theorem 2.38 If {I,} is a sequence of intervals in R such that I, > Iy, (n =1,2,3,...),
then [y I, is not empty.

Theorem 2.39 Let k be a positive integer. If {I,,} is a sequence of k-cells such that I, c Iny,
(n=1,23,...), then [} I, is not empty.

Theorem 2.40 Every k-cell is compact.

Theorem 2.41 If a set E in R* has one of the following three properties, then it has the
other two.

a) E is closed and bounded
b) E is compact
c¢) Every infinite subset of £ has a limit point in E.

Theorem 2.42 (Weierstrass) Every bounded infinite subset of |[R* has a limit point in
RE.

Theorem 2.43 Let P be a nonempty perfect set in R*. Then P is uncountable.

12



Corollary Every interval [a,b] is uncountable. In particular, the set of all real numbers is
uncountable.

Theorem 2.47 A subset E of the real line R is connected if and only if it has the following
property: f re Fandye F,andz <z <y, then z€ E.

13



Chapter 3 Numerical Sequences

Definitions

Converge/ Diverge A sequence {p,} in a metric space X is said to converge if there is a
point p € X with the following property: for every € > 0 there is an integer N such
that n > N implies that d(p,,p) < €. In this case we also say that {p,} converges to
p, or that p is the limit of {p,}, and we write p, — p, or

Jim p, = p
If {p,} does no converge, it is said to diverge.

Range/ Bounded The set of all points p, is the range of {p,}. The range of a sequence
may be a finite set, or it may be infinite. The sequence {p,} is said to be bounded if
it’s range is bounded.

Subsequence Given a sequence {p,}, consider a sequence {n,} of positive integers, such
that n; < na < n3 < .... Then the sequence {p,,} is called a subsequence of {p,}. If
{pn,} converges, its limit is called a subsequential limit of {p,}.

It is clear that {p,} converges to p is and only if every subsequence of {p,} converges
to P.

Cauchy Sequence A sequence {p,} in a metric space X is said to be a Cauchy sequence
if for every € > 0 there is an integer N such that d(p,,pm) <ecifn> N and m > N.

Diameter Let E be a nonempty subset of a metric space X, and let S be the set of all real
numbers of the form d(p, q), with p € E and g € E. The sup of S is called the diameter
of E.

Complete A metric space in which every Cauchy sequence converges is said to be complete.
Monotonic A sequence {s,} of real numbers is said to be

a) monotonically increasing if s, < sp41 (n=1,2,3,...)

b) monotonically decreasing if s, = sp41 (n=1,2,3,...)

The class of monotonic sequences consists of the increasing and the decreasing se-
quences.

Convergence to Infinity Let {s,} be a sequence of real numbers with the following prop-
erty: For every real M there is an integer N such that n > N implies 5, > M. We
then write: s, — +o0.

Similarly, if for every real M there is an integer N such that n > N implies 5, < M.
We then write: s, — —o0.

14



Upper/ Lower Limits Let {s,} be a sequence of real numbers. Let E be the set of numbers
X such that s,, — z for some subsequence {s,, }. This set E contains all subsequential
limits as defined above. Let:

s*=supF s, =inf E

The numbers s* and s, are called the upper and lower limits of {s,}; we use the
notation:

limsups, = s* liminf s, = s,
n— n—©

Series Given a sequence {a,}, we use the notation },7__a, to denote the sum a, + ap4; +

---+ag. With {a,} we associate a sequence {s,} where s, = 33 ax. For {s,} we also
use the symbolic expression a; + a; + a3 + ... or, more concisely,

0
2,0
n=1

We call this an infinite series, or just a series. The numbers s, are called the partial
sums of the series. If {s,} converges to s, we say that the series converges, and write

Lol
3 an=s.

The number s is called the sum of the series; but it should be clearly understood that
s is the limit of a sequence of sums, and is not obtained by simple addition.

If {s,} diverges, the series is said to diverge.

=V® 1
€ €= 2im=0nl"

Power Series Given a sequence {c,} of complex numbers, the series

©
5 e

n=0

is called a power series. The numbers ¢, are called the coefficients of the series; z is a
complex number.

Absolute Convergence The series ), a, is said to converge absolutely if the series 3, |a,]
converges.

Product Given Y;a, and Y, b,, we put

n
Cn =) kbni
k=0

and call Y ¢, the product of the two given series. Equivalently,

[+ o} n
product = Z Z Qibn—i
n=0 k=0

15



Rearrangement Let {k,} n = 1,2,3,... be a sequence in which every positive integer
appears once and only once (that is, {k,} is a one-to-one function from J onto J,
Putting o, = ax, (n =1,2,3,...), we say that 3 al, is a rearrangement of ) an.

Theorems

Theorem 3.2 Let {p,} be a sequence in a metric space X.
a) {pn} converges to p € X if and only if every neighborhood of p contains p, for all
but finitely many =n.
b) If pe X, p’ € X, and if {p,} converges to p and to p', then p' = p.
¢) If {p,} converges, then {p,} is bounded.
d) If E c X and if p is a limit point of E, then there is a sequence {p,}in E such
that p = lim, oo Pn

Theorem 3.3 Suppose {s,.}, {t.} are complex sequences, and lim_. 55 = 8, limy_0 tn = &.
Then,

a) lim, .o(Sp + tn) = s+ 1;
b) limg .o €Sy = €8, liMap(C+ Sn) = ¢+ 5;
¢) limp.o Satn = st

d) limp. = = %, provided s, # 0 and s # 0.

Theorem 3.4 Suppose X, € R* and x, = (@in,020,---,n). Then {x,} converges to
x = (a1, 09, ..., ax) if and only if

r!i_l}éaj,n =y (1 g] < k)

Suppose {X,}, {y.} are sequences in R*, {,} is a sequence of real numbers, and x,, — x,
Yn =Y, Bn — B. Then

lm (e +y,) =x+y  lm(xa-y)=x-y  lim(Buxa) = fx

Theorem 3.6 a) If {p,} is a sequence in a compact metric space X, then some subse-
quence of {p,} converges to a point of X.

b) Every bounded sequence in R* contains a convergent subsequence.

Theorem 3.7 The subsequential limits of a sequence {p,} in a metric space X form a closed
subset of X.

Theorem 3.10 a) If E is the closure of a set E in a metric space X, then

diam E = diam E
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b) If K, is a sequence of compact sets in X such that K, o K,4; and if

lim diam K, = 0,

n—w
then [ K, consists of exactly one point.

Theorem 3.11 a) In any metric space X, every convergent sequence is a Cauchy se-
quence.

b) If X is a compact metric space and if {p,} is a Cauchy sequence in X, then {p,}
converges to some point of X.

c) In R¥, every Cauchy sequence converges
Corollary All Compact metric spaces and all Euclidean spaces are complete.
Corollary Every Closed subset E of a complete metric space X is complete.
Theorem 3.14 Suppose {s,} is monotonic. Then {s,} converges if and only if it is bounded.

Theorem 3.17 Let {s,} be a sequence of real numbers. Let E and s* be as defined above.
Then s* has the following two properties:

a) s*e€ E

b) If z > s*, there is an integer N such that n > N implies s, < z.

Moreover, s* is the only number with these properties. Furthermore, the analogous
result is true for s,.

Theorem 3.19 If s, < i, for n > N, where N is fixed, then:

liminf s, < liminft, limsup s, < limsupi,
n—m .—% n—so0 n—co

Theorem 3.20 a) If p > 0, the lim,_. "—1,, = ()
b) If p > 0, the lim,.oo /P =1
¢) limy /n =1
d) If p> 0 and a € R, then limp.oo ioym = 0
e) If |z| < 1, then lim,_.z" = 0.
Theorem 3.22 )] a, converges if and only if for every € > 0 there is an integer N such that

m
2 ax

k=n

<€

if m > n > N. In particular, by taking m = n, |a,| <e.

