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Throughout these notes, R denotes a unital ring and an R-map is an R-module homomorphism.

Lifting property of free modules

Definition 0.1. A left R-module F is a free R-module if F' is isomorphic to a direct sum of copies of R;
that is, there is a (possibly infinite) index set X with F' =~ @, _y R,, where R, = (x) = R for all z € X.
We call X a basis of F'.

Each m € F has a unique representation of the form m = | _r,x = (ry)zex = (ry), where r, € R
for each x € X, and r, = 0 for all but finitely many x € X.

Proposition 0.2. Let F' be a free R-module with basis X. Given an R-module M, an R-map f: X — M,
and inclusion map = X — F, there exists a unique R-map f : F — M with fu = f. So f(z) = f(z )for
all v e X.
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Lifting property of free modules. Let F' be a free R-module. If p : B — C' is a surjective R-
map, then for every R-map g : F' — C, there exists an R-map h : F' — B such that g = ph.
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Proof. Let X < F be a basis of F'. Since p is surjective, for each x € X, there exists an element b, € B
such that p(b,) = g(z). Define a function u : X — B by u(z) = b, for all x € X. Hence, there exists an
R-map h : F — B such that h(z) = b, for all z € X. So for each = € X, ph(z) = p(b,) = g(x). By the
above proposition, ph = g on F'. 0



Remark 0.3.
The lifting property is a basis-independent property of free modules.

The lifting property is not equivalent to the definition of a free R-module; there are rings R and R-
modules F' which are not free, even though they have a lifting h for each p and ¢ as above.

There are rings, such as PIDs and local commutative rings, over which every module with the lifting

property is free.

Definition 0.4. A commutative ring is local if it has a unique maximal ideal.

Examples:
A field k is a local ring with unique maximal ideal (0).

The ring of rational numbers with odd denominators, denoted Q), is a local subring of Q. Its unique
maximal ideal 2Q,) consists of fractions with even numerator and odd denominator.

Definition 0.5. Let g: M — C and p : B — C be R-maps. An R-map h : M — B is a lifting of g if
ph=g.
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Definition 0.6. A left R-module P is projective if, given a diagram of the form below, where B and C'
are R-modules, p and g are homomorphisms of R-modules (R-maps), and p is surjective, there is a lifting
h : P — B such that g = ph.




Definition 0.7. A left R-module F is injective if, given a diagram of the form below, where A and B
are R-modules, ¢ and f are R-maps, and i is injective, there is an R-map h : B — E such that f = hi.
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Baer’s criterion: An R-module is injective if and only if given a diagram of the form below, where
I is a left ideal of R, i is the inclusion map, and f is an R-map, there is an R-map g : R — E making the
completed diagram commute: f = gi.

Proposition 0.8. Let R be a domain and Q its fraction field. We show that Q) is an injective R-module
using Baer’s Criterion.

Proof. Let I be a left ideal of R, and let f : I — () be an R-map. We extend f to an R-map g : R — Q.
First observe the following: If a,b € I are nonzero elements of R, then af(b) = f(ab) = bf(a), and

therefore f(a)/a = f(b)/bin Q. Let ¢ € ) denote the common value of these quotients. Define an R-map
g: R— Q Dby g(r) =rcforall r € R. Then for all a € I,

Hence, g extends f, and therefore () is an injective R-module. O

An exact sequence of R-modules is a diagram of the form

d d d dn

where for each n € N, X, is an R-module, d,, is an R-map, and for each n, imd,, = kerd,, ;.



A short exact sequence (ses) of R-modules is a diagram of the form
0-A4LBLC -0

where A, B, and C are R-modules, f and g are R-maps, and

ker f =0
imf = kerg
img=C

The image of each homomorphism equals the kernel of the next homomorphism.

If there is an R-map B 2, A such that Jf = 14, or equivalently, if there is an R-map p : C' — B
such that gp = 1¢, then we say the short exact sequence splits, which implies B~ A® C.