Theorem 3.23 If ] a, converges, then lim,—. 2, = 0.
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Theorem 3.24 A series of nonnegative terms converges if and only if its partial sums form

a bounded sequence.

Theorem 3.25 (Comparison Test) a) If |a,| < ¢, for n = Ny, where Ny is some fixed

integer, and if Y, c, converges, then > a, converges.
b) If a, > d, = 0 for n = Ny, and if }d,, diverges, then ), a, diverges.

Theorem 3.26 (Geometric Series) If 0 < z < 1, then

= 1
Zz Ti-z

n=0

If z > 1 this series diverges.

Theorem 3.27 (Cauchy Condensation Test) Suppose a; > a; = a3 > -
the series Y, a, converges if and only if the series

©
22"an = a; + 2a, +4a4 +8ag + ...
k=0

converges.
Theorem 3.28 (p-Test) Y -1 converges if p > 1 and diverges if p < 1.
Theorem 3.29 If p> 1

|
Z n(logn)P

n=2

converges. If p < 1, the series diverges.
Thoerem 3.31 lim,_o (1+2)" =e.
Theorem 3.32 e is irrational.
Theorem 3.33 (Root Test) Given 3 a,, put a — limsup,_,,, {/[a,|. Then:

a) if @ < 1, Y] a, converges
b) if @ > 1, 3, a, diverges
¢) if @ = 1, the test gives no information

Theorem 3.34 (Ratio Test) The series }a,

-2 0. Then

a) Converges if limsup,_,q, {25 <1
b) Diverges if limsup,,_,,, (22| > 1 for all n > no, where ng is some fixed integer.

Theorem 3.37 For any sequence {c,} of positive numbers,

1

lim inf <L < lim inf {/; lim sup 3/, < lim sup %

n—o Gy R n—co n—sco
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Theorem 3.39 Given the power series ), ¢,2", put

R

a = limsup {/|c,|, R=

n—oo
If a =0, then R = +o0; if @« = +0, R = 0. (Note, R is called the radius of
convergence). Then Y, c,z" converges if |z| < R, and diverges if |z| > R.

Theorem 3.41 Given two sequence {a,}, {ba}, put A, = >;_ax if n = 0; put Ay = 0.
Then, if 0 < p < g, we have

g g-1
Z anb, = Z Aﬂ(bn - bn+1) + Aqbq - Ap—lbp
n=p n=p

Theorem 3.42 Suppose

a) the partial sums A, of 3, a, form a bounded sequence;
b) g=2by2b>...

¢) lim, b, =0
Then };a,b, converges.
Theorem 3.43 (AlternatiwﬁSeries Test) Suppose
a) lai| 2 [ea| = [es] 275

b) cam-1 20, q?nilso (m=1,2,3,...)
¢) limypc, =0

Then )] ¢, converges

Theorem 3.44 Suppose the radius of convergence of Y c,2" is 1, and suppose ¢ > ¢; >
¢ = ..., limy.nc, = 0. Then )¢,z converges at every point on the circle |z| = 1,
except possibly at z = 1.

Theorem 3.45 If ) a, converges absolutely, then )] a, converges.

Theorem 3.47 If Y a, = A and 3 b, = B, then }}(a, + b,) = A+ B and ), ca, = cA, for
any fixed c.

Theorem 3.50 Suppose

a) Yo o, converges absolutely

b) Z?=Oan = A

¢) Yoo obn=B

d) en=Yroakbnk (n=0,1,2,...)
Then Yo scn = AB.
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Theorem 3.51 If the series },a, = A, Y b, = B, Y ca = C, and ¢, = agh, + - -+ + anby,
then C = AB.

Theorem 3.54 Let ) a, be a series of real numbers which converges, but not absolutely.
Suppose —o0 < a < f < . Then there exists a rearrangement ), a), with partial sums
si, such that

liminfs, =a  limsups, =f
n—o n—o

Theorem 3.55 If Y, a, is a series of complex numbers which converges absolutely, then

every rearrangement of 3, a, converges, and they all converge to the same sum.
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Chapter 4 Continuity

Definitions

Limit of a Function Let X and Y be metric spaces; suppose E c X, f maps F into Y
and p is a limit point of E. We write f(z) - gasz — por

lim f(z) = ¢
Zp

if there is a point ¢ € Y with the following property: Fore very € > 0 there exists a
d > 0 such that dy(f(z), q) < € for all points = € E for which 0 < dx(z,p) < 4.

Sum/ Difference/ Product/ Quotient of Function Suppose we have two complex func-
tions, f and g, both defined on E. By f + g we mean the function which assigns to
each point z of E the number f(z) + g(z). Similarly we define f — g, fg, f/g for
g(z) # 0. If f assigns to each point of z of E the same number ¢, f is said to be a
constant function, or constant, and we write f = c. If f and g are real functions then
f(z) = g(z) is the same as f > g. The same holds for f, g : E — R¥.

Continuous Suppose X an Y are metric spaces, Ec X,pe F,and f: £ — Y. Then f is
said to be continuous at p if for every € > 0 there exists a § such that

dy(f(z), f(p)) <e
for all points z € F for which dx(z,p) < 6.

If f is continuous at every point of E, then f is said to be continuous on E.

Bounded A mapping f of a set E into R* is said to be bounded if there is a real number M
such that |f(z)| < M for all z € E.

Uniformly Continuous Let f be a mapping of a metric space X into a metric space Y.
We say that f is uniformly continuous on X if for every € > 0 there exists § > 0 such

that
dyv(f(p), f(@)) <€
for all p and ¢ in X for which dx(p,q) < 4.

One-Sided Limit of a Function Let f be defined on (a,b). Consider any point z such
that a < z < b. We write:

flz+)=q

if f(t.) — q as n — o, for all sequences {t,} in (z, b) such that ¢, — z. To obtain the
definition of f(z—), for a < z < b, we restrict ourselves to sequences {t,} in (a, z).

It is clear that at any point z € (a,b) the lim,_., f(t) exists if and only if

fa+) = f(a=) = lim )
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Simple Discontinuity Let f be defined on (a,b). If f is discontinuous at a point z and if
f(z+) and f(z—) exists, then f is said to have a discontinuity of the first kind, or a
simple discontinuity, at z. Otherwise the discontinuity is said to be of the second kind.

There are two ways in which a function can have a simple discontinuity:
fz+) # flz=) o f(z+) = fz-) # f(=).

Monotonic Let f be real on (a,b). Then f is said to be monotonically increasing on (a,b)
if a <z <y < bimplies f(z) < f(y). If the last inequality is reversed, we obtain the
definition of a monotonically decreasing function. The class of monotonic functions
consists of both the increasing and the decreasing functions.

Neighborhood of Infinity For any real c, the set of real numbers z such that z > c is
called a neighborhood of +o0 and is written (¢, +c0). Similarly, the set (—o0,c) is a
neighborhood of —co.

Limit at Infinity Let f be a real function defined on £ ¢ R. We say that f(t) — A as
t — z, where A and z are in the extended real number system, if for every neighborhood
U of A there is a neighborhood V of z such that V n E is not empty, and such that
f)eUforallte VAE, t+z.

Theorems

Theorem 4.2 Let X and Y be metric spaces; suppose £ < X, f maps F into Y and p is
a limit point of E. Then lim,_,, f(z) = g if and only if lim,_. f(pn) = ¢ for every
sequence {p,} in E such that p, # p limp.oPn = p.

Corollary If f has a limit at p, this limit is unique.

Theorem 4.4 Suppose E c X, a metric space, p is a limit point of E, f and g are complex
functions on FE, and
lim f(z) = A lim g(z) = B
T—p T—p

Then:

a) limgz_,,(f + g)(z) = A+ B
b) lim.,(fg) = AB

¢) lim;_., (5) =4

Theorem 4.6 Suppose X an Y are metric spaces, E c X, p € E such that p is a limit point
of E,and f: E — Y. Then f is continuous at P if and only if lim,.., f(z) = f(p).

Theorem 4.7 Suppose X,Y, Z are metric spaces, £ < X, f maps F into Y. g maps the
range of f, f(E), into Z, and H is the mapping of F into Z defined by

h(z) = g(f(z)) (ze E)
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If f is continuous at a point p € E and if g is continuous at the point f(p), then h is
continuous at P. The function h is called the composition or the composite of f and
g, most commonly noted: A =go f.

Theorem 4.8 A mapping f of a metric space X into a metric space Y is continuous on X
if and only if f~!(V) is open in X for every open set V in Y.

Corollary A mapping f of a metric space X into a metric space Y is continuous if and only
if f~1(C) is closed in X for every closed set C'in Y.

Theorem 4.9 Let f and g be complex continuous functions on a metric space X. Then
f+g, fg, f/g are continuous on X.

Theorem 4.10 a) Let fi,..., fi be real functions on a metric space X, and let f be the
mapping of X into R* defined by f(z) = (fi(z),..., fr(z)), then f is continuous
if and only if each of the functions f; is continuous.

b) If f and g are continuous mappings of X into R¥, then f+g and f-g are continuous
on X.

The functions f; are called the components of f.

Theorem 4.14 Suppose f is a continuous mapping of a compact metric space X into a
metric space Y. Then f(X) is compact.

Theorem 4.15 If f is a continuous mapping of a compact metric space X into R¥, then
f(X) is closed and bounded. Thus, f is bounded.

Theorem 4.16 Suppose f is a continuous real function on a compact metric space X, and
M = sup f(p) m = inf f(p)
Then there exists points p, ¢ € X such that f(p) = M and f(q) = m. That is, f attains
it’s maximum and minimum.

Theorem 4.17 Suppose f is a continuous 1-1 mapping of a compact metric space X onto
a metric space Y. Then the inverse mapping f~! defined on Y by

[ (f@) == (z € X)
is a continuous mapping of Y onto X.

Theorem 4.19 Let f be a continuous mapping of a compact metric space X into a metric
space Y. Then f is uniformly continuous on X.

Theorem 4.20 Let E be a non-compact set in R. Then

a) there exists a continuous function of E which is not bounded;

b) there exists a continuous and bounded function on E which has no maximum.
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c) If, in addition, E is bounded then: there exists a continuous function on E which
is not uniformly continuous.

Theorem 4.22 If f is a continuous mapping of a metric space X into a metric space Y,
and if E is a connected subset of X, then f(E) is connected.

Theorem 4.23 (Intermediate Value Theorem) Let f be a continuous real function on
the interval [a, b]. If f(a) < f(b) and if ¢ is a number such that f(a) < ¢ < f(b), then
there exists a point z € (a,b) such that f(z) = c.

Theorem 4.29 Let f be monotonically increasing on (a,b). Then f(z+) and f(z—) exists
at every point of z of (a,b). More precisely,

sup f(t) = f(z—) < f(2) < f(z+) = inf f(2)

ae<t<z

Furthermore, if ¢ < z < y < b, then

flz+) < f(y-)
. Analogous results hold for monotonically decreasing functions.
Corollary Monotonic functions have no discontinuities of the second kind.

Theorem 4.30 Let f be monotonic on (a,b). Then the set of points of (a,b) at which f is
discontinuous is at most countable.

Theorem 4.34 Let f and g be defined on E c R Suppose
fit)— A gt)—» B ast—ozx
Then
a) f(t) » A’ implies A'= A
b) (f+9g)(z) > A+ B
c) (fg)(t) ~ AB
d) (f/g)(t) —~ A/B

Note: o0 — 0, 0- o0, 00/0c0, A/0 are not defined.
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Chapter 5 Differentiation

Definitions

Deivative Let f be defined (and real-valued) on [a, b]. For any z € [a,b] form the quotient

¢(t)=% (a<t<bt+#zx)

and define
f'(z) = lim ¢(t)
provided this limit exists.
We thus associate with the function f and a function f’ whose domain is the set of

points = at which the above limit exists; f’ is called the derivative of f.

Differentiable If f’ is defined at a point z we say that f is differentiable at z. If f' is
defined at every point of a set E < [a, b], we say that f is differentiable on E.

Local Maximum Let f be a real function defined on a metric space X. We say that f has
a local mazimum at a point p € X if there exists § > 0 such that f(q) < f(p) for all
g € X with d(p.q) < é. (Local minima are defined likewise.)

Higher Order Derivatives If f has a derivative f’ on an interval. and if f’ is itself
differentiable, we denote the derivative of f' by f” and call f” the second derivative of
f. Continuing in this manner, we obtain functions

(o fou Hae b Lo aaca

each of which is the derivative of the preceding one. f® is called the nth derivative,
or the derivative of order n, of f.

Note, In order for f()(z) to exist at a point z, f"~1)(t) must exist in a neighborhood
of z (or in a one-sided neighborhood, if z is an endpoint of the interval on which f is
defined), and f*~Y(z) must be differentiable at z.

Theorems

Theorem 5.2 Let f be defined on [a,b). If f is differentiable at a point z € [a, b], then f
is continuous at .

Theorem 5.3 Suppose f and g are defined on [a,b] and are differentiable at a point z €
[a,b]. Then f + g, fg, f/g are differentiable at z, and:

a) (f +9)(z) = f'(z) + ¢'()
b) (f9)(z) = f'(z)9(z) + ¢'(z) f(2)

0 () (z) = LeslaEue
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Theorem 5.5 (Chain Rule) Suppose f is continuous on [a,b], f’(z) exists at some point
z € [a, b], g is defined on an interval I which contains the range of f, and g is differen-
tiable at the point f(z). If

h(t) =g(f®)) (a<t<))

then h is differentiable at z, and
K(z) = ¢'(f(z)) f'(z)

Theorem 5.8 (Rolle’s Theorem) Let f be defined on [a, b]; if f has a local maximum at
a point z € (a,b), and if f'(z) exists, then f'(z) = 0. (The analogous statement for
local minima also holds.)

Theorem 5.9 (Generalized Mean Value Theorem) If f and g are continuous real func-
tions on [a, b] which are differentiable in (a, b), then there is a point z € (a, b) at which:

[£(6) - £(a)]g'(z) = [9(b) — 9(a)) (=)

Theorem 5.10 (Mean Value Theorem) If f is a real continuous function on [a, b] which
is differentiable in (a,b), then there is a point z € (a,b) at which

f(b) = f(a) = (b~ a)f'(z)
Theorem 5.11 Suppose f is differentiable in (e, b).

a) If f'(z) > 0 for all z € (a,b), then f is monotonically increasing.
b) If f'(z) = O for all z € (a,b), then f is constant.
c) If f'(z) < O for all z € (a,b), then f is monotonically decreasing.
Theorem 5.12 (Intermediate Value Theorem for Derivatives) Suppose f is a real

differentiable function on [a,b] and suppose f'(a) < A < f'(b). Then there is a point
z € (a,b) such that f'(z) = A

Corollary If f is differentiable on [a,b], then f’ cannot have any simple discontinuities on
[a, b].