Examples: Given an R-module M, an R-submodule N < M gives us a short exact sequence where
¢ is the inclusion map and 7 is the quotient map:

0>N5MI M/N -0,

If A, B, and C are R-modules and B = A® C, then

0—>A—>B—(C—0isa ses.

Note: If we are given a short exact sequence 0 - A — B — (' — 0 such that B ~ A® C, it does
not follow that the ses splits.

Facts and examples

Every R-module is the homomorphic image of a free R-module.

Every free R-module F' = @,_; R;, where each R; is a copy of R, is a projective R-module. The no-

tion of a projective module is an abstraction of free modules defined by the basis-free lifting property of
free modules.

Z/6Z is a free Z/6Z-module. Since Z/6Z = Z/3Z ® Z/27Z, it follows that Z/3Z is a projective Z/6Z-
module. But it is not a free Z/6Z-module, since it is nonzero and has cardinality less than 6.

If R is a PID, then an R-module M is projective if and only if it is free, and M is injective if and
only if it is divisible.

Given a domain R, we say that an R-module M is divisible if for all m € M and all nonzero r € R,
there is an element m’ € M such that m = rm/.

Since Q/Z is a divisible Z-module, it is an injective Z-module.

Kaplansky’s theorem for projective modules: If R is a local ring, then every projective R-module is free.



A module is projective if and only if it is a direct summand of a free module.

Direct sums of projective modules and direct summands of projective modules are projective. It is not true
that an infinite direct product of projective modules is always projective. If we assume R is commutative,
then every direct product of projective R-modules is projective if and only if R is Artinian.

| Lien Zi, where Z; = Z for each i, is not a free Z-module, and therefore it is not a projective module
since Z is a PID.

Direct products of injective modules and direct summands of injective modules are injective. It is not
true that an infinite direct sum of injective modules is always injective. Given a ring R, every direct sum
of injective R-modules is injective if and only if R is Noetherian (Bass-Papp theorem).

For a given field k, every k-vector space V' is projective and injective.

Since V has a k-basis, V is a free, and thus projective k-module.

V = @, k; for some index set I. Over a Noetherian ring, direct sums of injective modules are injective.

Since k is Noetherian and injective as a module over itself, V' is an injective k-module.

Theorem. An R-module P is projective if and only if every short exact sequence of R-modules 0 —
f g .
A= B> P — 0 splits.

Proof. (=) Suppose P is projective, and we have a short exact sequence as above.

J2 P
1p y 1P
B -4 . p B -4 . p

Since P is projective, there exists an R-map p : P — B such that 1p = gp. Hence, the short exact
sequence splits.

(<) Suppose every short exact sequence ending with P splits. We show that P is projective. Con-
sider the following diagrams with g surjective:

P Pl p
f 9o f
B . ¢ B —J4. ¢

There exists a surjective R-map h : ' — P, where F is a free module, since every module is the homo-
morphic image of a free module. The R-map g, making the right-hand diagram commute exists because
F' is projective.

The map F Lp gives the short exact sequence 0 — kerh — F 2 P — 0. Since this short exact



sequence splits by hypothesis, there exists a map j : P — F such that hj = 1p. Let f = ¢goj. Then
9f = 9(907) = (990)5 = (fh)j = f(hj) = f. So P is projective.

O

Theorem 2. An R-module F is injective if and only if every short exact sequence of R-modules
0—E-L B 00 splits.

Proof. (=) Suppose E is injective, and that we have a short exact sequence as above.

E E
1g 1g J
E / B E / B

Since f is injective, there exists an R-map j : B — FE such that 1z = jf. Hence, the short exact se-

quence splits.
O

Definition. A submodule S of a module M is superfluous if, whenever L = M is a submodule such that
S+ L=M,then L =M.

A surjective R-map f: A — B is essential if for every proper submodule A’ < A, f(A") < B.

A projective cover of a module B is an ordered pair (P, ) where P is projective and ¢ : P — B
is a surjective map with ker ¢ a superfluous submodule of P.

Equivalently, (p, P) is a projective cover of B if P is projective and ¢ is an essential surjection.
Definition. Let M and E be R-modules. Then E is called an essential extension of M if there is
an injective R-map « : M — F such that for every nonzero R-submodule S € E, S n«a(M) # 0.

E' is called an injective hull or injective envelope of M if E is an injective module that is an es-
sential extension of M.



Motivation: Why do we care about projective modules, injective modules, projective covers, and injective
hulls?

1) Projective modules are a generalization of free modules. The lifting property that defines projec-
tive modules is a characterizing basis-free property of free modules.

Injective modules are the categorical dual of projective modules. Moreover, they are a natural gener-
alization of the set of rational numbers Q considered as a Z-module in the following ways:

a) If Q is a submodule of a Z-module M, then Q is a direct summand
of M.

b) If M is a Z-module and N is a submodule of M, then any Z-map
f: N — Q can be extended to a Z-map f: M — Q.

2) Projective and injective modules are used in the construction of the derived functors, which are used
to study properties of algebraic and projective varieties and topological invariants of manifolds.

3) The injective envelope of a module is a maximal essential extension
of the module. Projective covers and injective hulls are used in the study
of algebraic varieties.

Note: The projective cover and injective hull of an R-module M are unique up to isomorphism. Hence,
we refer to the projective cover and injective hull of a module.

For an arbitrary ring R, every R-module has an injective hull. But it is not true that for every ring
R, every R-module has a projective cover.

We say that a ring is left perfect if every left R-module has a projective cover, and left semiper-
fect (or just semiperfect) if every finitely generated left R-module has a projective cover. A commutative
Artinian ring R is (left and right) perfect.

Examples: If P is a projective R-module, then (P,1p) is a projective cover of P, since {0} is a su-
perfluous submodule of P. Likewise, if F is injective, then (E, 1g) is an injective hull of E.

The Z-module Z/2Z has no projective cover. Suppose Z/27 has a projective cover (F, ), ¢ : F — Z/2Z.
Since Z is a PID, F is a free abelian group. Let z € F be a basis element such that ¢(x) = 1.
F = o NZ/2Z) = ¢ (¢((3z))) = kerp + (3z). Since ker ¢ is superfluous in F', (3z) = F. But this
is a contradiction, since x ¢ (3x).

Let R = k[x], where k is a field, and let M = R/(xz). M has no projective cover. Indeed, suppose
(p, P) is a projective cover of M, ¢ : P — M. Since k[x] is a PID, P is a free R-module. So (1—xz)P < P,
but ¢((1 — z)P) = M, which contradicts the fact that ¢ is an essential surjection.

Note that Z and k[x] are not Artinian.



Theorem. If R is a domain, then its fraction field () is the injective envelope of R.

Proof. We know that () is an injective R-module. It remains for us to show that () is an essential extension
of R. We map R injectively into @ via the R-map ¢ defined by ¢ : » — r/1 for each r € R, and we identify
¢(R) with R.

Suppose S is a nonzero R-submodule of @, and let r/s € S be nonzero. Then r and s are nonzero
elements of R. Since S is an R-module, s(r/s) = r/1 € S n R, and therefore S n R is nonzero.

Hence, @) is an injective R-module that is an essential extension of R, and thus () is the injective en-

velope of R.
O

Examples. By the above theorem, Q is the injective envelope of Z, and given a field k, k(x) is the injective
envelope of k[z].

Let R = k[z], and consider the ring of Laurent polynomials k[z,z~!] as an R-module. k[z,x7!] is
the set of all k-linear combinations of integer powers of z.

It is clear that k[z] is an R-submodule of k[z,z '], and therefore we can form the quotient module
E = k[z,z7]/k[z].

The R-module structure on E is dictated by

0 otherwise.

. {x“_c it a < ¢, and

We claim that E is the injective envelope of R/xR = k[z]/(x), whose nonzero elements are equivalence
classes of nonzero elements of k. Hence, as sets, we identify R/xR with k.