Theorem 5.13 (L’Hospital’s Rule) Suppose f and g are real and differentiable in (a, b),
and ¢'(z) # 0 for all z € (a, b), where —o0 < a < b < +00. Suppose

f'(z)
—t—=A as zT—a
g(z)
If
flz)=0 and g(z)—»0 as zT—oa
or if
g9(z) — 4+ as zT-—a,
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then
i@,
g(z)

The analogous statement is also true if z — b or if g(z) — —c0.

as r—a

Theorem 5.15 (Taylor’s Theorem) Suppose f is a real function on [a, b], n is a positive
integer, £ is continuous on [a,b], f(t) exists for every t € (a,b). Let o, f be
distinct points of [a,b], and define:

P(t Z f (a k

k=0

Then there exists a point z between « and § such that

1)

f(B) = P(B) + (8—a)".

Theorem 5.19 Suppose f is a continuous mapping of [a,b] into R* and f is differentiable
in (a,b). Then there exists z € (a, b) such that

I£(6) — f(a)| < (b— a)if ().
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Chapter 6 The Riemann-Stieltjes Integral

Definitions

Partition Let [a,b] be a given interval. By a partition P of [a,b] we mean a finite set of
points zg, zy, ..., Tn, Where

a=Ig<T <~ <2, =b.

We write
A.’Ei = T — Ti-1 (2 = 1,‘..,n).

Integral Components Suppose f is a bounded real function on [a,b]. Corresponding to
each partition P of [a,b] we put:

M; = sup f(z) (ri-1 <z <15, m; = inf f(z) (zio1 <z <),
U(Pf) = iMiAxiy L(P, f) = imiAxi’
. i=1 . i=]
J fdz = infU(P, f), I fdz =sup L(P, f)
e P da P

The last two are called the upper and lower Riemann integrals of f over [a,b] respec-
tively.

Riemann Integrable If the upper and lower integrals are equal we say that f is Riemann-
integrable on [a,b], we write f € Z (that is, Z denotes the set of Riemann-integrable
functions), and we denote the common value of the upper and lower integrals by:

b b
f fdz orby J f(z)dz
a a
Alpha Let a be a monotonically increasing function on [a,b]. Corresponding to each par-
tition P of [a,b] we write
Ag; = a(z;) — alzi-1) (E=1,...,n).

Note, Aa; = 0.

Integral Components Suppose f is a bounded real function on [a,b]. Corresponding to
each partition P of [a,b] we put:

U(Pnf: a) - iMiAai) L(Py faa) = imiAaia

—bh = b =

j fda = inf U(P, f, a), f fda = sup L(P, f,a)
a P . p
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Riemann- Stieltjes Integrable If the upper and lower integrals are equal we denote their
common value by

f fda orby J;b f(z) da.

This is the Riemann- Stieltjes integral of f with respect to a over [a,b]. If this exists,
we say that f is integrable with to & and we write f € Z(a)

Refinement We say that the partition P* is a refinement of P is P* o P.

Common Refinement Given two partitions, P, and P, we say that Ps= is their common
refinement if P* =P, u P,.

Unit Step Function The unit step function I is defined by:

_ )0 (z<0),
I(=)= {1 (z > 0).

Vector-valued Functions Let fi,..., fx be real functions on [a,b] and let f = (fy,..., fi)
be the corresponding mapping of [a,b] into R*. If & increases monotonically on [a, b],
to say that f € #(a) means that f; € £(a) for j = 1,...,k. If this is the case, we

define
b b b
f fda = (I flda,...,I fkda).

In other words, §fda is the point in R* whose jth coordinate is § f; dex.

Curve/ Arc/ Closed Curve/ Length/ Rectifiable A continuous mapping « of an in-
terval [a, b] into R is called a curve in R¥. To emphasize the parameter interval [a, b],
we may also say that v is a curve on [a,b]. If v is one-to-one, 7 is called an arc. If
v(a) = ~v(b), v is said to be a closed curve. It should be noted that we define a curve
to be a mapping, not a point set.

We associate to each partition P = {zo,...,X,} of [a,b] and to each curve v on [a,b]
the number n
A(P,y) = Z [v(z:) — ¥(zi-al.

i=1
The ith term in this sum is the distance between the points. Hence A(P,7) is the
length of a polygonal path with vertices at y(zg), ¥(z1),-..,¥(Zs), in this order. As
our partition becomes finer and finer, this polygon approaches the range of v more
closely. Thus, length of « is:

A(y) = supA(P,7),
If A(y) < oo we say that - is rectifiable.



Theorems
Theorem 6.4 If P* is a refinement of P, then

L(P, f,a) < L(P"*, f,a) and U(P* f,a) <U(P,f, a).

Theorem 6.5 S: fda< ﬁf da

Theorem 6.6 f € Z(a) on [a,b] if and only if for every € > 0 there exists a partition P
such that:
U(P,f,a) - L(P,f,a) <¢

Theorem 6.7 a) If U(P, f,a)— L(P, f,a) < € holds for some P and some ¢, then it holds
for every refinement of P.

b) fU(P, f,a) — L(P, f,a) < € holds for P = {zy,...,z,} and if s;,#; are arbitrary
points in [z;_1, z;], then

n

1 f(se) = f(t:)l6es < &

i=]

c) If f e Z(a) and the hypotheses of (b) hold, then

<E

i f(t,-)&ag o Jb fda
i=1 a

Theorem 6.8 If f is continuous on [e,b] then f € Z(c) on [a,b).
Theroem 6.9 If f is monotonic on [a, 4], and if @ is continuous on [a, b], then f € Z(a).

Theorem 6.10 Suppose f is bounded on [a,b], f has only finitely many points of discon-

tinuity on [a, b] and o is continuous at every point at which f is discontinuous. Then
f € Ra.

Theorem 6.11 {Composition of Functions) Suppose f € Z(a) on [a,b}, m < f < M,
¢ is continuous on [m, M], and h(z) = ¢(f(z)) on [a,b]. Then h € Z(a) on [a,b].

Theorem 6.12 (Properties of Integrals) a) If fi, fo € Z(a) on [a,b], then fi + fr €
Z(a), cf € #(a) for every constant c, and

J;b(cfl + f2) da = chfl do + f: fada

b) If fi(z) < fo(z) on [a, b], then

Jj fida < J: foda.
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c) If fe Z(a) on [a,b] and a < ¢ < b, then f € Z(a) on [a,c] and f € Z(a) on

[¢, b], and
J;cfda+£bfda=J:fda.

d) If f € Z(c) on [a,b] and if | f(z)] < M on [a,b], then

J;bfda

e) If f € Z(c) and f € Z(az), then f € Z(a; + a2) and

< M[afe) — a(b)].

b b 5
J- fd(aq + az) = J fd(al) +J fd(ag);
If f € Z(a) and c is positive constant, then f e %Z(ca) and
b b
I fd{ca) = cf fda

Theorem 6.13 If f € Z(«a) and f € Z(a) on [a,b], then:

a) fg e %(a);
b) |fl € Z(a) and

{2 f do| < §21] da.

Theorem 6.15 If a < s < b, f is bounded on [a,b], f is continuous at s and @ = I(z - 3),
then

ffda - 1(s)

Theorm 6.16 Suppose ¢, = 0 for 1,2,3,...,), ¢, converges, {s,} is a sequence of distinct
points in (a,b) and

a(z) = ), cul(z — sn)

n=1

Let f be continuous on [a,b]. Then

ffda = i cnf(sn).

n=1

Theorem 6.17 Assume o increases monotonically and o/ € Z on [a,b]. Let f be a bounded
real function on [a,b]. Then f € Z(«) if and only if fo' € Z. In that case

J;bfda = J;b f(x)d(z) dz.
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Theorem 6.18 (Change of Variables) Suppose ¢ is a strictly increasing continuous func-
tion that maps an interval [A, B] onto [a, b]. Suppose a is a monotonically increasing
function on [a,b] and f € Z(a) on [a,b]. Define 8 and g on [A, B] by

B(y) = ale(y)), 9(y) = f(e(y)).

Ldeﬂ=ffda

Theorem 6.20 Let f € Z on [a,b], for a < z < b, put

Then g € #(B) and

F(z) = J " ).

Then F is continuous on [a, b]; furthermore, if f is continuous at a point z; of {a, b],
then F is differentiable at zy, and F'(zq) = f(zo).

The Fundamental Theorem of Calculus If f € Z on [a, b] and if there is a differentiable
function F on {a,b] such that F’ = F, then

j " Hz)dz = F(5) ~ F(a).

Theorem 6.22 (Integration by Parts) Suppose F' and G are differentiable functions on
{a,b), FF=feZ,and G’ = ge Z. Then

b b
[ Fe)9(e) s = FOIG0) - Fl@G(0) - [ 1@)G(@) da.
Theorem 6.24 If f and F map [a, b] into R¥, if fe % on [q,b], and if F' = f, then
_[ " £t dt = F(b) - F(a).

Theorem 6.25 If f maps [a,b] into R* and if f € Z(c) for some monotonically increasing
function @ on [a, b], then |f| € Z(a) and

b b
J fdoz‘ sj Ifl dov.

Theorem 6.27 If v/ is continuous on [a,b], then 7 is rectifiable, and

b
Mﬂ=£W®W-
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Chapter 7 Sequences and Series of Functions

Definitions

Limit/ pointwise convergence/ sum Suppose {f,}, n = 1,2,3,..., is a sequence of
functions defined on a set E, and suppose that the sequence of numbers {f,(z)} con-
verges for every z € E. We an then define a function f by

f(@) = lm fu(e) (@€ E)

Under these circumstances we say that {f,} converges on E, that f is the limit, or
the limit function, of {f,}, and that {f,} converges to f pointwise on E. Similarly, if
Y. fa(z) converges for every z € E, and if we define:

f@) =) falz) (z€E)

n=1
the function f is called the sum of the series o f,.
Uniform Convergence We say that a sequence of functions {f,},n = 1,2,3,..., converges

uniformly on F to a function f is for every € > 0 there is an integer N suchthatn > N
implies the following for all z € E:

fn(w) - f(x) se€

Supremum Norm If X is a metric space, ¥(X) will denote the set of all complex=values,
continuous, bounded functions with domain X. We associate each f € ¥(X) with its
supremum norm

II£1| = sup £ (z)|.
zeX

Since f is assumed to be bounded, || f{| < co. It is obvious that ||f|| = 0 if and only if
flzy=0foreveryze X.Ifh=f+g¢:

Ih(=z)| < |F(=)] + lg()] < [I£]] + llgll

for all z € X; hence
LS+ gll < [I£1] + llgll-

%(X) as a Metric Space If we define the distance between f € ¥(X) and g € CX to be
[|f = gll, it follows that the Axioms for a metric are satisfied. Therefore, A sequence
{fn} converges to f with respect to the metric of C if and only if f, = f on X.

Pointwise Bounded Let {f,} be a sequence of functions defined on a set E. We say that
{fa} is pointwise bounded on E if the sequence {f.(z)} is bounded for every z € E,
that is, if there exists a finite-valued function ¢ defined on E such that

fale)l < ¢(z) (z€E,n=123,...)

(If {fn} is pointwise bounded on E and E; is a countable subset of E it is always
possible to find a subsequence {f,, } such that {f,, (z)} converges for every z € E;.)
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Uniformly Bounded We say that {f,} is uniformly bounded on FE if there exists a number
M such that
lfa(z)) <M (z€eE, n=123,...).

(If {fn} is a uniformly bounded sequence of continuous functions on a compact set £,
there need not exists a subsequence which converges pointwise on E. )

Equicontinuous A family & of complex functions f defined on a set F in a metric space
X is said to be equicontinuous on E if for every € > 0 there exists a § > 0 such that

[f(2) - fy)l <€

whenever d(z,y) < 4, z,y € E, f € &. (Note: Every member of an equicontinuous
family is uniformly continuous.)

Algebra A family & of complex functions defined on a set E is said to be an algebra if: (i)
f+ged, (ii) fge & (iii) cf € . for all f,g e o and for all complex constants c,
that is & is closed under addition, multiplication, and scalar multiplication.

Uniformly Closed If o has the property that f € & whenever f, € A (n = 1,2,3,...)
and f, = f on E, then & is said to be uniformly closed.

Uniform Closure Let 2 be the set of all functions which are limits of uniformly convergent
sequences of members of &. Then & is called the uniform closure of &

Seperate Points Let & be a family of functions on a set E. Then & is said to separate
points on E if every pair of distinct points z,,z, € E there corresponds a function
f € & such that f(z;) # f(z2).

Vanishes At No Point If to each z € E there corresponds a function g € & such that
g(z) # 0, we say that |A vanishes at no point of E.

Theorems

Theorem 7.8 (Cauchy) The sequence of functions {f,}, defined on E, converges uniformly
on E if and only if for every ¢ > 0 there exists an integer N such that m = N, n > N,
z € E implies:

[falz) - fm(z)| <€

Theorem 7.9 Suppose
lim fo(c) = f(z)  (z€B)

Put
M, = sup | fa(z) = f(=)|

Then f, — f uniformly on E if and only if M, — 0 as n — infty.
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Theorem 7.10 (M-test) Suppose {f,} is a sequence of functions defined on E, and sup-

pose
[fa(lz <M, (xeE,n=123,...)

Then Y, f,, converges uniformly on E if )} M, converges.

Theorem 7.11 Suppose f, — f uniformly on a set E in a metric space. Let z be a limit
point of F, and suppose that

}imfn(t) = A, (n=1,2,3,...).

Then {A,} converges, and
i 0 = Ji A

In other words, the conclusion is that:

lim lim f,(t) = lim lim f,(¢)

t—zI n—D N~ 00 t~2

Theorem 7.12 If {f,} is a sequence of continuous functions on E and if f, =3 f on E, then
f is continuous on F.

Theorem 7.13 Suppose K is compact, and

a) {f.} is a sequence of continuous functions on K
b) {f.} converges pointwise to a continuous function f on K,

¢) falz) = fopi(z) forallze K, n=1,23... ({f.} is a decreasing sequence)
Then f, = f on K.
Theorem 7.15 The aforementioned metric makes ¥(X) a complete metric space.

Theorem 7.16 Let o be monotonically increasing on [a, b], for n = 1,2,3,..., and suppose
fa = f on [a,b]. Then f € Z(a) on [a,b] and

b b
J; fda =‘}1_1.I(}° i fada.
Corollary If f, € Z(a) on [a,b] and if
[oa]
f@) =) fale) (a<z <)
n=1
the series converging uniformly on [a, b], then

Lbfda=’gffnda

In other words, the series may be integrated term by term.
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Theorem 7.17 Suppose {f,} is a sequence of functions, differentiable on [a,b] and such
that {f.(zo)} converges for some point zo on [a,b]. In {f.} converges uniformly on
[a, b], then {f.} converges uniformly on [a, b], to a function f, and

f@0)=lim fil) (a<z<h).

Theorem 7.18 There exists a real continuous function on the real line which is nowhere
differentiable.

Theorem 7.23 If {f,} is a pointwise bounded sequence of complex functions on a countable
set E, then {f,} has a subsequence {f,,} such that {f, (z)} converges for every z € E.