Since R = k[z] is a PID, and E is a divisible R-module, E is an injective R-module.
To see that E is an essential extension of R/xR, consider the injective R-map ¢ : k — FE defined by
p:1— 1/x. If Sis a nonzero R-submodule of E, then we can multiply a nonzero element of S by x raised

to a sufficiently large integer power to obtain an element in the image of (.

Hence, F is the injective envelope of R/xR.



Indecomposable Decompositions of Injective Modules over Noetherian Rings

In his 1958 paper Injective Modules over Noetherian rings, Eben Matlis gave a comprehensive description
of injective modules over a Noetherian ring R. In the case R is commutative, he proved that indecom-
posable injective R-modules are precisely the injective envelopes of the modules R/p, for prime ideals p in R.

We look at some results from this paper.

Definition. Let R be a ring. Given an R-module M and an R-submodule S of M, we say that S is
a direct summand of M if there is an R-submodule T of M such that M = S®T.

An R-module M is indecomposable if its only direct summands are 0 and M.

Examples. Every simple module is indecomposable. Z/6Z is not an indecomposable abelian group,
as Z/6Z = 7/27 @ 7Z/3Z. In fact, an abelian group is indecomposable if and only if it is isomorphic to Z

or Z/p"Z, where p is a prime integer and n € N.

Theorem. Suppose R is Noetherian, and let {};} be a family of R-modules. Then E(P), M;) = @, E(M;).
This is proved by showing that the injective module @, E(M;) is an essential extension of @), M;.



Definition. A left ideal J of a ring R is irreducible if there do not exist left ideals K and L of R,
properly containing .J, such that K n L = J.
If R is a PID, then an ideal (a) < R is irreducible if and only if @ is an irreducible element of R.

Example. (4) is an irreducible ideal of Z. Indeed, suppose there are ideals (a) and (b) of Z such that
(4) = (a) n (b). Then 4 € (a) and 4 € (), so a4 and b|4. Hence, a = 1,2, or 4, and b= 1,2 or 4. If a = 1,
then (a) = Z, and (4) = (b). Likewise, a = 2 = (4) = (b). We conclude that (a) = (4) or (b) = (4), so (4)
is an irreducible ideal.

Theorem. A module E over a ring R is an indecomposable, injective module if and only if £ =~ E(R/J),
where J is an irreducible left ideal of R.

Theorem. If R is a left-Noetherian ring, then every injective R-module has a decomposition as a di-
rect sum of indecomposable, injective R-modules.

This means that, given an R-module F, there is a collection of indecomposable R-modules {E;};c; such that

E = @z‘e[ E;.

Moreover, the indecomposable, injective direct summands in this decomposition are unique up to iso-
morphism and permutation of the indices.



Definition. Given an R-modules M, Hompg(M, M) denotes the set of all R-homomorphisms from M to
itself. We call such homomorphisms endomorphisms. Hompg(M, M) is a ring with respect to pointwise

addition, and multiplication given by composition of functions. That is, for f,g € Homg(M, M), and
reM,

Definition. A ring R is a local ring if the set of non-units of R forms a two-sided ideal. If R is
commutative, this is equivalent to R having a unique maximal ideal. It is known that a local ring contains
no idempotent elements other than 0 and 1. r € R is an idempotent if 7? = r.

Fact: If F is an indecomposable injective module, then for any nonzero submodules S and T of FE,
SnT #0.

Theorem. Let E be an injective module over a ring R, and H = Homg(F,E). Then H is a local
ring if and only if F is indecomposable.

Proof. (=) We prove the contrapositive. Suppose E is not indecomposable. Then F has nonzero submod-
ules M and N such that E = M@N. Definep: M®N — M@N by p(m,n) = (m,0) for all (m,n) e MON
(projection onto the first summand). It is clear that p is an R-map. And for (m,n) e M @ N,

p?(m,n) = p(p(m,n)) = p(m,0) = (m,0) = p(m,n). So p* = p. That is, p is an idempotent that is
not the identity map or the zero map. Hence, H is not a local ring.