Theorem 7.24 If K is a compact metric space, if f, € €(K) for n = 1,2,3,Yots, and if
{fa} converges uniformly on K, then {f,} is equicontinuous on K.

Theorem 7.25 If K is compact, if f, € €(K) for n = 1,2,3,dots, and if {f,} is pointwise
bounded and equicontinuous on K, then
a) {fa} is uniformly bounded on K,
b) {fa} contains a uniformly convergent subsequence.

Theorem 7.26 (Stone-Weierstrass Theorem) If f is a continuous complex function on
[a, b], there exists a sequence of polynomials P, such that

lim P,(z) = f(z)
N0
uniformly on [a,b]. If f is real, the P, may be taken real.
Corollary 7.27 For every interval [—a, a] there is a sequence of real polynomials P, such

that P,(0) = 0 and such that
liq.lo P,(z) = |z|

uniformly on [—a,a].

Theorem 7.29 Let & be the uniform closure of an algebra & of bounded functions. Then
% is a uniformly closed algebra.

Theorem 7.31 Suppose & is an algebra of functions on a set E, & separates points on F,
and |A vanishes at no points of E. Suppose 1, z, are distinct points of F, and ¢,
are constants. Then & contains a function of f such that:

f(z1) = e f(z2) = c2

Theorem 7.32 Let & be an algebra of real continuous functions on a compact set K. IF
& separates points on K and if & vanishes at no point of X, then the uniform closure
% of o consists of all real continuous functions on K.

Theorem 7.33 Suppose & is a self-adjoint algebra of complex continuous functions on a
compact set K, & separates points on K, and & vanishes at no point of K. Then the
uniform closure & of |A consists of all complex continuous functions on K. In other
words, & is dense in F(K).
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Chapter 8 Some Special Functions

Definitions
Analytic Functions Functions of the form

f(@) =) calz — a)"

n=0
Exponential Function Define
© n
z
E(z) = ; =7
The ratio test shows that this series converges for every complex z. Note:

[0}

(z +w)"

E(2)E(w) = Z{;} =Bz +w)

n=

Thus, E(2)E(—z) = 1. Further,

E'(z) = ’111_% E(z + h})l = Blz) _ }I%E(_z__fﬁ’l)_:_lg(z)

Let E(1) =e. So E(n) =E(1+1+1+---+1)= E(1)E(1)... E(1) = e". This holds
for any n € Q. Furthermore, E(z) = ¢* = supe® (p < z, p rational).

Triginometric Functions Define the following:
Clz) = %[E(m-) + B(—iz)]  S() = %[E(im) _ B(—iz)]
Note: E(iz) = C(z) + iS(z). Further,
C'(z)=-S(z) S'(z)=C(X)
Ultimately equivalent to cos and sin.

Trigonometric Polynomial A trigonometric polynomial is a finite sum of the form

N
f(z) =ap+ Z(an cosnz + b,sinnz)  (zreal),
n=1
where ag,...,an,by,...,by are complex numbers. The above identities can also be
written in the form N
f(z) =Y cne™
-N

It follows that:
T y —
1 ein:: dr = {1 (an 0)

o ), 0 (ifn=+1,42,...)
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Fourier Coefficients If f is an integrable function on [—, 7], the numbers ¢, defines by:

= 1 (" inx
Cm = 5~ _“f(a:)e dz

for all integers m are called the Fourier coefficients of f,
Fourier Series The series: -
2 Cn ez
-0
formed with the Fourier coefficients is called the Fourier series of f.
Orthogonal System of Functions/ Orthonormal Let {¢,} (n = 1,2,3,...) be a se-

quence of complex functions on [a, b] such that

b
I ¢n(T)dm(z) dz = 0 (n # m).

Then {¢,} is said to be an orthogonal system of functions on [a,b]. If in addition:

b
IR

for all n, {¢,} is said to be orthonormal.

Gamma Function For0 <z < o
o0
I(z) = J £=-1e=t g,
0

The integral converges for these z. (When z < 1, both 0 and o0 have to be looked at.)

Theorems

Theorem 8.1 Suppose the series
o
$ e
n=0

converges for |z| < R, and define

f@)= Y e (el <R).

ne=0

Then the series converges uniformly on [~ R+¢, R—¢] no matter which £ > 0 is chosen.
The function f is continuous and differentiable in (—R, R).
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Corollary Under the hypotheses of Theorem 8.1, f has derivatives of all orders in (—R, R),
which are given by:

f(k)(x) = i n(n — 1)(11— 2) . ,,(n -k + l)cnxn—k.

n=k
In particular, f®(0) = klc;.
Theorem 8.2 Suppose Y, ¢, converges. Put

fl@) =Y e (lal <1).

n=0
Then ©
lm /(6) = Do

n=0

Theorem 8.3 Given a double sequence {a;;},1=1,2,3,...,7 =1,2,3,..., suppose that:

a
Y, lag] = b;
j=1

and ), b; converges. Then

@O o w o
51505150,
i=1 j=1 jwliml

Theorem 8.4 (Taylor’s Theorem) Suppose

f(z) = Zc,.a:“ (lz| < R).

n=0

If -R < a < R, then f can be expanded in a power series about the point £ — a which
converges in |z — a| < R — |a|, and

X fln) (g
@)= 51 -0 (z-dl <R~

n=0

Theorem 8.5 Suppose the series ), a,z™ and ) b,z™ converge in the segment S = (—R, R).
Let E be the set of all z € S at which

o0 o
Z apz" = Z b,z".
nw0

n=0

If E has a limit point in S, then a,, = b, for n =0,1,2,.... Hence the above equation
holds for all z € S.
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Theorem 8.6 Let e be defined on R! as it is above. Then:

a) €7 is continuous and differentiable for all x;

b) () = &5

c) €* is a strictly increasing function of z and e* > 0;
d) ¥tV = e%e¥,;

e) €€ — +wasz — +w, e —0asz — —w0;

f) limg— 4o 2"~ = 0 for every n.

Theorem 8.7 a) The function E is periodic, with period 2.
b) The functions C and S are periodic with period 2.
c) If 0 < t < 27 then E(it) # 1.

d) If z is a complex number with |z] = 1, there is a unique 7 € [0,27) such that
E(it) = 2.

Theorem 8.8 Suppose ay, . .., a, are complex number, n = 1, a, # 0,
n
P(z) = Zakz".
0

Then P(z) = 0 for some complex number z.

Theorem 8.11 Let {¢,} be orthonormal on [a,b]. Let

sn(z) = ), Cmbm()

be the nth partial sum of the Fourier series of f, and suppose

tn(x) = 2 ’Ym¢m(w)'

m=1

Then , )
[1r-sitaa< [ 1f-tias,
a a
and equality holds if and only if v, = cm
Corollary If f(z) = 0 for all z in some segment J, then lim,, (f;z) = 0 for every z € J.

Theorem 8.15 If f is continuous (with period 2x) and if € > 0, then there is a trigonometric
polynomial P such that |P(z) — f(z)| < € for all real z.
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Theorem 8.16 (Parseval’s Theorem) Suppose f and g are Riemann-integrable func-
tions with period 27, and

f(z) ~ 2 cpe'™® g(z) ~ Z’ynei“’.

Then L .
fim o [ 1@ = sn(fi)Fdz =0
1 «Q
im0 e = D,

1. 2 g
oo itlalf(2)"dz = § |enl

Theorem 8.18 a) The function equation:
I(z + 1) = zI'(z)

holds if 0 < z < 0.
b) F(n+1)=n!forn=1,23,....
c) logT is convex on (0, o).

Theorem 8.19 If f is a positive function on (0, ) such that
a) f(z+1) =zf(z)
b) /(1) =1

c) log f is convex
then f(z) = ['(z).
Theorem 8.20 If z > 0 and y > 0, then

' T(z)(y)

1 -ttt = o=

Jo fri- I(z +y)
This integral is the so called beta function B(z,y).

Stirling’s Formula This provides a simple approximate expression for I'(z + 1) when z is
large (hence for n! when n is large). The formula is

. Fz+1)
o (afervme
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Chapter 9 Functions of Several Variables

Definitions

Vector Space A nonempty set X < R™ is a vector space if x +y € X and cx € X for all
x,ye X, ceR.

Linear Combination If x;,...,x; € R" and ¢,,...,c, are scalars, the vector
X1 4+ -+ e Xp
is called a linear combination of x,,...,X.

Span If S © R" and if E is the set of all linear combinations of elements of S we say that
S spans E, or that E is the span of S. Observe that every span is a vector space.

Independent/ Dependent A set consisting of vectors x, . .., X, (we shall use the notation
{z1,...,%x} for such a set) is said to be independent if the relation cyx; +- - - +cxX = 0
implies that ¢; = --- = ¢x = 0. Otherwise {z,,...,X;} is said to be dependent.

Dimension If a vector space X contains an independent set of 7 vectors but contains no
independent set of 7 + 1 vectors, we say that X has dimension r, and write: dim X = r.

Basis/ Coordinates/ Standard Basis An independent subset of a vector space X which
spans X is called a basis of X. Observe that if B = {z;,...,x,} is the basis of X, then
every x € X has a unique representation of the for x = 3, ¢;x;. Such a representation
exists since V spans X, and it is unique since B is independent. The numbers ¢y, ..., ¢,
are called the coordinates of x with respect to the basis B. The most familiar example
of a basis is the set {ej,...,e,}, where e; is the vector in R" whose jth coordinate is
1 and whose other coordinates are all 0. If x € R, x = (z3,...,%a), then x = ), z;e;.
We shall call {ey,...,e,} the standard basis

Linear Transformation A mapping A of a vector space X into a vector space Y is said
to be a linear transformation if

A(CX] + XQ) = cA(xl) + A(zg)

for all x;,%; € X and all scalars ¢. Note that Ax = A(x). Further, a linear transfor-
mation A of X into Y is completely determined by its action on any basis.

Linear Operators A linear transformations of X into X are often called linear operators
on X.

Invertible If A is a linear operator on X which (i) is one-to-one and (ii) maps X onto X, we
say that A is invertible. In this case we can define an operator A~! on X by requiring
that A~1(Ax) = x for all x € X.
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Set of Linear Transformation Let L(X,Y) be the set of all linear transformations of
the vector space X into the vector space Y. Instead of L(X, X) we shall simply write
L(X). If Ay, A; € L(X,Y) and if ¢, c; are scalars, define ¢ A; + ¢4, by

(61A1 + CzAz)X = A1X + cpAx
Clearly C1A; + cpAs € L(X, Y)

Product If X,Y, Z are vector spaces and if A € L(X,Y) and B € L(Y, Z), we define their
product BA to be the composition of A and B:

(BA)x = B(Ax) (xeX)
Then BA € L(X, Z). Note that BA need not be the same as AB, evenif X =Y = Z.

Norm For A € L(R",R™), define the norm |[A]| of A to be the sup of all numbers |Ax|,
where x ranges over all vectors in R™ with |x| < 1. Observe that the inequality

|Ax| < [|Al[Jx]
holds for all x € R™. Also, if A is such the |Ax| < A|x| for all x € R", then ||A|| < A
Matrices Omitted, trivial.

Differentiable Suppose E is an open set in R", f maps E into R™ , and x € E. If there
exists a linear transformation A of R" into R™ such that
. |f(x + h) — f(x) — Ah|

A Ih]

0

then we say that f is differentiable at x, and we write:
fix)=A

If f is differentiable at every x € E we say that f is differentiable in E.
If }h| is small enough then x + h € E, since E is open. Thus f(x + h) is defined,
f(x + h) e R™, and since & € L(R*,R™), Ah € R™. Thus

f(x + h) — f(z) — Ahe R™.
Notes a)
lim |f(x + h) — f(x) — Ah| -
h—0 |h|
can be rewritten in the form:

f(x + h) - f(x) = f'(x)h + r(h)

0

where the remainder r(h) satisfies: limy_,o I%‘EIZI = (. That is, for fixed x and small

h the left side is approximately equal to f'(x)h, that is, to the value of the linear
transformation applied to h.
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b) If f is differentiable in E then f/(x) is a function that maps E into L(R",R™).

c) fis continuous at any point at which f is differentiable.

d) The aforementioned derivative in part (a) is called the differential of f at x, or
the total derivative, to distinguish it from the partial derivatives.

Components Consider f : £ ¢ R* — R™. Let {e;,...,e,} and {uy,...,u,} be the
standard bases of R* and R™. The components of f are the real functions fi,..., fm
defined by

f(X) = if,-(x)u; (x € E)

Partial Derivative For xe E,1 <i<m, 1 £ j < n, we define:

. filx +te;) — filx

(D)) = lim 5 ;) filx).

provided the limit exists. Writing fi(z1,...,Z.) in place of f;(x) we see that D, f; is
the derivative of f; with respect to z;, keeping the other variables fixed. The notation
gzL; is therefore often used in place of D, f;, and D; f; is called a partial derivative.

Continuously Differentiable A differentiable mapping f of an open set E < R" into R™
is said to be continuously differentiable in E if f' is a continuous mapping of E into
L(R™,R™). More explicitly, it is required that to every x € E and to every € > 0
corresponds a § > 0 such that

If(y) - £ ()l <€
ifye Fand |x-y| <.

Contraction Let X be a metric space, with metric d. If ¢ maps X into z and if there is a
number ¢ < 1 such that

d(p(z), o(y)) < cd(z,y)
for all z,y € X, then ¢ is said to be a contraction of X into X.

Fixed Point For ¢ : X — X a point z € X such that ¢(z) = z is called a fized point.

Notation for Implicit Function Theorem Ifx = (z,,...,z,) e R*andy = (¥1,...,Ym) €
R™, let us write (x,y) for the point (or vector)

n+m
(Z1,- s Ty Y1y Ym) €R

In what follows, the first entry in (x,y) or in a similar symbol will always be a vector
in R™ and the second a vector in R™.

Every A € L{R"*™, R™) can be split into two linear transformations A, and A, defined
by
A)zh = A(h,0), Ak = A(0,k)

for any h e R®, k e R™. Then A, € L(R") and A, € L(R™, R"), and
A(h,k) = A;h + g,k.
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Null Space The null space of A, AN (A), is the set of all x € X at which Ax = 0. It is clear
that #(A) is a vector space in X.

Range The range of A, Z(A), is a vector space in Y.
Rank The rank of A is defined to be the dimension of Z(A).

Projection Let X be a vector space. An Operator P € L(X) is said to be a projection in
Xif P2=P.

More explicitly, the requirement is that P(Px) = Px for every x € X. IN other words,
p fixes every vector in its range Z(P). Some elementary properties:
a) If P is a projection in X, then every x € X has a unique representation of the
form x = x; + X, where x; € Z(P), x; € #(P).

b) If X is a finite-dimensional vector space and if X, is a vector space in X, then
there is a projection P in X with Z(P) = X;.

Determinants If (4;,...,7,) is an ordered n-tuples, define
S(jla s )jn) = Hsgn(jq - ]p)
p<q

where sgn is the sign. Let [A] be the matrix of a linear operator A on R™, relative to
the standard basis {ey,...,e,}, with entries a;; in the sth row and jth column.

det[A] = ES(jl, ce ,j,,)aljlazj, o oo Qnj,
The sum extends over n-tuples of integers. Let x; be the ith column vector of A.

det(xy,...,x,) = det[A].