(«) Now assume that E is indecomposable. If f € H is a unit, then clearly ker f = 0. If ker f = 0,
then we have a short exact sequence

0 — F L B ™ coker f — 0. Since F is injective, this short exact sequence splits, and there-
fore E =~ F @ cokerf. Since FE is indecomposable, and F is nonzero, it follows that cokerE = 0, and
therefore imE = FE, so f is a unit in H.

We have shown that f € H is a unit (invertible) if and only if ker f = 0.

Now we show that the set of non-units of H forms a two-sided ideal I. Let g and h be non-units of H.
Then ker g # 0 and ker h # 0. Thus, by the above fact, ker g n ker h # 0. Since ker g n ker h < ker(g + h),
ker(g + h) # 0, and therefore g + h is a non-unit.

By considering cases, one can show that for each f € H and for each non-unit ¢ € H, fg is a non-

unit, and g f is a non-unit. Hence, the set of non-units of H forms a two-sided ideal, and we conclude that
H is a local ring. 0

Definition. If [ is an ideal in a commutative ring R, then the radical of I, denoted /I, is
VI:={reR:r" el for some n e N}.

Definition. A proper ideal I of a commutative ring R is called primary if whenever x,y € I, then
x €I or y" e I for some positive integer n. If I is primary, then /T is a prime ideal. If v/T = p, then we



say that [ is p-primary.

Theorem. A module E over a ring R is an indecomposable, injective module if and only if F =~ E(R/I),
where [ is an irreducible left ideal of R.

Fact: If R is Noetherian, then an irreducible ideal I < R is primary. If R is a PID, then an ideal is
irreducible if and only if it is primary.

Theorem. Let R be a commutative Noetherian ring. There is a one-to-one correspondence between
the prime ideals of R and the indecomposable, injective R-modules, given by p < E(R/p), for p a prime
ideal of R (p € SpecR). If I is an irreducible p-primary ideal, then E(R/I) ~ E(R/p).

Examples. For every prime number p, F(Z/pZ) is an indecomposable, injective Z-module.

Suppose R is a PID and M is a finitely generated R-module. By the structure theorem for finitely
generated modules over a PID,
M =~ @;_, R/q;, where each q; is a primary ideal and n € N. Hence,

E(M) = @, E(R/q;), where each E(R/q;) is an indecomposable injective module. This is the unique
decomposition of the injective envelope of M as a finite direct sum of indecomposable injective modules.

We know that if R is a left-Noetherian ring, then every injective R-module can be written as a direct
sum of indecomposable, injective R-modules. Thus, if R is a commutative Noetherian ring, then an injec-
tive R-module E' can be written as

E = @,cspecr E(1/p)"*, where for each p € SpecR,

E(R/p)» = @,; E(R/p)i, where |I| = p,, and E(R/p); = E(R/p) for each 1.
Each p, is uniquely determined by E and p. Hence, the necessary data for writing our indecomposable
decomposition of E is contained entirely in the cardinal numbers p,, for p € SpecR.

Indecomposable Decompositions of
Projective Modules over Artinian Rings

Theorem. Let R be a perfect ring and let P be a nonzero projective R-module. Then P is inde-
composable if and only if P =~ Pg(S), for some simple R-module S.

Assume R is commutative. Recall that the simple R-modules are precisely the R-modules R/m, where m
is a maximal ideal of R.

Lemma. Let R be a commutative Artinian ring. Then every prime ideal is maximal. Thus, an ideal
of R is prime if and only if it is maximal. Moreover, R has only finitely many prime ideals.

Proof. Let p < R be a prime ideal. Choose x € R\p. We obtain a decreasing sequence of ideals
e (@) c(@®)c(z) SR

Since R is Artinian, the sequence stabilizes. So there is a positive integer n such that (z") = (2"*1)

Y



and thus there is an element a € R such that 2" = az"™'. Hence, (1 — az)z" = 0 € p. Thus, 1 —azx € p or
x €p. Since x ¢ p, ™ ¢ p, and therefore 1 — ax € p. Thus, there exists some y € p such that 1 — ax =y,
so 1l =y +ax. Thus, R =p+ (z). Soif I = R is an ideal such that p & I < R, then choosing = € I\ P, we
have R =p + (z) € I < R, so I = R. Therefore p is maximal.