Jacobians If f maps an open set E < R" into R, and if f is differentiable at a point x € E,
the determinant of the linear operator f'(x) is called the Jacobian of f at x:

Jr(x) = det £ (x)
For (y1,...,yn) = £f(z1,...,Zs), we shall also use the notation:

a(yly slele 1yn)
z1, ..., Tn)

Second-order Partial Derivatives Suppose f is a real function defined in an open set

E < R" with partial derivatives Dy f,...,D,f. If the functions D;f are themselves
differentiable, then the second-order partial derivatives of f are defined by

Diif = DiD;f  (i,j=1,...,n)
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Theorems

Theorem 9.2 Let r be a positive integer. If a vector space X is spanned by a set of r
vectors, then dim X < r.

Corollary dim R"* =n
Theorem 9.3 Suppose X is a vector space, and dim X = n.

a) A set E of n vectors in X spans X if and only if E is independent.

b) X has a basis, and every basis consists of n vectors.

¢c) Ifl1 €£r <nand{y,...y,} is an independent set in X, then X has a basis
containing {y,,...y,}-

Theorem 9.5 A linear operator A on a finite-dimensional vector space X is one-to-one if
and only if the range of A is all of X.

Theorem 9.7 8) If A € L(R*,R™), then ||A|| < o and A is a uniformly continuous
mapping of R" into R™.

b) If A, B € L(R",R™) and c is a scalar, then
A+ Bl < ||All +11Bll, |lcAll = cll|All

With the distance between A and B defined as ||A — B||, L(R",R™) is a metric
space.

¢) If Ae L(R*,R™) and B e L(R",R*) then
IBA|| < || Bll||All

Theorem 9.8 Let 2 be the set of all invertible linear operators on R™.
a) If AeQ, Be L(R"), and
1B - All-[|A7"]} < 1
then B € Q)

b) Q is an open subset of L(R™), and the mapping A — A~ is continuous on f2.

Theorem 9.12 Suppose E and f are as in the definition of differentiable, x € F, and the
following holds with A = A, and A = Aj:

lim |f(x + h) — f(x) — Ah| _

h—0 |h| 0.

Then A; = A.
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Theorem 9.15 (Chain Rule) Suppose F is an open set in R*, f maps E into R™, f is
differentiable at xp € E, g maps an open set containing f(E) into R¥, and g is differ-
entiable at f(>xp). Then the mapping F of E into R* defined by

F(x) = g(f(x))

is differentiable at xg, and

F'(xo) = g/ (f(x0))f (x0)-

Theorem 9.17 Suppose f: E ¢ R® — R™, and f is differentiable at a point x € E. Then
the partial derivatives (D; f;)(x) exists, and

Plxe = D w  (1<j<n)

i=1

Theorem 9.19 Suppose f maps a convex open set £ < R™ into R™, f is differentiable in E,
and there is a real number M such that ||f(z)|| < M for every x € E. Then

|f(b) — £(a)| < M|b — a|

Corollary If, in addition f'(x) = 0 for all x € E, then f is constant.

Theorem 9.21 Suppose f : E ¢ R* — R™. Then f € ¥'(E) if and only if the partial
derivatives D; f; exists and are continuouson Eforl €i<m,1<j<n.

Theorem 9.23 (Contraction Mapping Principle)If X is a complete metric space, and
if v is a contraction of X into X, then there exists one and only one x € X such that

o(z) = z.
Theorem 9.24 (Inverse Function Theorem) Suppose f is a ¥’-mapping of an open set
E < R" into R", f'(a) is invertible for some a € F, and b = f(a). Then
a) there exists open sets U and V' in R™ such that ae U, b e V, f is one-to-one on
U, and f(U) = V;
b) if g is the inverse of f, defined in V by

glfx)) =x  (xel),
then g € ¥'(V).

Theorem 9.25 If f is a ¥'-mapping of an open set E < R” into R* and if f(z) is invertible
for every x € E, then f(W) is an open subset of R" for every open set W < E. In
other words, f is an open mapping of E into R*

Theorem 9.27 If A e L(R™", R") and if A; is invertible, there there corresponds to every

k € R™ a unique h € R" such that A(h,k) = 0. This h can be computed from k by
the formula:
= —(Az) " 4k
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Theorem 9.28 (Implicit Function Theorem) Let f be a ¥’-mapping of an open set
E < R"*™ into R™, such that f(a,b) = 0 for some point (a,b) € E.

Put A = f'(a,b) and assume that A, is invertible. (That is, the Jacobian, the deter-
minant of the n x n matrix A, is nonzero.) Then there exists open sets U < R**™
and W c R™, with (a,b) € U and b € Wm having the following property:

To every y € W corresponds a unique x such that
(x,y)eU and f(x,y)=0.
If this x is defined to be g(y), the g is a ¥’-mapping of W into R" g(b) = a,

flg(y),y) =0 (yeW),

and
Z(b) = —(4:) 14,

Theorem 9.32 Suppose m,n,r are nonnegative integers, m = r, n 2 r, F is a ¥’-mapping
of an open set E c R” into R™, and F'(x) has rank r for every x € E. Fix a € E,
put A = F'(a), let Y; be the range of A, and let P be a projection in R™ whose range
is Y;. Let Y, be the null space of P. Then there are open sets U and V' in R™ with

ae U, U c E, and there is a 1-1 ¥'-mapping H of V onto U (whose inverse is also of
class €”) such that
F(H(x)) = Ax + ¢(Ax) (zeV)

where ¢ is a ¥’-mapping of the open set A(V) < V] into Ya.
Theorem 9.34 a) If ] is the identity operator on R", then
det[I] = det(e1,...,e,) =1

b) det is a linear function of each of the column vectors x;, if the others are held
fixed.

¢) If [A], is obtained from [A] by interchanging two columns, then det[4;] =
— det[A].

d) If [A] has two equal columns, then det[A] = 0.
Theorem 9.35 If [A] and [B] are n x n matrices then:
det([B][A]) = det([B]) det[A].
Theorem 9.36 A linear operator A in R" is invertible if and only if det[A] # 0.

Theorem 9.40 Suppose f is defined in an open set £ = R? , and D, f and Dy f exist
at every point of E. Suppose Q < E is a closed rectangle with sides parallel to the
coordinate axes, having (a,b) and (a + h,b + k) as opposite vertices. Put

A(f,Q) = fla+h,b+ k) — f(a+h,b) — f(a,b+k) + f(a,b)
Then there is a point (z,%) in the interior of @ such that A(f,Q) = hk(D:1f)(z,y).
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Theorem 9.41 Suppose f is defined in an open set £ < R?, and D;f. Dy f. and D,f
exist at every point of £, and Dy, f is continuous at some point (a,b) € E. Then Dy, f

exists at (a,b) and (D2 f)(a,b) = (Da f)(a,b)
Corollary Dy f = Dyof if f € €"(E)
Theorem 9.42 Suppose
a) ¢(z,t) isdefined fora <z < b, c<t<d;
b) « is an increasing function on [a, b];

c) ¢'e Z(a) for every t € [c,d];
d) ¢ < s < d, and to every € > 0 corresponds a § > 0 such that |(Dyy)(z,t) -
(Dag)(z, s)| < € for all z € [a,b] and for all ¢ € (s - §, s5).

Define ,
f() = f o(z,t)da  (c<t<ad).

a

Then (Dyp)® € Z(a), f'(s) exists, and

766) = [ (Dap)(z, ) de

a
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