Let S = {[[_;pi : p; € SpecR for i = 1,....,n, and p; # p; for ¢ # j }. This is a nonempty collection
of ideals in R, and since R is Artinian, S has a minimal element J = [[;_; p; = [;_; pi- Let p € SpecR.

Then J = pJ < p. Hence, p contains p; for some j, and thus equals p;, since all primes are maximal.

Hence, SpecR = {p1, P2, ..., pn}- O

Theorem. Let R be a commutative Artinian ring and let P be a projective R-module. Then
P = [T cspecr P(R/P)™®F), where for each p,

P(R/p)™®P) = @,_; Pi(R/p), where for each i, Pi(R/p) =~ P(R/p) and |I| = =(p, P).



Injective Modules over Priifer Rings

Definition. Let R be an integral domain, and let @ be its quotient field. R is a subring of @) under the injective ring
homomorphism ¢ : R — @ given by o(r) = 7. A fractional ideal of R is an R-submodule I of () such that there exists a
nonzero ring element r € R such that 1 € R < Q.

A fractional ideal I is invertible if there is a fractional ideal .J such that I.J = R, where I.J = {}" , a;b; 1 a; € I,b; € J}.

Definition. A Priifer domain is an integral domain R in which every finitely generated nonzero ideal is invertible (The
finitely generated nonzero ideals of R form a multiplicative group).

Examples of Priifer domains. The ring of entire functions on the complex plane, and the ring of integer-valued
polynomials with rational coefficients.

An integer-valued polynomail P € Q[z] satisfies P(n) € Z for every n € Z e.g. z(z + 1).

Univariate polynomial rings over von Neumann regular rings are Bézout domains (the sum of two principal ideals is
principal), and thus Priifer domains. A ring R is von Neumann regular if for all ¢ € R, there exists a (generalized inverse)
z € R such that a = aza.

Conversely, if R[z] is a Priifer ring, then R is von-Neumann regular.

Z[x] and Z4[z] are not Priifer domains because Z and Z, are not von-Neumann regular (2 € Z, does not have a gener-
alized inverse).

Definition. A valuation ring R is an integral domain in which every two elements have a greatest common divisor
which is equal to one of them. Equivalently, a valuation ring is a local Priifer ring.

Given a,b € R, a greatest common divisor of a and b is an element d € R such that d|a and d|b (there exist z,y € R such
that @ = 2d and b = yd), and any r € R that divides both a and b also divides d.

Examples of valuation rings. Any field. The ring of meromorphic functions on the complex plane.

C[z] is a Priifer domain that is not a valuation ring, since it is not
local.

Fact: The ideals of a valuation ring R are totally ordered by inclusion. Hence, for each pair of ideals I,J € R, I < J
or JcI.

Proof. Let I,J € R, and suppose I & J. Let z € I\J, y € J, and
d = ged(x,y). d=x ord=y. If d=wx, then x|y, so y = tx for some ¢ € R, and therefore y € I. If d = y, then y|z, so = = sy
for some s € R, and therefore x € J, a contradiction. Hence, d = z, and J < I. O

Fact: If R is a valuation ring with quotient field @, and if S is a proper R-submodule of @, then there is a nonzero element
a € R such that aS is an ideal of R.



Proposition. Let R be a valuation ring with quotient field ). Then

1) Er(R/I) is an indecomposable, injective R-module for every ideal I of R, and every indecomposable, injective R-module
is of this form.

2) If T is a proper ideal of R, then Egr(R/I) = Er(Q/I).

3) If T and J are proper ideals of R, then Fr(R/I) = Er(R/J) if and only if I = J.

Proof. 1) Let I be an ideal of R, and suppose that there exist ideals J and K of R such that I = J n K. Since R is a
valuation ring, its ideals are totally ordered, and thus J ¢ K or K ¢ J. WLOG, say J € K. Then I = J, so [ is irreducible.
We know that an R-module is an indecomposable, injective R-module iff it is isomorphic to the injective envelope of R/J,
where J is an irreducible ideal. Since every ideal is irreducible, we obtain the desired result.

2) First we show that E(Q/I) is indecomposable. It suffices to show that Q/I contains no nonzero R-submodules A and B
such that An B =0. Let A =S/I and B = T/I be nonzero R-submodules of /I such that A n B = 0, where S and T are
R-submodules of Q. If S = Q or T' = @, then An B is nonzero. Hence, we may assume that S and T are proper R-submodules
of ). So there exists an element a # 0 in R such that aS and a7 are ideals in R. We have the following isomorphisms of
R-modules: S/I = aS/al and T/I = aT'/al, and thus aS/al and aT/al have zero intersection. Hence, aS n aT = al. Since
I is irreducible and I = al, al is irreducible. So either aS = al or aT = al. This contradicts our assumption that A and B
are nonzero R-modules, and therefore E(Q/I) is indecomposable. Since R/I is a nonzero submodule of E(Q/I), E(Q/I) is
the injective envelope of R/I.

3) Suppose I and J are isomorphic as R-modules via R-map ¢ : I — J. We may assume that I and J are nonzero.
Let a be a nonzero element of I. Then ¢p(a)l = ¢(al) = ap(l) = aJ. Hence, letting ¢ = a/p(a) in Q, we have I = ¢J

in @, and so as R-modules, Q/I = Q/qJ =~ Q/J, so E(Q/I) = E(Q/J), and by 2), E(R/I) ~ E(R/J). The converse is
straightforward. |

Corollary: If S and T are R-submodules of @, then Q/S =~ Q/T if and only if S =~ T.

Corollary: If M is an injective R-module, then any element of M is contained in an indecomposable, injective direct
summand of M.

proof: Let x € M. Since Rx is cyclic, there is an ideal I of R such that Rz =~ R/I. Hence,

E(Rx) is indecomposable and E(Rx) < M, by the minimality of the injective envelope of a module. Since E(Rz) is an

injective submodule of M, it is a direct summand of M.

Thus, if B is a finitely generated R-module, then E(B) is a finite direct sum of indecomposable, injective R-modules.
We saw that this is also the case for finitely generated modules over PIDs.

proof: Since R is a valuation ring, every finitely generated R-module is cyclic, and thus of the form R/I for some ideal
I of R. Thus by Prop 1, E(B) is an indecomposable, injective R-module.
Definition: Given a module M, a submodule N € M, and elements z,y € M, we write = y (mod N) if z —y € N.

Let M be an R-module, and let {(M,,2s)}aca be a collection of pairs of submodules and elements of M. We obtain a
set of congruences with variable x € M:

x = x4 (mod M,), a€ A.

A set of congruences is finitely solvable if for
every finite collection of inidces {a}j_,, there exist elements {y;}7_, such that

Yk = Tq, (mod M,,) for k=1,2,...n.

Definition: Let M be a module over a commutative ring R. M is linearly compact if every finitely solvable set of congruences



x = x4 (mod M,), aeA

(where z, € M, M, are submodules of M),

has a simultaneous solution.

M is semi-compact if the above congruence condition holds whenever the submodules M, are annihilators of ideals of

R; that is, for each «, there exists an ideal I, € R such that M, = {x € M : zI, = 0}.

Proposition: Let C be an injective module over a commutative ring. Then C' is semi-compact.

Proof. Let x = x,, (mod C,) be a finitely solvable set of congruences, where z, € C, and each submodule C, < C is the
annihilator in C of an ideal I, in R. Let I be the ideal in R generated by all of the I,’s.

Let a € I. There are finitely many indices ai,...,a, such that a € I, + I, + ... + I5,. Since the set of congruences
is finitely solvable, there is an element y € C' such that y = z,, (mod Cy,) for k =1,...,n.

Define an R-map f: I — C by f(a) = ay for a € I.

Let us verify that f is a well-defined function. Let a € I be as above, and suppose we have a second collections of in-
dices B1, ..., Bm such that a e Ig, + Ig, + ... + I3, . O



